首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The appearance of sustained oscillations in bioreactor variables (biomass and nutrient concentrations) in continuous cultures of Saccharomyces cerevisiae indicates the complex nature of microbial systems, the inadequacy of current growth kinetic models, and the difficulties which may arise in bioprocess control and optimization. In this study we investigate continuous bioreactor behavior over a range of operating conditions (dilution rate, feed glucose concentration, feed ammonium concentration, dissolved oxygen, and pH) to determine the process requirements which lead to oscillatory behavior. We present new results which indicate that high feed ammonium concentrations may eliminate oscillations and that under oscillatory conditions ammonium levels are generally low and oscillatory as well. The effects of pH are complex and oscillations were only observed at pH values 5.5 and 6.5; no oscillations were observed at a pH of 4.5. Under our nominal operating conditions (feed glucose concentration 10 g/L, dilution rate 0.145 h(-1), feed ammonium concentration 0.0303M, dissolved oxygen level 50%, pH 5.5, and T = 30 degrees C) we found two possible final bioreactor states depending on the transient used to reach the nominal operating conditions. One of the states was oscillatory and characteristic of oxidative metabolism and the other was nonoscillatory and fermentative.  相似文献   

2.
A comparative kinetic study of extracellular catalases produced by Penicillium piceum F-648 and their variants adapted to H2O2 was performed in culture liquid filtrates. The specific activity of catalase, the maximum rate of catalase-induced H2O2 degradation (Vmax),Vmax/KM ratio, and the catalase inactivation rate constant in the enzymatic reaction (kin, s-1) were estimated in phosphate buffer (pH 7.4) at 30 degrees C. The effective constant representing the rate of catalase thermal inactivation (kin*, s-1) was determined at 45 degrees C. In all samples, the specific activity and KM for catalase were maximum at a protein concentration in culture liquid filtrates of 2.5-3.5 x 10(-4) mg/ml. The effective constants describing the rate of H2O2 degradation (k, s-1) were similar to that observed in the initial culture. These values reflected a twofold decrease in catalase activity in culture liquid filtrates. We hypothesized that culture liquid filtrates contain two isoforms of extracellular catalase characterized by different activities and affinities for H2O2. Catalases from variants 5 and 3 with high and low affinities for H2O2, respectively, had a greater operational stability than the enzyme from the initial culture. The method of adaptive selection for H2O2 can be used to obtain fungal variants producing extracellular catalases with improved properties.  相似文献   

3.
With the use of an oil/water system, oscillatory reactions of an enzyme have been demonstrated. This reaction system has been conceived as an example of the metabolic oscillations of living cells. When a substrate (ethanol) in the oil phase of toluene or chloroform slowly migrated into the aqueous phase containing alcohol dehydrogenase and NAD+, oscillations were observed in the concentration of NADH produced. The gradual entry of substrate into the aqueous phase was essential for the oscillatory reactions to occur. A possible mechanism to account for the appearance of oscillatory reactions of enzymes is proposed, which differs from that presented previously.  相似文献   

4.
If H2O2 is one of the major mediators of the 'oxygen effect' in biological systems then catalase, which enzymically decomposes H2O2 should have a significant influence on radiation damage, particularly under oxygenated conditions. The post-irradiation (300 Gy gamma rays) effect of catalase was, therefore, assessed on barley seeds of about 4 per cent moisture content under oxygenated and oxygen-free conditions at varying temperatures. Catalase affords concentration-dependent radioprotection under oxygenated condition at both 25 degrees C and 4 degrees C. The level of protection at 4 degrees C is less than at 25 degrees C. This is obviously due to a decrease in catalase activity at low temperature. Under oxygen-free conditions, catalase enhances radiation damage at 4 degrees C while at 25 degrees C it has no effect. This has been substantiated by data on the frequency of chromosomal aberrations and on peroxidase activity. Sodium azide, a catalase inhibitor, was found to eliminate the radioprotective action of catalase. The study supports the view that the 'oxygen effect' is mediated largely through peroxides in irradiated biological systems. However, the observations made particularly at 4 degrees C under oxygen-free condition seem to involve physicochemical reactions.  相似文献   

