首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron accumulation is considered to be involved in the pathogenesis of Parkinson's disease. To demonstrate the relationship between peripheral iron overload and dopaminergic neuron loss in rat substantia nigra (SN), in the present study we used fast cyclic voltammetry, tyrosine hydroxylase (TH) immunohistochemistry, Perls' iron staining, and high performance liquid chromatography-electrochemical detection to study the degeneration of dopaminergic neurons and increased iron content in the SN of iron dextran overloaded animals. The findings showed that peripheral iron dextran overload increased the iron staining positive cells and reduced the number of TH-immunoreactive neurons in the SN. As a result, dopamine release and content, as well as its metabolites contents were decreased in caudate putamen. Even more dramatic changes were found in chronic overload group. These results suggest that peripheral iron dextran can increase the iron level in the SN, where excessive iron causes the degeneration of dopaminergic neurons. The chronic iron overload may be more destructive to dopaminergic neurons than the acute iron overload.  相似文献   

2.
Wang J  Jiang H  Xie JX 《生理学报》2003,55(4):422-427
应用快速周期伏安法(fast cyclic vohammetry,FCV)、原子吸收分光光度法及免疫组织化学方法,观察了6-羟基多巴胺(6-hydroxydopamine,6-OHDA)单侧损毁大鼠内侧前脑束(medial forebrain bundle,MFB)早期黑质(sub-stantia nigra,sN)铁水平与多巴胺(dopamine,DA)神经元损伤的变化,以及纹状体(striatum,Str)的DA释放。结果如下:6-OHDA单侧损毁大鼠MFB1d和3d后,SN的酪氨酸羟化酶(tyrosine hydroxylase,TH)阳性细胞分别下降了45%和66%;与正常鼠和未损毁侧相比,损毁侧SN的铁染色增强,铁浓度增加,而Str的DA释放量不变;6-OHDA损毁后1d与3d组相比,损毁侧的铁染色、铁浓度及DA释放量差别无显著性。上述结果表明,6-OHDA单侧损毁大鼠MFB的早期阶段,SN的DA能神经元数目中等程度减少时,铁染色及铁浓度即有增加,由于DA能神经系统有强大的代偿功能,使得Str的DA释放量仍趋于正常。  相似文献   

3.
Elevated iron concentrations in the substantia nigra (SN) pars compacta have been implicated in the development of idiopathic Parkinson's disease. Because, as a transitional metal, iron promotes free radical formation, the role of iron in the degeneration of the nigrostriatal dopamine neurons in Parkinson's disease has received much attention. This study further investigates the cytotoxic effects of iron in the SN. Various concentrations of FeCl3 (1, 5, and 50 micrograms of Fe3+ in 5 microliters) were unilaterally injected into the SN of adult rats. The two lower doses of iron had no effect on striatal dopamine levels or on the behavioral responses of the rats. However, injection of 50 micrograms of Fe3+ resulted in a substantial selective decrease of striatal dopamine (95%), 3,4-dihydroxyphenylacetic acid (82%), and homovanillic acid (45%), without any change in norepinephrine concentration. Dopamine-related behavioral responses, such as spontaneous movements in a novel space and rearing, were significantly impaired, whereas amphetamine administration induced ipsilateral rotation in the iron-treated rats. The present study indicates that the nigrostriatal dopamine neurons are susceptible to the presence of ionic iron and thus supports the assumption that iron initiates dopaminergic neurodegeneration in Parkinson's disease.  相似文献   

