首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
2.
The functional significance of the cyclin-dependent kinase inhibitor (CDKI) p21Cip1/WAF1 in paclitaxel-mediated lethality was examined in p53-null human leukemia cells (U937 and Jurkat). In these cells, paclitaxel exposure failed to induce p21Cip1/Waf1 expression. Nevertheless, stable expression of U937 cells with a p21Cip1/WAF1 antisense construct blocked paclitaxel-induced G2M arrest and significantly, albeit modestly, increased mitochondrial injury, caspase activation, apoptosis, and loss of clonogenic potential. These protective effects were less than those observed in cells exposed to the antimetabolite ara-C. Consistent with these results, enforced expression of p21Cip1/WAF1 in Jurkat cells transfected with a construct driven by a doxycycline-responsive promoter increased the percentage of cells arrested in G2M, but attenuated paclitaxel-mediated mitochondrial injury and apoptosis. Unexpectedly, enforced expression of p21Cip1/WAF1 diminished paclitaxel-mediated inactivation of ERK, and reduced paclitaxel-induced activation of JNK as well as Bcl-2 phosphorylation. Together, these findings suggest that the CDKI p21Cip1/WAF1 modestly but significantly protects p53-null human leukemia cells from paclitaxel-mediated lethality, and raise the possibility that p21Cip1/WAF1-associated perturbations in signal transduction pathways as well as Bcl-2 phosphorylation status may play a role in this phenomenon.  相似文献   

3.
Arsenic exposure is associated with an increased risk of atherosclerosis and vascular diseases. Although endothelial cells have long been considered to be the primary targets of arsenic toxicity, the underlying molecular mechanism remains largely unknown. In this study, we sought to explore the signaling pathway triggered by sodium arsenite and its implication for endothelial phenotype. We found that sodium arsenite produced time- and dose-dependent decreases in human umbilical vein endothelial cell viability. This effect correlated with the induction of p21Cip1/Waf1 (up to 10-fold), a regulatory protein of cell cycle and apoptosis. We also found that arsenite-stimulated EGF (ErbB1) and ErbB2 receptor transactivation, manifest as receptor tyrosine phosphorylation, appeared to be a proximal signaling event leading to p21Cip1/Waf1 induction, because both pharmacological inhibitors and knockdown of receptors by RNA interference blocked arsenite-induced p21Cip1/Waf1 upregulation. Arsenite-induced activation of JNK and p38 MAPK was distinct, with only JNK as a downstream target of the EGF receptor. Moreover, inhibition of JNK with SP-600125 or dominant negative MKK7 inhibited only p21Cip1/Waf1 induction, whereas the p38 MAPK inhibitor SB-203580 or dominant negative MKK4 inhibited both p21Cip1/Waf1 and p53 induction. Functionally, inhibition of p21Cip1/Waf1 induction prevented endothelial apoptosis due to arsenite treatment. Insofar as endothelial dysfunction promotes vascular disease, these data provide a mechanism for the increased incidence of cardiovascular disease due to arsenite exposure.  相似文献   

4.
5.
The expression of inducible nitric-oxide synthase in melanoma tumor cells was recently shown to correlate strongly with poor patient survival after combination biochemotherapy (p<0.001). Furthermore, evidence suggests that nitric oxide, a reaction product of nitric oxide synthase, exhibits antiapoptotic activity in melanoma cells. We therefore hypothesized that nitric oxide antagonizes chemotherapy-induced apoptosis. Whether nitric oxide is capable of regulating cell growth and apoptotic responses to cisplatin treatment in melanoma cell lines was evaluated. We demonstrate herein that depletion of endogenously produced nitric oxide can inhibit melanoma proliferation and promote apoptosis. Moreover, our data indicate that the depletion of nitric oxide leads to changes in cell cycle regulation and enhances cisplatin-induced apoptosis in melanoma cells. Strikingly, we observed that the depletion of nitric oxide inhibits cisplatin-induced wild type p53 accumulation and p21(Waf1/Cip1/Sdi1) expression in melanoma cells. When cisplatin-induced p53 binding to the p21(Waf1/Cip1/Sdi1) promoter was examined, it was found that nitric oxide depletion significantly reduced the presence of p53-DNA complexes after cisplatin treatment. Furthermore, dominant negative inhibition of p53 activity enhanced cisplatin-induced apoptosis. Together, these data strongly suggest that endogenously produced nitric oxide is required for cisplatin-induced p53 activation and p21(Waf1/Cip1/Sdi1) expression, which can regulate melanoma sensitivity to cisplatin.  相似文献   

