首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While food intake and body weight are under homeostatic regulation, eating is a highly motivated and reinforced behavior that induces feelings of gratification and pleasure. The chemical senses (taste and odor) and their evaluation are essential to these functions. Brainstem and limbic glucose-monitoring (GM) neurons receiving neurochemical information from the periphery and from the local brain milieu are important controlling hunger motivation, and brain gut peptides have a modulatory role on this function. The hypothalamic and limbic forebrain areas are responsible for evaluation of reward quality and related emotions. They are innervated by the mesolimbic dopaminergic system (MLDS) and majority of GM neurons are also influenced by dopamine. Via dopamine release, the MLDS plays an essential role in rewarding-reinforcing processes of feeding and addiction. The GM network and the MLDS in the limbic system represent essential elements in the neural substrate of motivation.  相似文献   

2.
Melanin-concentrating hormone (MCH) is a hypothalamic peptide that plays a critical role in the regulation of food intake and energy metabolism. In this study, we investigated the potential role of dense hippocampal MCH innervation in the spatially oriented food-seeking component of feeding behavior. Rats were trained for eight sessions to seek food buried in an arena using the working memory version of the food-seeking behavior (FSB) task. The testing day involved a bilateral anti-MCH injection into the hippocampal formation followed by two trials. The anti-MCH injection did not interfere with the performance during the first trial on the testing day, which was similar to the training trials. However, during the second testing trial, when no food was presented in the arena, the control subjects exhibited a dramatic increase in the latency to initiate digging. Treatment with an anti-MCH antibody did not interfere with either the food-seeking behavior or the spatial orientation of the subjects, but the increase in the latency to start digging observed in the control subjects was prevented. These results are discussed in terms of a potential MCH-mediated hippocampal role in the integration of the sensory information necessary for decision-making in the pre-ingestive component of feeding behavior.  相似文献   

3.
The leptin hormone is critical for normal food intake and metabolism. While leptin receptor (Lepr) function has been well studied in the hypothalamus, the functional relevance of Lepr expression in the ventral tegmental area (VTA) has not been investigated. The VTA contains dopamine neurons that are important in modulating motivated behavior, addiction, and reward. Here, we show that VTA dopamine neurons express Lepr mRNA and respond to leptin with activation of an intracellular JAK-STAT pathway and a reduction in firing rate. Direct administration of leptin to the VTA caused decreased food intake while long-term RNAi-mediated knockdown of Lepr in the VTA led to increased food intake, locomotor activity, and sensitivity to highly palatable food. These data support a critical role for VTA Lepr in regulating feeding behavior and provide functional evidence for direct action of a peripheral metabolic signal on VTA dopamine neurons.  相似文献   

4.
Recent evidence indicates that mechanisms involved in reward and mechanisms involved in learning interact, in that reward includes learning processes and learning includes reward processes. In spite of such interactions, reward and learning represent distinct functions. In the present study, as part of an examination of the differences in learning and reward mechanisms, it was assumed that food principally affects reward mechanisms. After a brief period of fasting, we assayed the release of three neurotransmitters and their associated metabolites in eight brain areas associated with learning and memory as a response to feeding. Using microdialysis for the assay, we found changes in the hippocampus, cortex, amygdala, and the thalamic nucleus, (considered cognitive areas), in addition to those in the nucleus accumbens and ventral tegmental area (considered reward areas). Extracellular dopamine levels increased in the nucleus accumbens, ventral tegmental area, amygdala, and thalamic nucleus, while they decreased in the hippocampus and prefrontal cortex. Dopamine metabolites increased in all areas tested (except the dorsal hippocampus); changes in norepinephrine varied with decreases in the accumbens, dorsal hippocampus, amygdala, and thalamic nucleus, and increases in the prefrontal cortex; serotonin levels decreased in all the areas tested; although its metabolite 5HIAA increased in two regions (the medial temporal cortex, and thalamic nucleus). Our assays indicate that in reward activities such as feeding, in addition to areas usually associated with reward such as the mesolimbic dopamine system, other areas associated with cognition also participate. Results also indicate that several transmitter systems play a part, with several neurotransmitters and several receptors involved in the response to food in a number of brain structures, and the changes in transmitter levels may be affected by metabolism and transport in addition to changes in release in a regionally heterogeneous manner. Food reward represents a complex pattern of changes in the brain that involve cognitive processes. Although food reward elements overlap with other reward systems sharing some neurotransmitter compounds, it significantly differs indicating a specific reward to process for food consumption. Like in other rewards, both learning and cognitive areas play a significant part in food reward. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