4.
帕金森病模型大鼠脑内多巴胺与铁含量的关系   总被引:12,自引:2,他引:10  
Jiang H  Chen WF  Xie JX 《生理学报》2001,53(5):334-338
实验采用原子吸收分光光度法,快速周期伏安法,高效液相电化学检测等方法,研究以6-羟基多巴(6-OHDA)制备的帕金森病(PD)模型大鼠黑质内铁含量的变化。铁对多巴胺(DA)能神经元的直接毒性作用以及铁离子螯合剂甲磺酸去铁胺的神经保护作用。结果发现:(1)PD大鼠损毁侧黑质内铁含量为非标准PD大鼠的3倍左右;(2)PD大鼠损毁侧纹状体内铁含量无明显改变;(3)单纯注射6-OHDA的大鼠其损毁侧纹状体(CPu)DA的释放量和含量均明显降低;(4)侧脑室预先注射甲磺酸去铁胺,再重复上述实验,损毁侧CPu DA释放量和含量均无明显改变;(5)单侧黑质内注射40ug FeCl3后,大鼠损毁侧CPu内DA释放量和含量显著降低。上述结果提示,6-OHDA可导致CPu DA释放量及含量减少,此过程有铁的参与。由于铁可导致DA神经元死亡,因此铁含量的增加可能是DA含量减少的原因之一,甲磺酸去铁胺具有保护DA神经元的作用。  相似文献   

5.
Acute administration of repeated doses of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) dramatically reduces striatal dopamine (DA) content, tyrosine hydroxylase (TH), and DA transporter-immunoreactivity in mice. In this study, we show for the first time the spatiotemporal pattern of dopaminergic damage and related molecular events produced by MDMA administration in mice. Our results include the novel finding that MDMA produces a significant decrease in the number of TH-immunoreactive neurons in the substantia nigra (SN). This decrease appears 1 day after injection, remains stable for at least 30 days, and is accompanied by a dose-dependent long-lasting decrease in TH- and DA transporter-immunoreactivity in the striatum, which peaked 1 day after treatment and persisted for at least 30 days, however, some recovery was evident from day 3 onwards, evidencing sprouting of TH fibers. No change is observed in the NAc indicating that MDMA causes selective destruction of DA-containing neurons in the nigrostriatal pathway, sparing the mesolimbic pathway. The expression of Mac-1 increased 1 day after MDMA treatment and glial fibrillary acidic protein increased 3 days post-treatment in the striatum and SN but not in the NAc, in strict anatomical correlation with dopaminergic damage. These data provide the first evidence that MDMA causes persistent loss of dopaminergic cell bodies in the SN.  相似文献   

6.
The cause of the neurodegenerative process in Parkinson's disease (PD) remains unclear, but evidence suggests that failure of the ubiquitin-proteasome system may play a major role in the pathogenesis of the disease. Iron is believed to be a key contributor to PD pathology by inducing aggregation of alpha-synuclein and by generating oxidative stress. Our present studies have shown that micro-injection of the proteasome inhibitor lactacystin into the substantia nigra (SN) of C57BL/6 mice causes significant loss of dopaminergic cells and induces intracellular inclusion body formation. We have also found that co-injection of the iron chelator desferrioxamine not only attenuates the lactacystin-induced dopamine neuron loss, but also reduces the presence of ubiquitin-positive intracellular inclusions in the SN, whereas use of iron-deficient diet has no such protective effects. These results may support that iron plays a key role in proteasome inhibitor-induced nigral pathology and that reducing iron reactivity may prevent dopaminergic neuron degeneration and reduce abnormal protein aggregation.  相似文献   

7.
A selective increase in content of iron in the pars compacta of the substantia nigra has been implicated in the biochemical pathology of Parkinson's disease. Iron is thought to induce oxidative stress by liberation of oxygen free radicals from H2O2. Because 6-hydroxydopamine (6-OHDA) is thought to induce nigrostriatal dopaminergic neuronal lesions via metal-catalyzed free radical formation, the effect of the iron chelator desferrioxamine was investigated on 6-OHDA-induced dopaminergic neuron degeneration in the rat. Intracerebroventricular injection of 6-OHDA (250 micrograms) caused a 88, 79, and 70% reduction in striatal tissue content of dopamine (DA), 3,4-dihydroxyphenylacetic acid, and homovanillic acid (HVA), respectively, and a 2.5-fold increase in DA release as indicated by the HVA/DA ratio. Prior injection of desferrioxamine (130 ng i.c.v.) resulted in a significant protection (approximately 60%) against the 6-OHDA-induced reduction in striatal DA content and a normalization of DA release. Dopaminergic-related behavioral responses, such as spontaneous movements in a novel environment and rearing, were significantly impaired in the 6-OHDA-treated group. By contrast, the desferrioxamine-pretreated rats exhibited almost normal behavioral responses. The ability of iron chelators to retard dopaminergic neurodegeneration in the substantia nigra may indicate a new therapeutic strategy in the treatment of Parkinson's disease.  相似文献   