6.
To examine the p53-mediated biological activities and signalling pathways, we generated stable transfectants of the p53-null IW32 murine erythroleukemia cells expressing the temperature-sensitive p53 mutant DNA, tsp53(val135). Two clones with different levels of p53 protein expression were selected for further characterization. At permissive temperature, clone 1-5 cells differentiated along the erythroid pathway, and clone 3-2 cells that produced greater levels (3.5-fold) of p53 underwent apoptosis. Apoptosis of 3-2 cells was accompanied by mitochondrial cytochrome c release and caspase activation as well as by cleavage of caspase substrates. Bax protein was induced to a similar extent in these clones by wild-type p53; expression of p21(Cip1/Waf1) and p27(Kip1) proteins was also increased. However, significantly lesser extent of induction for both CDK inhibitors was detected in the apoptotic 3-2 clone. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.fmk) blocked the p53-induced apoptosis in 3-2 cells, with a concomitant elevation of p27(Kip1), suggesting that p27(Kip1) protein underwent caspase-dependent proteolysis in the apoptotic 3-2 cells. Together these results linked a pathway involving cytochrome c release, caspase activation and p27(Kip1) degradation to the p53-induced apoptosis in IW32 erythroleukemia cells.  相似文献   

7.
Chen X  Zhang W  Gao YF  Su XQ  Zhai ZH 《Cell research》2002,12(3-4):229-233
P21(Waf1/Cip1) is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21(Waf1/Cip1) involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21(Waf1/Cip1) and cellular senescence. While in murine cells, the role of p21(Waf1/Cip1) is indefinite. We explored this issue using NIH3T3 cells with inducible p21(Waf1/Cip1) expression. Induction of p21(Waf1/Cip1) triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features, such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed that p21(Waf1/Cip1)-transduced NIH3T3 cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Our results suggest that p2l(Waf1/Cip1) can also induce senescence-like changes in murine cells.  相似文献   

8.
Protein kinase C (PKC) plays an important role in the regulation of glioma growth; however, the identity of the specific isoform and mechanism by which PKC fulfills this function remain unknown. In this study, we demonstrate that PKC activation in glioma cells increased their progression through the cell cycle. Of the six PKC isoforms that were present in glioma cells, PKC alpha was both necessary and sufficient to promote cell cycle progression when stimulated with phorbol 12-myristate 13-acetate. Also, decreased PKC alpha expression resulted in a marked decrease in cell proliferation. The only cell cycle-regulatory molecule whose expression was rapidly altered and increased by PKC alpha activity was the cyclin-cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1). Coimmunoprecipitation studies revealed that p21(Waf1/Cip1) upregulation was accompanied by an incorporation of p21(Waf1/Cip1) into various cyclin-CDK complexes and that the kinase activity of these complexes was increased, thus resulting in cell cycle progression. Furthermore, depletion of p21(Waf1/Cip1) by antisense strategy attenuated the PKC-induced cell cycle progression. These results suggest that PKC alpha activity controls glioma cell cycle progression through the upregulation of p21(Waf1/Cip1), which facilitates active cyclin-CDK complex formation.  相似文献   

9.
10.
11.
We describe temporal and genetic analyses of partially rescued Rb mutant fetuses, mgRb:Rb-/-, that survive to birth and reveal specific defects in skeletal muscle differentiation. We show that in the absence of Rb, these fetuses exhibit increased apoptosis, bona fide endoreduplication, and incomplete differentiation throughout terminal myogenesis. These defects were further augmented in composite mutant fetuses, mgRb:Rb-/-:p21-/-, lacking both Rb and the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Although E2F1 and p53 mediate ectopic DNA synthesis and cell death in several tissues in Rb mutant embryos, both endoreduplication and apoptosis persisted in mgRb:Rb-/-:E2F1-/- and mgRb:Rb-/-:p53-/- compound mutant muscles. Thus, combined inactivation of Rb and p21(Waf1/Cip1) augments endoreduplication and apoptosis, whereas E2F1 and p53 are dispensable during aberrant myogenesis in Rb-deficient fetuses.  相似文献   

