首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A stop or nonsense codon is an in-frame triplet within a messenger RNA that signals the termination of translation. One common feature shared among all three nonsense codons (UAA, UAG, and UGA) is a uridine present at the first codon position. It has been recently shown that the conversion of this uridine into pseudouridine (Ψ) suppresses translation termination, both in vitro and in vivo. Furthermore, decoding of the pseudouridylated nonsense codons is accompanied by the incorporation of two specific amino acids in a nonsense codon-dependent fashion. Ψ differs from uridine by a single N1H group at the C5 position; how Ψ suppresses termination and, more importantly, enables selective decoding is poorly understood. Here, we provide molecular rationales for how pseudouridylated stop codons are selectively decoded. Our analysis applies crystal structures of ribosomes in varying states of translation to consider weakened interaction of Ψ with release factor; thermodynamic and geometric considerations of the codon-anticodon base pairs to rank and to eliminate mRNA-tRNA pairs; the mechanism of fidelity check of the codon-anticodon pairing by the ribosome to evaluate noncanonical codon-anticodon base pairs and the role of water. We also consider certain tRNA modifications that interfere with the Ψ-coordinated water in the major groove of the codon-anticodon mini-helix. Our analysis of nonsense codons enables prediction of potential decoding properties for Ψ-modified sense codons, such as decoding ΨUU potentially as Cys and Tyr. Our results provide molecular rationale for the remarkable dynamics of ribosome decoding and insights on possible reprogramming of the genetic code using mRNA modifications.  相似文献   

4.
In the early region of the Escherichia coli lac repressor mRNA, translational reinitiation events triggered by nonsense codons occur over long distances and in a distinctive pattern not explained by simple use of the next available initiator triplet. Defined fusions of the restart sites to the lacZ coding region have been used to explore the basis for these reinitiation patterns and to ask whether the sites can function in independent initiation at the 5' end of an mRNA. The results obtained confirm earlier indications that the restart sites may have little or no inherent capacity for binding free 30S ribosomes. The data also add to growing evidence that primary sequence elements are important determinants of reinitiation efficiency. On the basis of the reinitiation activities for nonsense sites throughout the early region of the mRNA, we suggest that out-of-frame restarts and RNA secondary structure bridge long distances between the point of termination and downstream restart codons. Such bridging mechanisms could serve more generally as a means of propagating translational activity across long polycistronic mRNAs.  相似文献   

5.
Mammalian cells have established mechanisms to reduce the abundance of mRNAs that harbor a nonsense codon and prematurely terminate translation. In the case of the human triosephosphate isomerase (TPI gene), nonsense codons located less than 50 to 55 bp upstream of intron 6, the 3′-most intron, fail to mediate mRNA decay. With the aim of understanding the feature(s) of TPI intron 6 that confer function in positioning the boundary between nonsense codons that do and do not mediate decay, the effects of deleting or duplicating introns have been assessed. The results demonstrate that TPI intron 6 functions to position the boundary because it is the 3′-most intron. Since decay takes place after pre-mRNA splicing, it is conceivable that removal of the 3′-most intron from pre-mRNA “marks” the 3′-most exon-exon junction of product mRNA so that only nonsense codons located more than 50 to 55 nucleotides upstream of the “mark” mediate mRNA decay. Decay may be elicited by the failure of translating ribosomes to translate sufficiently close to the mark or, more likely, the scanning or looping out of some component(s) of the translation termination complex to the mark. In support of scanning, a nonsense codon does not elicit decay if some of the introns that normally reside downstream of the nonsense codon are deleted so the nonsense codon is located (i) too far away from a downstream intron, suggesting that all exon-exon junctions may be marked, and (ii) too far away from a downstream failsafe sequence that appears to function on behalf of intron 6, i.e., when intron 6 fails to leave a mark. Notably, the proposed scanning complex may have a greater unwinding capability than the complex that scans for a translation initiation codon since a hairpin structure strong enough to block translation initiation when inserted into the 5′ untranslated region does not block nonsense-mediated decay when inserted into exon 6 between a nonsense codon residing in exon 6 and intron 6.  相似文献   

6.
Aberrant mRNAs harboring premature termination codons (PTCs or nonsense codons) are degraded by the nonsense-mediated mRNA decay (NMD) pathway. mRNAs transcribed from genes that naturally acquire PTCs during lymphocyte development are strongly downregulated by PTCs. Here we show that a signal essential for this robust mRNA downregulatory response is efficient RNA splicing. Strong mRNA downregulation can be conferred on a poor NMD substrate by either strengthening its splicing signals or removing its weak introns. Efficient splicing also strongly promotes translation, providing a molecular explanation for enhanced NMD and suggesting that efficient splicing may have evolved to enhance both protein production and RNA surveillance. Our results suggest simple approaches for increasing protein expression from expression vectors and treating human genetic diseases caused by nonsense and frameshift mutations.  相似文献   