5.
Oscillating neuronal circuits, known as central pattern generators (CPGs), are responsible for generating rhythmic behaviours such as walking, breathing and chewing. The CPG model alone however does not account for the ability of animals to adapt their future behaviour to changes in the sensory environment that signal reward. Here, using multi-electrode array (MEA) recording in an established experimental model of centrally generated rhythmic behaviour we show that the feeding CPG of Lymnaea stagnalis is itself associated with another, and hitherto unidentified, oscillating neuronal population. This extra-CPG oscillator is characterised by high population-wide activity alternating with population-wide quiescence. During the quiescent periods the CPG is refractory to activation by food-associated stimuli. Furthermore, the duration of the refractory period predicts the timing of the next activation of the CPG, which may be minutes into the future. Rewarding food stimuli and dopamine accelerate the frequency of the extra-CPG oscillator and reduce the duration of its quiescent periods. These findings indicate that dopamine adapts future feeding behaviour to the availability of food by significantly reducing the refractory period of the brain's feeding circuitry.  相似文献   

6.
Three types of feeding mechanisms are known in dinoflagellates: pallium feeding, tube feeding, and direct engulfment. Pallium feeding has only been described for heterotrophic thecate species (Protoperidinium, Diplopsalis group). Tube feeding is commonly found among both naked and thecate species of mixotrophic and heterotrophic dinoflagellates (e.g. Amphidinium, Dinophysis, Gyrodinium, Peridiniopsis). Direct engulfment is mainly found among naked species (e.g. Gymnodinium, Gyrodinium, Noctiluca): recently, however, some thecate species have been shown to use this feeding mechanism as well. Feeding behavior in dinoflagellates involves several steps prior to actual ingestion, including precapture, capture, and prey manipulation. As feeding mechanisms allow the ingestion of relatively large prey or parts thereof, dinoflagellates are regarded as raptorial feeders. While prey size plays an important role in the ability of dinoflagellates to ingest food, this alone cannot explain observed prey preferences. Some dinoflagellate species can be very selective in their choice of prey, while others show a remarkable versatility.  相似文献   

7.
BACKGROUND: Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown. RESULTS: We present evidence that dopamine plays a role in the responses of Drosophila to cocaine, nicotine or ethanol. We used a startle-induced negative geotaxis assay and a locomotor tracking system to measure the effect of psychostimulants on fly behavior. Using these assays, we show that acute responses to cocaine and nicotine are blunted by pharmacologically induced reductions in dopamine levels. Cocaine and nicotine showed a high degree of synergy in their effects, which is consistent with an action through convergent pathways. In addition, we found that dopamine is involved in the acute locomotor-activating effect, but not the sedating effect, of ethanol. CONCLUSIONS: We show that in Drosophila, as in mammals, dopaminergic pathways play a role in modulating specific behavioral responses to cocaine, nicotine or ethanol. We therefore suggest that Drosophila can be used as a genetically tractable model system in which to study the mechanisms underlying behavioral responses to multiple drugs of abuse.  相似文献   

8.
近年来,肥胖已成为全球亟待解决的重要公共卫生问题。越来越多的研究发现,食物奖赏在肥胖的形成与发展过程中发挥重要作用。最近的研究表明,由于能量过剩引发的代谢性炎症可能通过多种生理途径干扰正常的奖赏信号传递,从而促进肥胖的发展。基于这一观点,推测产生肥胖的原因可能与代谢性炎症诱导食物奖赏异常有关。因此,深入探讨肥胖、食物奖赏和代谢性炎症之间的关系,总结代谢性炎症诱导食物奖赏异常的可能机制,可为预防和治疗肥胖提供新的思路和理论支持。  相似文献   