8.
We investigated the effect of an injection of 6-hydroxydopamine (6-OHDA) into the rat medial forebrain bundle (MFB) on the degeneration and the function of the dopaminergic cell bodies in the substantia nigra (SN) 3 and 5 weeks after lesioning. After injection of 6-OHDA into the MFB a complete loss of dopamine content was apparent in the striatum 3 weeks after lesioning. In the SN the amount of tyrosine hydroxylase-immunoreactive dopamine cells decreased gradually, with a near-complete lesion (> 90%) obtained only after 5 weeks, indicating that neurodegeneration of the nigral cells was still ongoing when total dopamine denervation of the striatum had already been achieved. Baseline dialysate and extracellular dopamine levels in the SN, as determined by in vivo microdialysis, were not altered by the lesion. A combination of compensatory changes of the remaining neurones and dopamine originating from the ventral tegmental area may maintain extracellular dopamine at near-normal levels. In both intact and lesioned rats, the somatodendritic release was about 60% tetrodotoxin (TTX) dependent. Possibly two pools contribute to the basal dopamine levels in the SN: a fast sodium channel-dependent portion and a TTX-insensitive one originating from diffusion of dopamine. Amphetamine-evoked dopamine release and release after injection of the selective dopamine reuptake blocker GBR 12909 were attenuated after a near-complete denervation of the SN (5 weeks after lesioning). So, despite a 90% dopamine cell loss in the SN 5 weeks after an MFB lesion, extracellular dopamine levels in the SN are kept at near-normal levels. However, the response to a pharmacological challenge is severely disrupted.  相似文献   

9.
It is believed that both mitochondrial dysfunction and oxidative stress play important roles in the pathogenesis of Parkinson's disease (PD). We studied the effect of chronic systemic exposure to the mitochondrial inhibitor rotenone on the uptake, content, and release of striatal neurotransmitters upon neuronal activity and oxidative stress, the latter simulated by H(2)O(2) perfusion. The dopamine content in the rat striatum is decreased simultaneously with the progressive loss of tyrosine hydroxylase (TH) immunoreactivity in response to chronic intravenous rotenone infusion. However, surviving dopaminergic neurons take up and release only a slightly lower amount of dopamine (DA) in response to electrical stimulation. Striatal dopaminergic neurons showed increased susceptibility to oxidative stress by H(2)O(2), responding with enhanced release of DA and with formation of an unidentified metabolite, which is most likely the toxic dopamine quinone (DAQ). In contrast, the uptake of [(3)H]choline and the electrically induced release of acetylcholine increased, in coincidence with a decline in its D(2) receptor-mediated dopaminergic control. Thus, oxidative stress-induced dysregulation of DA release/uptake based on a mitochondrial deficit might underlie the selective vulnerability of dopaminergic transmission in PD, causing a self-amplifying production of reactive oxygen species, and thereby contributing to the progressive degeneration of dopaminergic neurons.  相似文献   

10.
Clinical studies have demonstrated an excess of transition metals, including zinc and iron, in the substantia nigra (SN) of Parkinson's patients. In the present study, the neurotoxic effect of zinc was investigated using iron as a positive control. Addition of zinc or iron to brain homogenates increased lipid peroxidation. Zinc was less potent than iron in inducing lipid peroxidation. Coincubation with desferrioxamine prevented zinc- and iron-induced lipid peroxidation. Furthermore, glutathione (GSH), S-nitroso-N-acetylpenicillamine, or melatonin inhibited zinc-induced lipid peroxidation. The oxidative effect of zinc was further investigated in anesthetized rats. Seven days after intranigral infusion of zinc, lipid peroxidation was elevated in the infused SN, and dopamine content and tyrosine hydroxylase-positive axons were decreased in the ipsilateral striatum. Zinc was less potent than iron in inducing neurodegeneration in vivo. L-Buthionine-[S,R]-sulfoximine pretreatment (i.c.v.), which depletes cellular GSH levels, enhanced zinc-induced oxidative injuries in the nigrostriatal dopaminergic system. Moreover, simultaneous infusion of zinc and iron appeared to augment oxidative injuries in rat brain. Taken together, our results demonstrate that intranigral infusion of zinc caused degeneration of the nigrostriatal dopaminergic system in rat brain. Furthermore, coexistence of zinc and iron augmented oxidative injuries in rat brain. These findings indicate that both zinc and iron contribute to the etiology of Parkinsonism.  相似文献   