7.
Boundary-independent polar nonsense-mediated decay   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   

8.
9.
The nonsense-mediated mRNA decay (NMD) system is an RNA surveillance system that degrades mRNAs possessing premature translation termination codons (PTCs). Although NMD factors are well conserved in eukaryotes, it is speculated that the contexts of those termination codons that are subject to NMD are different depending on the organism. Context analysis of termination codons that are recognized by the plant NMD system would clarify NMD target mRNAs in plants, and contribute to our understanding of its biological relevance in plants. In the present study we analyzed the positions of termination codons that were recognized as PTCs using an Agrobacterium transient expression assay, i.e. the accumulation of a series of plant mRNAs with nonsense mutations in different contexts was tested in plants. The results indicated that termination codons that are located distant from the mRNA 3' termini or >50 nucleotides upstream of the 3'-most exon-exon junction are recognized as substrates for NMD.  相似文献   

10.
The translation of human triosephosphate isomerase (TPI) mRNA normally terminates at codon 249 within exon 7, the final exon. Frameshift and nonsense mutations of the type that cause translation to terminate prematurely at or upstream of codon 189 within exon 6 reduce the level of nuclear TPI mRNA to 20 to 30% of normal by a mechanism that is not a function of the distance of the nonsense codon from either the translation initiation or termination codon. In contrast, frameshift and nonsense mutations of another type that cause translation to terminate prematurely at or downstream of codon 208, also within exon 6, have no effect on the level of nuclear TPI mRNA. In this work, quantitations of RNA that derived from TPI alleles in which nonsense codons had been generated between codons 189 and 208 revealed that the boundary between the two types of nonsense codons resides between codons 192 and 195. The analysis of TPI gene insertions and deletions indicated that the positional feature differentiating the two types of nonsense codons is the distance of the nonsense codon upstream of intron 6. For example, the movement of intron 6 to a position downstream of its normal location resulted in a concomitant downstream movement of the boundary between the two types of nonsense codons. The analysis of intron 6 mutations indicated that the intron 6 effect is stipulated by the 88 nucleotides residing between the 5' and 3' splice sites. Since the deletion of intron 6 resulted in only partial abrogation of the nonsense codon-mediated reduction in the level of TPI mRNA, other sequences within TPI pre-mRNA must function in the effect. One of these sequences may be intron 2, since the deletion of intron 2 also resulted in partial abrogation of the effect. In experiments that switched introns 2 and 6, the replacement of intron 6 with intron 2 was of no consequence to the effect of a nonsense codon within either exon 1 or exon 6. In contrast, the replacement of intron 2 with intron 6 was inconsequential to the effect of a nonsense codon in exon 6 but resulted in partial abrogation of a nonsense codon in exon 1.  相似文献   

11.
J Zhang  X Sun  Y Qian    L E Maquat 《RNA (New York, N.Y.)》1998,4(7):801-815
Generally, mRNAs that prematurely terminate translation are abnormally low in abundance. In the case of mammalian cells, nonsense codons most often mediate a reduction in the abundance of newly synthesized, nucleus-associated mRNA by a mechanism that is not well understood. With the aim of defining cis-acting sequences that are important to the reduction process, the effects of particular beta-globin gene rearrangements on the metabolism of beta-globin mRNAs harboring one of a series of nonsense codons have been assessed. Results indicate that nonsense codons located 54 bp or more upstream of the 3'-most intron, intron 2, reduce the abundance of nucleus-associated mRNA to 10-15% of normal without altering the level of either of the two introns within pre-mRNA. The level of cytoplasmic mRNA is also reduced to 10-15% of normal, indicating that decay does not take place once the mRNA is released from an association with nuclei into the cytoplasm. A nonsense codon within exon 2 that does not reduce mRNA abundance can be converted to the type that does by (1) inserting a sufficiently large in-frame sequence immediately upstream of intron 2 or (2) deleting and reinserting intron 2 a sufficient distance downstream of its usual position. These findings indicate that only those nonsense codons located more than 54 bp upstream of the 3'-most intron reduce beta-globin mRNA abundance, which is remarkably consistent with which nonsense codons within the triosephosphate isomerase (TPI) gene reduce TPI mRNA abundance. We propose that the 3'-most exon-exon junction of beta-globin mRNA and, possibly, most mRNAs is marked by the removal of the 3'-most intron during pre-mRNA splicing and that the "mark" accompanies mRNA during transport to the cytoplasm. When cytoplasmic ribosomes terminate translation more than 54 nt upstream of the mark during or immediately after transport, the mRNA is subjected to nonsense-mediated decay. The finding that deletion of beta-globin intron 2 does not appreciably alter the effect of any nonsense codon on beta-globin mRNA abundance suggests that another cis-acting sequence functions in nonsense-mediated decay comparably to intron 2, at least in the absence of intron 2, possibly as a fail-safe mechanism. The analysis of deletions and insertions indicates that this sequence resides within the coding region and can be functionally substituted by intron 2.  相似文献   