9.
Homeostatic eating cannot explain overconsumption of food and pathological weight gain. A more likely factor promoting excessive eating is food reward and its representation in the central nervous system (CNS). The anorectic hormones leptin and insulin reduce food reward and inhibit related CNS reward pathways. Conversely, the orexigenic gastrointestinal hormone ghrelin activates both homeostatic and reward-related neurocircuits. The current studies were conducted to identify in rats the effects of intracerebroventricular ghrelin infusions on two distinct aspects of food reward: hedonic valuation (i.e., "liking") and the motivation to self-administer (i.e., "wanting") food. To assess hedonic valuation of liquid food, lick motor patterns were recorded using lickometry. Although ghrelin administration increased energy intake, it did not alter the avidity of licking (initial lick rates or lick-cluster size). Several positive-control conditions ruled out lick-rate ceiling effects. Similarly, when the liquid diet was hedonically devalued with quinine supplementation, ghrelin failed to reverse the quinine-associated reduction of energy intake and avidity of licking. The effects of ghrelin on rats' motivation to eat were assessed using lever pressing to self-administer food in a progressive-ratio paradigm. Ghrelin markedly increased motivation to eat, to levels comparable to or greater than those seen following 24 h of food deprivation. Pretreatment with the dopamine D1 receptor antagonist SCH-23390 eliminated ghrelin-induced increases in lever pressing, without compromising generalized licking motor control, indicating a role for D1 signaling in ghrelin's motivational feeding effects. These results indicate that ghrelin increases the motivation to eat via D1 receptor-dependent mechanisms, without affecting perceived food palatability.  相似文献   

10.
Hickey C  Chelazzi L  Theeuwes J 《PloS one》2010,5(11):e14087
Reward-related mesolimbic dopamine is thought to play an important role in guiding animal behaviour, biasing approach towards potentially beneficial environmental stimuli and away from objects unlikely to garner positive outcome. This is considered to result in part from an impact on perceptual and attentional processes: dopamine initiates a series of cognitive events that result in the priming of reward-associated perceptual features. We have provided behavioural and electrophysiological evidence that this mechanism guides human vision in search, an effect we refer to as reward priming. We have also demonstrated that there is substantial individual variability in this effect. Here we show that behavioural differences in reward priming are predicted remarkably well by a personality index that captures the degree to which a person's behaviour is driven by reward outcome. Participants with reward-seeking personalities are found to be those who allocate visual resources to objects characterized by reward-associated visual features. These results add to a rapidly developing literature demonstrating the crucial role reward plays in attentional control. They additionally illustrate the striking impact personality traits can have on low-level cognitive processes like perception and selective attention.  相似文献   

11.
In order to easily estimate the global cognitive ability of nonhuman primates, we developed a 4-step noncorrection-method-type finger maze (4FM) based on the standard puzzle feeder. We tested 7 experimentally naïve long-tailed macaques (Macaca fascicularis) to assess the validity of the apparatus and the testing procedure. The most notable difference between the 4FM and the standard puzzle feeder is the presence of an error box. There is a hole at both ends of each step. One hole of each step is connected to the lower step or feeding box. The other hole of each step is connected to an error box. The monkey had to move the reward into the feeding box without dropping it into the error box and to retrieve the reward from the feeding box. Task difficulties could be controlled by deciding on which step to place the food reward at the beginning of the trial. All the monkeys could complete the tasks without food/water deprivation and pretraining. The results suggest that the 4FM is a suitable device to assess the cognitive ability of the monkeys simply, easily, and objectively.  相似文献   

12.
The hormones insulin and leptin have been demonstrated to act in the central nervous system (CNS) as regulators of energy homeostasis at medial hypothalamic sites. In a previous review, we described new research demonstrating that, in addition to these direct homeostatic actions at the hypothalamus, CNS circuitry that subserves reward and motivation is also a direct and an indirect target for insulin and leptin action. Specifically, insulin and leptin can decrease food reward behaviors and modulate the function of neurotransmitter systems and neural circuitry that mediate food reward, i.e., midbrain dopamine and opioidergic pathways. Here we summarize new behavioral, systems, and cellular evidence in support of this hypothesis and in the context of research into the homeostatic roles of both hormones in the CNS. We discuss some current issues in the field that should provide additional insight into this hypothetical model. The understanding of neuroendocrine modulation of food reward, as well as food reward modulation by diet and obesity, may point to new directions for therapeutic approaches to overeating or eating disorders.  相似文献   