11.
12.
Elevated iron was found in the substantia nigra (SN) of patients with Parkinson's disease (PD). Our previous in vivo experiments suggested that decreased ferroportin1 (FPN1) and hephaestin (HP) expression might account for the cellular iron accumulation and resulting dopaminergic neurons loss in the SN of PD animal models. In the present study, we investigated whether increased FPN1 and/or HP expression could attenuate iron‐induced oxidative stress in the dopaminergic MES23.5 cell line. We generated MES23.5 cells with stable overexpression of FPN1 and/or HP. Our study showed that overexpression of FPN1 and/or HP increased iron efflux, lowered cellular iron level, suppressed reactive oxygen species production, and restored mitochondrial transmembrane potential, similar to the effects seen for the iron chelator deferoxamine. These results suggest that FPN1 and/or HP might directly contribute to iron efflux process from neurons in conditions of overexpression, thus prevent cellular iron accumulation and eventually protect cells from iron‐induced oxidative stress. J. Cell. Biochem. 110: 1063–1072, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

13.
Many recent studies have shown that antioxidant compounds decrease cardiac oxidative stress, decrease cardiac iron deposition, and improve cardiac dysfunction in iron-overload induced cardiomyopathy in animal models. Interestingly, a therapy including the combination of the iron chelator deferiprone (DFP) plus the antioxidant N-acetylcysteine (NAC) has been shown to significantly decrease oxidative stress and restore heart and brain function in iron-overloaded rats. However, the cardioprotective effects of this combined DFP and NAC treatment in thalassemic mice have not been investigated. We hypothesised that the combination of DFP and NAC exerts better cardioprotection than monotherapy via decreasing cardiac iron accumulation, oxidative stress, and apoptosis in thalassemic mice. The iron-overload condition was induced in heterozygous βKO HT and wild-type mice by instigating high iron diet consumption (FE) for three months. Then, iron chelator DFP (75?mg/kg/day twice a day), antioxidant NAC (100?mg/kg/day once a day), and combined DFP plus NAC were fed via oral gavage for one month with continuous iron feeding. Left ventricular (LV) function, heart rate variability (HRV), apoptosis, and cardiac iron accumulation were determined. Chronic iron-overload in mice led to increased cardiac iron deposition, oxidative stress, apoptosis, and impaired LV function and HRV. Although DFP and NAC showed similar cardioprotective efficacy, combined DFP plus NAC exerted greater efficacy in reducing both cardiac iron deposition and cellular apoptosis than monotherapy. In conclusion, combined iron chelator and NAC treatment exert the greatest cardioprotective efficacy when compared with either of the monotherapies in iron-overload thalassemic mice.  相似文献   

14.
Epidermal growth factor (EGF) and structurally related peptides promote neuronal survival and the development of midbrain dopaminergic neurons; however, the regulation of their production has not been fully elucidated. In this study, we found that the treatment of striatal cells with dopamine agonists enhances EGF release both in vivo and in vitro. We prepared neuron-enriched and non-neuronal cell-enriched cultures from the striatum of rat embryos and challenged those with various neurotransmitters or dopamine receptor agonists. Dopamine and a dopamine D(1) -like receptor agonist (SKF38393) triggered EGF release from neuron-enriched cultures in a dose-dependent manner. A D(2) -like agonist (quinpirole) increased EGF release only from non-neuronal cell-enriched cultures. The EGF release from striatal neurons and non-neuronal cells was concomitant with ErbB1 phosphorylation and/or with the activation of a disintegrin and metalloproteinase and matrix metalloproteinase. The EGF release from neurons was attenuated by an a disintegrin and metalloproteinase/matrix metalloproteinase inhibitor, GM6001, and a calcium ion chelator, BAPTA/AM. Transfection of cultured striatal neurons with alkaline phosphatase-tagged EGF precursor cDNA confirmed that dopamine D(1) -like receptor stimulation promoted both ectodomain shedding of the precursor and EGF release. Therefore, the activation of striatal dopamine receptors induces shedding and release of EGF to provide a retrograde neurotrophic signal to midbrain dopaminergic neurons.  相似文献   