5.
In this study, an approx. 2.5-kb gene fragment including the catalase gene from Rhodospirillum rubrum S1 was cloned and characterized. The determination of the complete nucleotide sequence revealed that the cloned DNA fragment was organized into three open reading frames, designated as ORF1, catalase, and ORF3 in that order. The catalase gene consisted of 1,455 nucleotides and 484 amino acids, including the initiation and stop codons, and was located 326 bp upstream in the opposite direction of ORF1. The catalase was overproduced in Escherichia coli UM255, a catalase-deficient mutant, and then purified for the biochemical characterization of the enzyme. The purified catalase had an estimated molecular mass of 189 kDa, consisting of four identical subunits of 61 kDa. The enzyme exhibited activity over a broad pH range from pH 5.0 to pH 11.0 and temperature range from 20 degrees C to 60 degrees C. The catalase activity was inhibited by 3-amino-1,2,4-triazole, cyanide, azide, and hydroxylamine. The enzyme's K(m) value and V(max) of the catalase for H2O2 were 21.8 mM and 39,960 U/mg, respectively. Spectrophotometric analysis revealed that the ratio of A406 to A280 for the catalase was 0.97, indicating the presence of a ferric component. The absorption spectrum of catalase-4 exhibited a Soret band at 406 nm, which is typical of a heme-containing catalase. Treatment of the enzyme with dithionite did not alter the spectral shape and revealed no peroxidase activity. The combined results of the gene sequence and biochemical characterization proved that the catalase cloned from strain S1in this study was a typical monofunctional catalase, which differed from the other types of catalases found in strain S1.  相似文献   

6.
Under carefully controlled experimental conditions, the Michaelis constant for H2O2 was measured to be 1.39 and 1.29 M in the reactions of beef erythrocyte and liver catalases, respectively. These values remained unchanged at temperatures between 1 and 26 degrees C. The turnover number of the Michaelis complex was about 2.25 X 10(7) s-1 for either enzyme at 26 degrees C. The cyanide inhibition in the catalase reaction has been reported to be noncompetitive in spite of the fact that cyanide and H2O2 compete for the same site on the catalase molecule. At high concentrations of H2O2, however, the inhibition became clearly competitive. The existence of the Michaelis complex and the anomalous features of cyanide inhibition were clearly accounted for on the basis of simple kinetic models. At H2O2 concentrations below 100 mM, the catalase reaction obeyed first order kinetics with respect to H2O2 and its apparent second order rate constant was measured to be 7.6 X 10(6) and 7.9 X 10(6) M-1 . S-1 for erythrocyte and liver catalases, respectively.  相似文献   

7.
E Tryon  S A Kuby 《Enzyme》1984,31(4):197-208
From a study of the steady-state kinetics (at pH 7.6, 30 degrees C) of the reduction of cytochrome c, a 'ping-pong' mechanism may be postulated for the crystalline NADPH-cytochrome c reductase from ale yeast, Saccharomyces cerevisiae [1], a result derivable from a three-substrate ordered system with a rapid equilibrium random sequence in substrates, NADPH and FAD, followed by reactions of the third substrate, Cyt C3+. On this basis, estimates for the kinetic parameters were made together with the inhibitor dissociation constants for NADP+ (competitive with respect to NADPH as variable substrate, but noncompetitive with respect to cytochrome c3+ as the variable substrate). A noncompetitive type of inhibition was also found for cytochrome c2+ with NADPH as variable substrate, in confirmation of the proposed mechanism. With 2,6-dichloroindophenol as the acceptor, in place of cytochrome c3+, a value for KNADPH could be estimated which agreed with that estimated above, with cytochrome c3+ as the acceptor, again, in confirmation of the postulated mechanism. The reactions with molecular O2 catalyzed by the enzyme with NADPH as the reductant have been studied polarographically, and its Km for O2 estimated to be about 0.15 mmol/l at pH 7.6, 25 degrees C. The product of the reaction appears to be H2O2, which acts as a noncompetitive inhibitor for NADPH (Ki = 0.5 mmol/l), and tentatively an enzyme ternary complex containing oxygen and FADoh (semiquinone of FAD) may be assumed to be the kinetically important intermediate, which may be postulated to be in quasi-equilibrium with an enzyme ternary complex containing Oo2 (superoxide) and FAD.  相似文献   