12.
We have previously reported that HepG2 human hepatocarcinoma cells are sensitized to doxorubicin-induced apoptosis by the glucosylceramide synthase inhibitor d,l-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) but not by the more specific inhibitor d,l-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP). Herein we investigated whether the chemosensitizing action of PDMP impinged on any unspecific effect of this compound on doxorubicin-induced expression of p53 and/or p21(Cip1/Waf1), namely two proteins reported to modulate the apoptotic response to DNA-damaging agents, in a positive or negative fashion, respectively. We show that, in HepG2 cells, PDMP did not substantially affect doxorubicin-induced p53 upregulation, whereas drug-evoked upregulation of p21(Cip1/Waf1) was markedly attenuated. Although this outcome could be expected to account for the chemosensitizing effect of PDMP, impaired upregulation of p21(Cip1/Waf1), in the setting of unaltered p53 expression, was also observed in the case of PPPP. These results, while raising the possibility of a link between attenuation of drug-evoked p21(Cip1/Waf1) expression and redirection of (glyco)sphingolipid metabolism, show that, differently from other tumor systems, attenuation of doxorubicin-induced p21(Cip1/Waf1) expression is at least not sufficient to sensitize HepG2 cells to the apoptotic action of the drug.  相似文献   

13.
Selenadiazole derivative is one kind of synthetic organoselenium compounds with potent and broad-spectrum antitumor activity. In this study, we showed that anthrax [1,2-c] [1,2,5] selenadiazolo-6,11-dione (ASDO), an novel selenadiazole derivative, induced time- and dose-dependent apoptotic cell death in MCF-7 human breast carcinoma cells, as indicated by accumulation of sub-G1 cell population, DNA fragmentation, nuclear condensation, caspase activation and PARP cleavage. ASDO-induced apoptosis was significantly inhibited by a general caspase inhibitor z-VAD-fmk, demonstrating the important role of caspases in ASDO-induced apoptotic pathway. Treatment of MCF-7 cells with ASDO resulted in a rapid depletion of mitochondrial membrane potential and release of cytochrome c and Smac/Diablo through up-regulation of Bax, Bad and PUMA expression and down-regulation of Bcl-xl expression. Moreover, ASDO treatment up-regulated the expression levels of total p53 and its target gene p21Waf1. Silencing of p53 activation with RNA interference effectively blocked the ASDO-induced cell PARP cleavage, DNA fragmentation and caspase activation. Furthermore, ASDO-induced apoptosis was interestingly found to be independent of reactive oxygen species production. Taken together, we conclude that ASDO induces MCF-7 cell apoptosis through a p53-dependent and mitochondria-mediated pathway.  相似文献   

14.
In response to treatment with phorbol-12-myristate-13-acetate (PMA), the half-population of erythromyeloblast D2 cells, a cytokine-independent variant of TF-1 cells, displayed adhesion and differentiated into a monocyte/macrophage-like morphology, while the other half-population remained in suspension and underwent apoptosis. Expression of the cell cycle inhibitor p21(Cip1/Waf1) was induced after PMA treatment in the adherent cells but not in the proapoptotic cells. We investigated the mechanism responsible for the impairment of p21(Cip1/Waf1) induction in PMA-induced proapoptotic cells. We demonstrated that in PMA-induced adherent cells, upregulation of p21(Cip1/Waf1) requires the activation and nuclear translocation of phosphorylated extracellular signal-regulated kinase (phospho-ERK). Although ERK was phosphorylated to comparable levels in PMA-induced proapoptotic and adherent cells, nuclear distribution of phospho-ERK was seen only in the adherent, not in the proapoptotic cells. We also found that only PMA-induced proapoptotic cells contained the phosphorylated form of myosin light chain, which is dependent on Rho-associated kinase (ROCK) activation, and that expression of a dominant-active form of ROCK suppressed activation of the p21(Cip1/Waf1) promoter during PMA induction. Finally, we demonstrated that inhibition of ROCK restores nuclear distribution of phospho-ERK and activation of p21(Cip1/Waf1) expression. Based on these findings, we propose that a ROCK-mediated signal is involved in interfering with the process of ERK-mediated p21(Cip1/Waf1) induction in PMA-induced proapoptotic TF-1 and D2 cells.  相似文献   