15.
In this investigation, microdialysis has been used to study the effects of 1-methyl-4-phenylpyridinium (MPP+), an inhibitor of mitochondrial complex I and alpha-ketoglutarate dehydrogenase and the active metabolite of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on extracellular concentrations of glutathione (GSH) and cysteine (CySH) in the rat striatum and substantia nigra (SN). During perfusion of a neurotoxic concentration of MPP+ (2.5 mM) into the rat striatum or SN, extracellular concentrations of GSH and CySH remain at basal levels (both approximately 2 microM). However, when the perfusion is discontinued, a massive but transient release of GSH occurs, peaking at 5,000% of basal levels in the striatum and 2,000% of basal levels in the SN. The release of GSH is followed by a slightly delayed and smaller elevation of extracellular concentrations of CySH that can be blocked by the gamma-glutamyl transpeptidase (gamma-GT) inhibitor acivicin. Low-molecular-weight iron and extracellular hydroxyl radical (OH*) have been implicated as participants in the mechanism underlying the dopaminergic neurotoxicity of MPTP/MPP+. During perfusion of Fe2+ (OH*) into the rat striatum and SN, extracellular levels of GSH also remain at basal levels. When perfusions of Fe2+ are discontinued, a massive transient release of GSH occurs followed by a delayed, small, but progressive elevation of extracellular CySH level that again can be blocked by acivicin. Previous investigators have noted that extracellular concentrations of the excitatory/excitotoxic amino acid glutamate increase dramatically when perfusions of neurotoxic concentrations of MPP+ are discontinued. This observation and the fact that MPTP/MPP+ causes the loss of nigrostriatal GSH without corresponding increases of glutathione disulfide (GSSG) and the results of the present investigation suggest that the release and gamma-GT/dipeptidase-mediated hydrolysis of GSH to glutamate, glycine, and CySH may be important factors involved with the degeneration of dopamine neurons. It is interesting that a very early event in the pathogenesis of Parkinson's disease is a massive loss of GSH in the SN pars compacta that is not accompanied by corresponding increases of GSSG levels. Based on the results of this and prior investigations, a new hypothesis is proposed that might contribute to an understanding of the mechanisms that underlie the degeneration of dopamine neurons evoked by MPTP/MPP+, other agents that impair neuronal energy metabolism, and Parkinson's disease.  相似文献   

16.
Parkinson's disease: studies with an animal model   总被引:2,自引:0,他引:2  
Parkinson' disease has been associated with degeneration of dopamine-containing neurons of the nigrostriatal bundle. Many neurological features of Parkinsonism can be produced in rats by selective destruction of central dopaminergic neurons using the neurotoxin 6-hydroxydopamine. In this review we discuss two aspects of Parkinson's disease that have been investigated in these animals. First, we consider why near-total degeneration of nigrostriatal bundle neurons is required before neurological symptoms emerge. It appears that the loss of dopaminergic neurons is accompanied by an exponential increase in the ratio of tyrosine hydroxylase activity to dopamine content. Thus, after the brain lesions there may be a compensatory increase in the capacity of residual dopaminergic neurons to synthesize and release transmitter. Second, we consider why stress produces severe neurological deficits in patients who are only mildly impaired otherwise. It appears that a variety of stressors produce an abrupt but transient increase in dopaminergic activity in the striatum of intact animals and that this increase is markedly attenuated by 6-hydroxydopamine treatment. Thus, stress-induced akinesia in animals with dopamine-depleting brain lesions and in Parkinsonian patients may result from the impaired ability of residual neurons to respond approximately to such stimuli.  相似文献   