8.
Examination of the spectra of phagocytosing neutrophils and of myeloperoxidase present in the medium of neutrophils stimulated with phorbol myristate acetate has shown that superoxide generated by the cells converts both intravacuolar and exogenous myeloperoxidase into the superoxo-ferric or oxyferrous form (compound III or MPO2). A similar product was observed with myeloperoxidase in the presence of hypoxanthine, xanthine oxidase and Cl-. Both transformations were inhibited by superoxide dismutase. Thus it appears that myeloperoxidase in the neutrophil must function predominantly as this superoxide derivative. MPO2 autoxidized slowly (t 1/2 = 12 min at 25 degrees C) to the ferric enzyme. It did not react directly with H2O2 or Cl-, but did react with compound II (MP2+ X H2O2). MPO2 catalysed hypochlorite formation from H2O2 and Cl- at approximately the same rate as the ferric enzyme, and both reactions showed the same H2O2-dependence. This suggests that MPO2 can enter the main peroxidation pathway, possibly via its reaction with compound II. Both ferric myeloperoxidase and MPO2 showed catalase activity, in the presence or absence of Cl-, which predominated over chlorination at H2O2 concentrations above 200 microM. Thus, although the reaction of neutrophil myeloperoxidase with superoxide does not appear to impair its chlorinating ability, the H2O2 concentration in its environment will determine whether the enzyme acts primarily as a catalase or peroxidase.  相似文献   

9.
The optical absorption spectrum of bovine liver catalase was found to change on light irradiation in the presence of proflavin and EDTA in a deaerated solution. Upon addition of CO to the photolyzed product, the spectrum changed to an another form, suggesting that the photolyzed product is the ferrous form of the enzyme and CO is bound to the ferrous enzyme. When O2 was introduced into the ferrous enzyme, the absorption spectrum returned to its original ferric state. An intermediate spectrum was obtained in this reaction at -20 degrees C in 33% v/v ethylene glycol. Judged from the spectral characteristics of this compound, it is probably an oxyferrous enzyme. It was converted into ferric enzyme gradually when the sample was left at room temperature. The ferrous enzyme, which was generated by flash photolysis of the CO complex of the enzyme in an air-saturated buffer, reacted with O2 to form the oxyferrous enzyme with a second order rate constant of 9.2 x 10(3) M-1.s-1 at pH 8.6 and 20 degrees C. The oxyferrous enzyme thus obtained autodecomposed into the ferric form with a rate constant of 0.1 s-1.  相似文献   

10.
A catalase gene, ohktA, from an alkali- and halo-tolerant bacterium, Halomonas sp. SK1, on the pKK223-3, was expressed in the catalase-lacking Escherichia coli strain UM2. Highly purified catalase showing a single band on SDS-PAGE was obtained by two liquid chromatography steps on DEAE-Toyopear1 and Chelating-Sepharose Fast Flow. The enzyme, oHktA, shows high catalase activity with a pH optimum at 10, and the activity was stable in 4 M KC1. This enzyme is thermo-sensitive, showing a significant loss of activity within 5 minutes at 37 degrees C. To modify the stability of the catalase, the addition of domain II of the heat stable Mn catalase from Thermus thermophilus to the C-terminus was made. When coexpressed with a chaperone (PhFKBP29) gene product, peptidyl-prolyl cis-trans isomerase, from a thermophilic bacterium, a chimeric catalase was produced in the soluble fraction. The stability of this catalase in the range of 37 degrees -45 degrees C was improved and it was stable for more than 1 h at 37 degrees C.  相似文献   

11.
Catalase is a major primary antioxidant defence component that primarily catalyses the decomposition of H(2) O(2) to H(2) O. Here we report the purification and characterization of catalase from chard (Beta vulgaris var. cicla). Following a procedure that involved chloroform treatment, ammonium sulfate precipitation and three chromatographic steps (CM-cellulose, Sephadex G-25, and Sephadex G-200), catalase was purified about 250-fold to a final specific activity of 56947 U/mg of protein. The molecular weight of the purified catalase and its subunit were determined to be 235 000 and 58 500 daltons, indicating that the chard catalase is a tetramer. The absorption spectra showed a soret peak at 406 nm, and there was slightly reduction by dithionite. The ratio of absorption at 406 and 275 nanometers was 1.5, the value being similar to that obtained for catalase from other plant sources. In the catalytic reaction, the apparent Km value for chard catalase was 50 mM. The purified protein has a broad pH optimum for catalase activity between 6.0 and 8.0. The enzyme had an optimum reaction temperature at 30 degrees C. Heme catalase inhibitors, such as azide and cyanide, inhibited the enzyme activity markedly and the enzyme was also inactivated by ?-mercaptoethanol, dithiothreitol and iodoacetamide.  相似文献   