15.
The p53 tumor suppressor gene product plays an important role in the regulation of apoptosis. Transforming growth factor beta1 (TGF-beta1)-induced apoptosis in hepatic cells is associated with reduced expression of the retinoblastoma protein (pRb) and subsequent E2F-1-activated expression of apoptosis-related genes. In this study, we explored the potential role of p53 in TGF-beta1-induced apoptosis. HuH-7 human hepatoma cells were either synchronized in G1, S and G2/M phases, or treated with 1 nM TGF-beta1. The results indicated that greater than 90% of the TGF-beta1-treated cells were arrested in G1 phase of the cell cycle. This was associated with enhanced p53 dephosphorylation and p21(Cip1/Waf1) expression, which coincided with decreased Cdk2, Cdk4, and cyclin E expression, compared with synchronized G1 cells. In addition, p53 dephosphorylation coincided with caspase-3 activation, and translocation of p21(Cip1/Waf1) and p27(Kip1) into the cytoplasm, all of which were suppressed by caspase inhibition of TGF-beta1-induced apoptosis. Finally, phosphatase inhibition and pRb overexpression partially inhibited p53-mediated apoptosis. In conclusion, the results demonstrated that TGF-beta1-induced p53 dephosphorylation is associated with caspase-3 activation, and cytosolic translocation of p21(Cip1/Waf1) and p27(Kip1), resulting in decreased expression of Cdks and cyclins. Further, p53 appears to mediate TGF-beta1-induced apoptosis downstream of the pRb/E2F-1 pathway.  相似文献   

16.
17.
18.
In addition to its demethylating function, 5-aza-2'-deoxycytidine (5-aza-CdR) also plays an important role in inducing cell cycle arrest, differentiation, and cell death. However, the mechanism by which 5-aza-CdR induces antineoplastic activity is not clear. In this study, we found that 5-aza-CdR at limited concentrations (0.01-5 microm) induces inhibition of cell proliferation as well as increased p53/p21(Waf1/Cip1) expression in A549 cells (wild-type p53) but not in H1299 (p53-null) and H719 cells (p53 mutant). The p53-dependent p21(Waf1/Cip1) expression induced by 5-aza-CdR was not seen in A549 cells transfected with the wild-type human papilloma virus type-16 E6 gene that induces p53 degradation. Furthermore, deletion analysis and site-directed mutagenesis of the p21 promoter reveals that 5-aza-CdR induces p21(Waf1/Cip1) expression through two p53 binding sites in the p21 promoter. Finally, 5-aza-CdR-induced p21(Waf1/Cip1) expression was dependent on DNA damage but not on DNA demethylation as demonstrated by comet assay and bisulfite sequencing, respectively. Our data provide useful clues for judging the therapeutic efficacy of 5-aza-CdR in the treatment of human cancer cells.  相似文献   

19.
20.
Generally, histone deacetylase (HDAC) inhibitor-induced p21(Waf1/Cip1) expression is thought to be p53 independent. Here we found that an inhibitor of HDAC, depsipeptide (FR901228), but not trichostatin A (TSA), induces p21(Waf1/Cip1) expression through both p53 and Sp1/Sp3 pathways in A549 cells (which retain wild-type p53). This is demonstrated by measuring relative luciferase activities of p21 promoter constructs with p53 or Sp1 binding site mutagenesis and was further confirmed by transfection of wild-type p53 into H1299 cells (p53 null). That p53 was acetylated after depsipeptide treatment was tested by sequential immunoprecipitation/Western immunoblot analysis with anti-acetylated lysines and anti-p53 antibodies. The acetylated p53 has a longer half-life due to a significant decrease in p53 ubiquitination. Further study using site-specific antiacetyllysine antibodies and transfection of mutated p53 vectors (K319/K320/K321R mutated and K373R/K382R mutations) into H1299 cells revealed that depsipeptide specifically induces p53 acetylation at K373/K382, but not at K320. As assayed by coimmunoprecipitation, the K373/K382 acetylation is accompanied by a recruitment of p300, but neither CREB-binding protein (CBP) nor p300/CBP-associated factor (PCAF), to the p53 C terminus. Furthermore, activity associated with the binding of the acetylated p53 at K373/K382 to the p21 promoter as well as p21(Waf1/Cip1) expression is significantly increased after depsipeptide treatment, as tested by chromatin immunoprecipitations and Western blotting, respectively. In addition, p53 acetylation at K373/K382 is confirmed to be required for recruitment of p300 to the p21 promoter, and the depsipeptide-induced p53 acetylation at K373/K382 is unlikely to be dependent on p53 phosphorylation at Ser15, Ser20, and Ser392 sites. Our data suggest that p53 acetylation at K373/K382 plays an important role in depsipeptide-induced p21(Waf1/Cip1) expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号