13.
Glucagon-like peptide 1 (GLP-1) is an incretine hormone that controls consummatory behavior and glucose homeostasis. It is released in response to nutrient ingestion from the intestine and production in the brain has also been identified. Given that GLP-1 receptors are expressed in reward areas, such as the nucleus accumbens and ventral tegmental area, and that common mechanisms regulate food and drug-induced reward we hypothesize that GLP-1 receptors are involved in reward regulation. Herein the effect of the GLP-1 receptor agonist Exendin-4 (Ex4), on amphetamine- and cocaine-induced activation of the mesolimbic dopamine system was investigated in mice. In a series of experiments we show that treatment with Ex4, at a dose with no effect per se, reduce amphetamine- as well as cocaine-induced locomotor stimulation, accumbal dopamine release as well as conditioned place preference in mice. Collectively these data propose a role for GLP-1 receptors in regulating drug reward. Moreover, the GLP-1 signaling system may be involved in the development of drug dependence since the rewarding effects of addictive drugs involves interferences with the mesolimbic dopamine system. Given that GLP-1 analogues, such as exenatide and liraglutide, are clinically available for treatment of type II diabetes, we propose that these should be elucidated as treatments of drug dependence.  相似文献   

14.
We examined the pattern of temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and skin, along with locomotion in food-deprived and nondeprived rats following the presentation of an open or closed food container and during subsequent eating or food-seeking behavior without eating. Although rats in food-deprived, quiet resting conditions had more than twofold lower spontaneous locomotion and lower temperature values than in nondeprived conditions, after presentation of a container, they consistently displayed food-seeking behavior, showing much larger and longer temperature changes. When the container was open, rats rapidly retrieved food and consumed it. Food consumption was preceded and accompanied by gradual increases in brain and muscle temperatures ( approximately 1.5 degrees C) and a weaker, delayed increase in skin temperature ( approximately 0.8 degrees C). All temperatures began to rapidly fall immediately after eating was completed, but NAcc and muscle temperatures returned to baseline after approximately 35 min. When the container was closed and rats were unable to obtain food, they continued food-seeking activity during the entire period of presentation. Similar to eating, this activity was preceded and accompanied by gradual temperature increases in the brain and muscle, which were somewhat smaller than those during eating ( approximately 1.2 degrees C), with no changes in skin temperature. In contrast to trials with eating, NAcc and muscle temperatures continued to increase for approximately 10 min after the container was removed from the cage and the rat continued food-seeking behavior, with a return to baselines after approximately 50 min. These temperature fluctuations are discussed with respect to alterations in metabolic brain activity associated with feeding behavior, depending upon deprivation state and food availability.  相似文献   

15.
Recent studies provide evidence that high-fat diets (HF) trigger both i) a deficit of reward responses linked to a decrease of mesolimbic dopaminergic activity, and ii) a disorganization of circadian feeding behavior that switch from a structured meal-based schedule to a continuous snacking, even during periods normally devoted to rest. This feeding pattern has been shown to be a cause of HF-induced overweight and obesity. Our hypothesis deals with the eventual link between the rewarding properties of food and the circadian distribution of meals. We have investigated the effect of circadian feeding pattern on reward circuits by means of the conditioned-place preference (CPP) paradigm and we have characterized the rewarding properties of natural (food) and artificial (cocaine) reinforcers both in free-feeding ad libitum HF mice and in HF animals submitted to a re-organized feeding schedule based on the standard feeding behavior displayed by mice feeding normal chow ("forced synchronization"). We demonstrate that i) ad libitum HF diet attenuates cocaine and food reward in the CPP protocol, and ii) forced synchronization of feeding prevents this reward deficit. Our study provides further evidence that the rewarding impact of food with low palatability is diminished in mice exposed to a high-fat diet and strongly suggest that the decreased sensitivity to chow as a positive reinforcer triggers a disorganized feeding pattern which might account for metabolic disorders leading to obesity.  相似文献   