12.
Continuous cultures of Saccharomyces cerevisiae are known to exhibit oscillatory behavior in the oxidative region. Important findings of a series of experiments conducted to identify the causes for initiation of and the means for elimination of oscillations in these cultures are reported in this paper. These oscillations are seen to be connected to the growth kinetics of the microorganism and are induced at very low glucose concentrations and at dissolved oxygen (DO) levels that are neither high nor low (DO values between 20 and 78% air saturation at a dilution rate of 0.2 h(-1) and pH of 5.5 at 30 degrees C). The oscillatory behavior is encountered over a range of dilution rates (0.09-0.25 h(-1) at 30 degrees C for pH = 5.5 and DO = 50% air saturation). The oscillations can be eliminated by raising the DO level above a critical value or by lowering the DO level below a critical value.  相似文献   

13.
The gluconic fragment of strophantin K oxidation by sodium metaperiodate yields a dialdehyde derivate conjugated with catalase. The conjugate obtained contains 11 molecules of cardiac glucoside. Adsorption and circular dichroism spectra of the native enzyme and its conjugate were compared and structural differences between both samples were revealed. The kinetics of ethanol oxidation into acetaldehyde by cumene hydroperoxide was studied at 30 degrees C in the phosphate buffer pH 6.6; this reaction was shown to proceed with the participation of catalase and its cat-str conjugate. The catalytic constants for catalase are 1.2-1.5 times as high as those for cat-str, whereas the Km values for both substrates for the conjugate as 1.5-2 times as high as those for catalase. Catalase modification by strophantin K increases the enzyme thermostability up to the isokinetic point of 40 degrees C; above this threshold the cat-str thermostability decreases as compared with the native enzyme. The thermodynamical activation parameters for catalase and cat-str inactivation were determined.  相似文献   

14.
A new thermoalkaliphilic bacterium was isolated from a textile wastewater drain and identified as a new Bacillus sp. (Bacillus SF). Because of its high pH stability and thermostability, a catalase-peroxidase (CP) from this strain has potential for the treatment of textile bleaching effluents. The CP from Bacillus SF was purified to more than 70.3-fold homogeneity using fractionated ammonium sulfate precipitation, hydrophobic interaction, and anion-exchange and gel-filtration chromatography. The native CP had a molecular mass of 165 kDa and was composed of two identical subunits. The isoelectric point of the protein was at pH 6.0. Peptide mass mapping using matrix-assisted laser desorption ionization-mass spectrometry showed a homology between the CP from Bacillus SF and the CP from Bacillus stearothermophilus. The apparent Km value of the catalase activity for H2O2 was 2.6 mM and the k(cat) value was 11,475 s(-1). The enzyme showed high catalase activity and an appreciable peroxidase activity with guaiacol and o-dianisidine. The enzyme was stable at high pH, with a half-life of 104 h at pH 10 and 25 degrees C and 14 h at 50 degrees C. The enzyme was inhibited by azide and cyanide, in a competitive manner, but not by the catalase-specific inhibitor 3-amino-1,2,4-triazole.  相似文献   