12.
13.
Nonsense-mediated decay of mutant waxy mRNA in rice   总被引:13,自引:0,他引:13  
  相似文献   

14.
A new function for nonsense-mediated mRNA-decay factors   总被引:10,自引:0,他引:10  
mRNAs often contain premature-termination (nonsense) codons as a result of mutations and RNA splicing errors. These nonsense codons cause rapid decay of the mRNAs that contain them, a phenomenon called nonsense-mediated mRNA decay (NMD). This response is thought to be a quality-control mechanism that protects cells from truncated dominant-negative proteins. Surprisingly, recent evidence strongly suggests that the NMD factors UPF1, UPF2, UPF3B, RNPS1, Y14 and MAGOH also promote translation of normal mRNAs in mammalian cells. This, along with an earlier discovery that NMD factors appear to dictate efficient translation termination, suggests that NMD factors do not merely function in RNA surveillance. These findings lead to the interesting question of why NMD factors evolved; are they for RNA-quality control or to promote efficient translation initiation and termination?  相似文献   

15.
Nonsense codons upstream of and including position 192 of the human gene for triosephosphate isomerase (TPI) have been found to reduce the abundance of TPI mRNA to approximately 25% of normal. The reduction is due to the decay of newly synthesized TPI mRNA that co-purifies with nuclei. TPI mRNA that co-purifies with cytoplasm is immune to nonsense-mediated decay. Until now, a nonsense codon at position 23 has been the 5'-most nonsense codon that has been analyzed. Here, we provide evidence that a nonsense codon at position 1, 2 or 10 reduces the abundance of nucleus-associated TPI mRNA to an average of only 84% of normal because translation reinitiates at the methionine codon at position 14. First, converting codon 14 to one for valine increased the effectiveness with which an upstream nonsense codon reduces mRNA abundance. Second, when TPI gene sequences, including codon 14, were fused upstream of and in-frame to the translational reading frame of an Escherichia coli chloramphenicol acetyl transferase (CAT) gene that lacked an initiation codon, a nonsense codon at TPI position 1 or 2 allowed for the production of TPI-CAT that was an estimated 14 amino acids smaller than TPI-CAT produced by a nonsense-free gene, whereas a nonsense codon at TPI position 23 precluded the production of TPI-CAT. These and related findings lend credence to the concept that the nonsense-mediated reduction in the half-life of nucleus-associated TPI mRNA involves cytoplasmic ribosomes.  相似文献   

16.
17.
Ferredoxin-1 (Fed-1) mRNA is poorly translated in dark-treated tobacco (Nicotiana tabacum) leaves, resulting in destabilization of Fed-1 mRNA and a differential light/dark accumulation of the mRNA. Insertion of nonsense codons within the Fed-1 coding sequence disrupts the light regulation of Fed-1 mRNA abundance. Here we show that the nonsense codon effect results primarily from lowering the Fed-1 mRNA stability in light-treated leaf tissue and in rapidly growing tobacco cell cultures, but not in dark-treated leaf tissue. These results suggest that nonsense codons trigger a decay pathway distinct from that seen for Fed-1 mRNA in the dark. We propose that nonsense-mediated decay of nonsense-containing Fed-1 mRNA occurs in light-treated leaves and in non-photosynthetic tobacco culture cells where Fed-1 mRNA is being actively translated.  相似文献   

18.
Cao D  Parker R 《Cell》2003,113(4):533-545
  相似文献   

19.
20.
RT-PCR of RNA from CHO cells with nonsense mutations in the hprt gene frequently detects minor hprt mRNA species lacking one or more exons. Many nonsense mutants also contain greatly reduced concentrations of the major, normally spliced hprt mRNA. In this study, we examined the hypothesis that exon-deleted mRNAs are normal constituents of CHO cells, but are not detected in wild-type parental cells and most missense mutants because their amplification is suppressed by relatively high concentrations of normally spliced hprt mRNA. A protocol designed to specifically detect exon-deleted mRNAs was conducted using RNA from parental cells and identified all the exon-deleted species typical of nonsense mutants. Quantitative analysis of parental cell RNA measured these exon-deleted mRNAs at < or = 0.7% of the abundance of the full-sized species. Nonsense and missense mutants had comparable amounts of exon-deleted mRNAs, which varied both above and below parental concentrations. The relative concentrations of particular exon-deleted species could be explained by the location of nonsense mutations remaining in the mRNA or by structural effects of mutations on splicing. Exon-deleted mRNAs were detected by RT-PCR when the concentration of the most abundant exon-deleted species was > or = 2% of the full-length mRNA. This occurred for mutants with nonsense mutations in internal exons. RT-PCR conditions were shown to suppress the amplification of exon-deleted species 40-fold when full-length mRNA was abundant, which occurred for parental lines and missense mutants. Our results verify that RT-PCR conditions can produce an artifactual association between nonsense mutation and exon-skipping when minor, exon-deleted mRNA is relatively enriched.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号