17.
The long‐term consequences of traumatic brain injury (TBI) are closely associated with the development of histopathological deficits. Notably, TBI may predispose long‐term survivors to age‐related neurodegenerative diseases, such as Parkinson's disease (PD), which is characterized by a gradual degeneration of the nigrostriatal dopaminergic neurons. However, preclinical studies on the pathophysiological changes in substantia nigra (SN) after chronic TBI are lacking. In the present in vivo study, we examined the pathological link between PD‐associated dopaminergic neuronal loss and chronic TBI. Sixty days post‐TBI, rats were euthanized and brain tissues harvested. Immunostaining was performed using tyrosine hydroxylase (TH), an enzyme required for the synthesis of dopamine in neurons, α‐synuclein, a presynaptic protein that plays a role in synaptic vesicle recycling, and major histocompatibility complex II (MHCII), a protein found in antigen presenting cells such as inflammatory microglia cells, all key players in PD pathology. Unbiased stereology analyses revealed significant decrease of TH‐positive expression in the surviving dopaminergic neurons of the SN pars compacta (SNpc) relative to sham control. In parallel, increased α‐synuclein accumulation was detected in the ipsilateral SN compared to the contralateral SN in TBI animals or sham control. In addition, exacerbation of MHCII+ cells was recognized in the SN and cerebral peduncle ipsilateral to injury relative to contralateral side and sham control. These results suggest α‐synuclein as a pathological link between chronic effects of TBI and PD symptoms as evidenced by significant overexpression and abnormal accumulation of α‐synuclein in inflammation‐infiltrated SN of rats exposed to chronic TBI. J. Cell. Physiol. 230: 1024–1032, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

18.
Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys   总被引:5,自引:0,他引:5  
Though increasing lines of evidence suggest that iron accumulation and iron-induced oxidative stress might be important pathological factors responsible for substantia nigra (SN) cell death in Parkinson's disease (PD), it is still unknown whether iron accumulation is a primary cause or consequence of nigral cell death. Using nuclear microscopy, iron histochemistry, TUNEL method for apoptosis detection, and tyrosine hydroxylase (TH) immunohistochemistry, the present study investigated possible changes in iron contents in the SN and correlations of dopaminergic cell death progression with the process of iron accumulation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced parkinsonian monkey from 1 d to 18 months after MPTP administration. Our study demonstrated that apoptosis occurred in the ipsilateral SN at 1 d after MPTP injection and the number of TH-positive cells decreased significantly from 1 week onward. However, iron content was significantly increased in the ipsilateral SN from 4.5 months to 18 months after MPTP injection, and the iron increase was significantly correlated to the extent of dopaminergic cell death. These results suggest that dopaminergic cell death induced by MPTP administration might lead to iron accumulation in the monkey SN, and increased iron might contribute to the progression of nigral degeneration.  相似文献   

19.
Symptoms of Parkinson's disease do not present until the degeneration of nigrostriatal dopaminergic neurons is nearly complete. Maintenance of dopaminergic tone governing striatal efferents is postulated to preserve motor control during the presymptomatic phase, but the neuroadaptation responsible for normalization is not completely understood. In particular, the prevailing view that surviving dopaminergic neurons compensate by up-regulating release has been difficult to demonstrate directly. Here we investigate dopaminergic neurotransmission in the hemiparkinsonian rat using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. Electrical stimulation was used to elicit extracellular dopamine levels mimicking the steady-state dynamics of tonic dopaminergic signaling. In agreement with microdialysis studies, evoked steady-state dopamine levels remained constant over the entire lesion spectrum (0 to approximately 85%) observed during the presymptomatic stage. Kinetic analysis of the voltammetric recordings demonstrated that evoked dopamine concentrations were normalized without plasticity of dopamine release and uptake, suggesting that the primary mechanisms controlling ambient levels of extracellular dopamine were not actively altered. In the present study, we formalize this neuroadaptation as "passive stabilization" . We further propose that passive stabilization is mediated by the simple physical principles of diffusion and steady state, is predicated on extrasynaptic transmission, and forms the basis for a new compensation model of preclinical parkinsonism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号