15.
The wood-destroying fungus Phanerochaete chrysosporium secretes extracellular enzymes known as lignin peroxidases that are involved in the biodegradation of lignin and a number of environmental pollutants. Several lignin peroxidases are produced in liquid cultures of this fungus. However, only lignin peroxidase isozyme H8 has been extensively characterized. In agitated nutrient nitrogen-limited culture, P. chrysosporium produces two lignin peroxidases in about equal proportions. The molecular weights of these two major proteins (H2 and H8) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 38,500 (H2) and 42,000 (H8). The isoelectric points of these enzymes were 4.3 for H2 and 3.65 for H8. All subsequent experiments in this study were performed with H2 as it contributed the most (42%) to total activity and had the highest specific activity (57.3 U/mg). The Km values of lignin peroxidase H2 for H2O2 and veratryl alcohol were calculated to be 47 microM and 167 microM at pH 3.5, respectively. The pH optima for veratryl alcohol oxidase activity were pH 2.5 at 25 degrees C, pH 3.0 at 35 degrees C, and pH 3.5 at 45 degrees C. In the same manner the temperature optimum shifted from 25 degrees C at pH 2.5 to 45 degrees C at pH 3.5 and approximately 45-60 degrees C at pH 4.5. During storage the resting enzyme was relatively stable for 48 h up to 50 degrees C. Above this temperature the enzyme lost all activity within 6 h at 60 degrees C. At 70 degrees C all activity was lost within 10 min. The resting enzyme retained approximately 80% of its initial activity when stored at 40 degrees C for 21 h at a pH range of 4.0-6.5. Above pH 7.5 and below 4.0, the enzyme lost all activity in less than 5 h. During turnover the enzyme remained active at pH 5.5 for over 2 h whereas the enzyme activity was lost after 45 min at pH 2.5. The oxidation of veratryl alcohol was inhibited by EDTA, azide, cyanide, and by the catalase inhibitor 3-amino-1,2,4-triazole, but not by chloride. In the absence of another reducing substrate incubation of lignin peroxidase H2 with excess H2O2 resulted in partial and irreversible inactivation of the enzyme. The spectral characteristics of lignin peroxidase H2 are similar to those of other peroxidases. The suitability of lignin peroxidases for industrial applications is discussed.  相似文献   

16.
Peroxidase-mediated toxicity to schistosomula of Schistosoma mansoni   总被引:16,自引:0,他引:16  
Guinea pig eosinophil peroxidase (EPO) was capable of killing schistosomula of Schistosoma mansoni in vitro when combined with hydrogen peroxide and a halide. Killing was measured by 51Cr release, by microscopic evaluation of viability, and by reinfection experiments in mice. Parasite killing was dependent on each component of the EPO-H2O2-halide system, was completely inhibited by catalase and azide, and was partially inhibited by cyanide. The EPO-mediated system required 10(-4) M H2O2 and 10(-4) M iodide at pH 7.0, and the schistosomula were killed with exposure to this system of less than 30 min at 37 degrees C. At pH 6.0, the EPO-mediated system showed significant cidal activity with 10(-6) M iodide. Canine neutrophil peroxidase (myeloperoxidase [MPO]) was also able to kill schistosomula in vitro in the presence of 10(-4) M H2O2 and 10(-4) iodide at pH 7.0 and pH 6.0. Physiologic concentrations of chloride (0.1 M) could substitute for iodide at pH 7.0 and pH 6.0 as the halide cofactor; however, at pH 7.0, a higher concentration of enzyme was required. These findings with isolated enzyme systems are compatible with a role for peroxidase in the host defense against schistosomula.  相似文献   

17.
The autoxidation of 3-hydroxyanthranilate to cinnabarinate at 37 degrees C and at pH 7.4 is hastened by superoxide dismutase (SOD). The Cu,Zn-containing enzyme from bovine erythrocytes and the Mn-containing enzyme from Escherichia coli were equally effective in this regard; whereas the H2O2-inactivated Cu,Zn enzyme was ineffective. Catalase appears to augment the effect of superoxide dismutase, because it prevents the bleaching of cinnabarinate by H2O2. It follows that O2-, which is a product of the autoxidation, slows the net autoxidation by engaging in back reactions and that SOD increases the rate of autoxidation by removal of O2- and thus by prevention of these back reactions.  相似文献   

18.
一株嗜热子囊菌产生的碱性耐热过氧化氢酶及其应用潜力   总被引:11,自引:0,他引:11  
研究了一株嗜热子囊菌产过氧化氢酶的摇瓶发酵条件,并对其在纺织工业中的应用潜力进行了评价。以20 g/L糊精和1%(V/V)乙醇为混合碳源时,过氧化氢酶酶活达到1594 u/Ml,比以糊精和乙醇单独为碳源时过氧化氢酶的活力之和还高23%。改变培养基的初始Ph、提高发酵液中的溶氧水平及添加外源过氧化氢,过氧化氢酶的产量进一步提高到2762 u/Ml,比优化前提高了5.8倍。将嗜热子囊菌的过氧化氢酶同来源于牛肝、黑曲霉的过氧化氢酶进行了热(70℃, 80℃, 90℃)、碱(Ph 9.0, Ph 10.0, Ph 11.0)稳定性的比较。结果显示,产自嗜热子囊菌的过氧化氢酶对高温和强碱性的耐受性能明显优于其它来源的酶,在纺织染整工艺中具有良好的应用潜力。  相似文献   