16.
Taste is unique among sensory systems in its innate association with mechanisms of reward and aversion in addition to its recognition of quality, e.g., sucrose is sweet and preferable, and quinine is bitter and aversive. Taste information is sent to the reward system and feeding center via the prefrontal cortices such as the mediodorsal and ventrolateral prefrontal cortices in rodents and the orbitofrontal cortex in primates. The amygdala, which receives taste inputs, also influences reward and feeding. In terms of neuroactive substances, palatability is closely related to benzodiazepine derivatives and beta-endorphin, both of which facilitate consumption of food and fluid. The reward system contains the ventral tegmental area, nucleus accumbens and ventral pallidum and finally sends information to the lateral hypothalamic area, the feeding center. The dopaminergic system originating from the ventral tegmental area mediates the motivation to consume palatable food. The actual ingestive behavior is promoted by the orexigenic neuropeptides from the hypothalamus. Even palatable food can become aversive and avoided as a consequence of a postingestional unpleasant experience such as malaise. The neural mechanisms of this conditioned taste aversion will also be elucidated.  相似文献   

17.
Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence.  相似文献   

18.
Increased availability of tasty, energy-dense foods has been blamed as a major factor in the alarmingly high prevalence of obesity, diabetes, and metabolic disease, even in young age. A heated debate has started as to whether some of these foods should be considered addictive, similar to drugs and alcohol. One of the main arguments for food addiction is the similarity of the neural mechanisms underlying reward generation by foods and drugs. Here, we will discuss how food intake can generate reward and how behavioral and neural reward functions are different in obese subjects. Because most studies simply compare lean and obese subjects, it is not clear whether predisposing differences in reward functions cause overeating and weight gain, or whether repeated exposure or secondary effects of the obese state alter reward functions. While studies in both rodents and humans demonstrate preexisting differences in reward functions in the obese, studies in rodent models using calorie restriction and gastric bypass surgery show that some differences are reversible by weight loss and are therefore secondary to the obese state.  相似文献   

19.
Groups of Arctic charr and rainbow trout were fed by using demand feeders and their individual trigger actuations registered with a PIT-tag (Passive Integrated Transponder) system. Food was supplied at two reward levels, low and high, to five replicate groups of each species for 21 to 27 days. The reward level was defined as the amount of food obtained in response to a single trigger actuation. The effects of reward level on individual demand feeding activity and growth rale were assessed.
As a result of high demand feeding activity, the daily food rations for trout were in excess of their needs at both reward levels. This can be ascribed to the fact that they compensated a low reward level by increasing their bite activity. In contrast, demand feeding activity in charr did not differ significantly between reward levels. Instead, resulting food rations were limiting and excessive, at low and high reward levels, respectively. The variation in bite activity between individuals (measured as their proportional contribution to the total number of trigger actuations within a group) for charr was significantly higher in the low-reward treatment than in the high-reward level. For trout, the variation in bite activity did not differ significantly between treatments. Differences in response to reward level are suggested to be due to the fact that the social hierarchy is weaker in trout than in charr; i.e. the differences in bite activity between dominant and non-dominant individuals are smaller in trout. At both reward levels, the benefit of being dominant, measured in terms of growth rate was significant for charr but non-significant for trout.  相似文献   

20.
Ghrelin modulates brain activity in areas that control appetitive behavior   总被引:1,自引:0,他引:1  
Feeding behavior is often separated into homeostatic and hedonic components. Hedonic feeding, which can be triggered by visual or olfactory food cues, involves brain regions that play a role in reward and motivation, while homeostatic feeding is thought to be under the control of circulating hormones acting primarily on the hypothalamus. Ghrelin is a peptide hormone secreted by the gut that causes hunger and food consumption. Here, we show that ghrelin administered intravenously to healthy volunteers during functional magnetic resonance imaging increased the neural response to food pictures in regions of the brain, including the amygdala, orbitofrontal cortex, anterior insula, and striatum, implicated in encoding the incentive value of food cues. The effects of ghrelin on the amygdala and OFC response were correlated with self-rated hunger ratings. This demonstrates that metabolic signals such as ghrelin may favor food consumption by enhancing the hedonic and incentive responses to food-related cues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号