19.
Steady-state kinetics for the hydrolysis of benzoylcholine (BzCh) and benzoylthiocholine (BzSCh) by wild-type human butyrylcholinesterase (BuChE) and by the peripheral anionic site mutant D70G were compared. kcat/Km for the hydrolysis of BzSCh was 17-fold and 32-fold lower than that for hydrolysis of BzCh by wild-type and D70G, respectively. The rate-limiting step for hydrolysis of BzCh was deacylation, whereas acylation was rate-limiting for hydrolysis of BzSCh. Wild-type enzyme and the D70G mutant were found to reach steady-state velocity slowly with BzCh as the substrate. At pH 6, the approach to steady-state for both enzymes consisted of a mono-exponential acceleration upon which a set of damped oscillations was superimposed. From pH 7 to 8.5, the approach to steady-state consisted of a simple exponential acceleration. The damped oscillations were analyzed by both a numerical approximation and simulation based on a theoretical model. BuChE-catalyzed hydrolysis of the thiocholine analogue of BzCh showed neither lags nor oscillations, under the same conditions. The frequency and amplitude of the damped oscillations decreased as the BzCh concentration increased. The apparent induction time for the exponential portion of the lag was calculated from the envelope of the damped oscillations or from the smooth lag. Wild-type BuChE showed a hyperbolic increase in induction time as the BzCh concentration increased (tau max = 210 s at pH 6.0). However, the induction time for D70G was constant over the whole range of BzCh concentrations (tau max = 60 s at pH 6.0). Thus, the induction time does not conform to a simple hysteretic model in which there is a slow conformational transition of the enzyme from an inactive form E to an active form E'. No pH-dependence of the induction time was found between pH 6.0 and 8.5 in sodium phosphate buffers of various concentrations (from 1 mm to 1 m). However, increasing the pH tended to abolish the oscillations (increase the damping factor). This effect was more pronounced for D70G than for wild-type. Although the lyotropic properties of phosphate change from chaotropic at pH 6.0 to kosmotropic at pH > 8.0, no effect of phosphate concentration on the oscillations was noticed at the different pH values, suggesting that the oscillations are not related to a pH-dependent Hofmeister effect of phosphate ions. Simulation and theoretical analysis of the oscillatory behaviour of the approach to the steady-state for BuChE led us to propose a model for the hysteresis of BuChE with BzCh. In this model, the substrate-free enzyme is present as an equilibrium mixture of two forms, E and E'. Substrate binds to E and E', but only Epsilon'S makes products. It is proposed that oscillations originate from a time-dependent change in the local concentration, solvation and/or conformation of substrate in the bulk solution. 1H-NMR measurements provided evidence for a slow equilibrium between two BzCh conformers. Binding of the conformationally preferred substrate conformer leads to products.  相似文献   

20.
Irreversible thermal inactivation of the tetrameric form of human plasma butyrylcholinesterase (cholinesterase; EC 3.1.1.8) was studied in water and in deuterium oxide at pH 7 in the temperature range 53-65 degrees C. The enzyme inactivation follows a complex kinetics that may be described by the sum of two apparent first-order processes. The Eyring plot for enzyme inactivation exhibits a wavelike discontinuity over a span of 2 C degrees around 58 degrees C. This transition was interpreted in terms of equilibrium between two temperature-dependent conformational states. Though 2H2O does not alter the overall multistep inactivation process, a slight solvent isotope effect was observed: a stabilizing effect and a shift in the transition temperature. A comparison between several enzyme preparations revealed differences in thermodynamic activation parameters of inactivation suggesting microheterogeneity in enzyme structures. Kinetics of inactivation of usual (E1uE1u) and atypical (E1aEa1a++) enzymes were compared. The atypical enzyme was found to be more stable than the usual phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号