首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The urinary tract environment provides many conditions that deter colonization by microorganisms. D-serine is thought to be one of these stressors and is present at high concentrations in urine. D-serine interferes with L-serine and pantothenate metabolism and is bacteriostatic to many species. Uropathogenic Escherichia coli commonly possess the dsdCXA genetic locus, which allows them to use D-serine as a sole carbon, nitrogen, and energy source. It was previously reported that in the model UPEC strain CFT073, a dsdA mutant outcompetes wild type in the murine model of urinary tract infection. This “hypercolonization” was used to propose a model whereby UPEC strains sense D-serine in the urinary tract and subsequently up-regulate genes necessary for pathogenesis. Here, we show that inactivation of dsdA does not lead to hypercolonization. We suggest that this previously observed effect is due to an unrecognized secondary mutation in rpoS and that some D-serine specific effects described in other studies may be affected by the rpoS status of the strains used. Inactivation of dsdA in the original clinical isolate of CFT073 gives CFT073 ΔdsdA a growth defect in human urine and renders it unable to grow on minimal medium containing D-serine as the sole carbon source. However, CFT073 ΔdsdA is able to colonize the urinary tracts of CBA/J mice indistinguishably from wild type. These findings indicate that D-serine catabolism, though it may play role(s) during urinary tract infection, does not affect the ability of uropathogenic E. coli to colonize the murine urinary tract.  相似文献   

3.
Tryptophanase, L-tryptophan indole-lyase with extremely absolute stereospecificity, can change the stereospecificity in concentrated diammonium hydrogenphosphate solution. While tryptophanase is not inert to D-serine in the absence of diammonium hydrogenphosphate, it can undergo L-tryptophan synthesis from D-serine along with indole in the presence of it. It has been well known that tryptophanase synthesizes L-tryptophan from L-serine through a β-substitution mechanism of the ping-pong type. However, a metabolic pathway of L-tryptophan synthesis from D-serine has remained unclear. The present study aims to elucidate it. Diammonium hydrogenphosphate plays a role in the emergence of catalytic activity on D-serine. The salt gives tryptophanase a small conformational change, which makes it possible to catalyze D-serine. Tryptophanase-bound D-serine produces L-tryptophan synthesis by β-replacement reaction via the enzyme-bound aminoacrylate intermediate. Our result will be valuable in studying the origin of homochirality.  相似文献   

4.
D-serine is a coagonist of N-methyl-D-aspartate (NMDA) receptors that occurs at high levels in the brain. Biosynthesis of D-serine is carried out by serine racemase, which converts L- to D-serine. D-serine has been demonstrated to occur in glial cells, leading to the proposal that astrocytes are the only source of D-serine. We now report significant amounts of serine racemase and D-serine in primary neuronal cultures and neurons in vivo. Several neuronal culture types expressed serine racemase, and D-serine synthesis was comparable with that in glial cultures. Immunohistochemical staining of brain sections with new antibodies revealed the presence of serine racemase and D-serine in neurons. Cortical neurons expressing serine racemase also expressed the NR2a subunit in situ. Neuron-derived D-serine contributes to NMDA receptor activation in cortical neuronal cultures. Degradation of endogenous D-serine by addition of the recombinant enzyme D-serine deaminase diminished NMDA-elicited excitotoxicity. Release of neuronal D-serine was mediated by ionotropic glutamate receptor agonists such as NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate. Removal of either external Ca2+ or Na+ blocked D-serine release. Release of D-serine was mostly through a cytosolic route because it was insensitive to bafilomycin A1, a potent inhibitor of vesicular neurotransmitter uptake. D-serine was also not transported into purified synaptic vesicles under conditions optimal for the uptake of known transmitters. Our results suggest that neurons are a major source of D-serine. Glutamate-induced neuronal D-serine release provides a novel mechanism for activating NMDA receptors by an autocrine or paracrine way.  相似文献   

5.
A "second-generation" production strain was derived from a Corynebacterium glutamicum pantothenate producer by rational design to assess its potential to synthesize and accumulate the vitamin pantothenate by batch cultivation. The new pantothenate production strain carries a deletion of the ilvA gene to abolish isoleucine synthesis, the promoter down-mutation P-ilvEM3 to attenuate ilvE gene expression and thereby increase ketoisovalerate availability, and two compatible plasmids to overexpress the ilvBNCD genes and duplicated copies of the panBC operon. Production assays in shake flasks revealed that the P-ilvEM3 mutation and the duplication of the panBC operon had cumulative effects on pantothenate production. During pH-regulated batch cultivation, accumulation of 8 mM pantothenate was achieved, which is the highest value reported for C. glutamicum. Metabolic flux analysis during the fermentation demonstrated that the P-ilvEM3 mutation successfully reoriented the carbon flux towards pantothenate biosynthesis. Despite this repartition of the carbon flux, ketoisovalerate not converted to pantothenate was excreted by the cell and dissipated as by-products (ketoisocaproate, DL-2,3,-dihydroxy-isovalerate, ketopantoate, pantoate), which are indicative of saturation of the pantothenate biosynthetic pathway. Genome-wide expression analysis of the production strain during batch cultivation was performed by whole-genome DNA microarray hybridization and agglomerative hierarchical clustering, which detected the enhanced expression of genes involved in leucine biosynthesis, in serine and glycine formation, in regeneration of methylenetetrahydrofolate, in de novo synthesis of nicotinic acid mononucleotide, and in a complete pathway of acyl coenzyme A conversion. Our strategy not only successfully improved pantothenate production by genetically modified C. glutamicum strains but also revealed new constraints in attaining high productivity.  相似文献   

6.
Cyclic AMP is required for optimal synthesis of D-serine deaminase synthesis from dsdO+ templates and for optimal hyperinducible synthesis from low constitutive dsdO templates both in vitro and in vivo. Neither D-serine, cyclic AMP, nor dsdC activator has an effect on expression of a high constitutive dsdO template. The synthesis of the dsdC activator itself in vitro is independent of cyclic AMP. Guanosine tetraphosphate does not have a significant effect on in vitro D-serine deaminase synthesis from dsdO+ or dsdO templates. A previously described class of dsdO mutants showing partial catabolite sensitivity of constitutive D-serine deaminase synthesis proved to be low dsdO types. They all contain a low constitutive dsdC mutation; the two effects are additive with regard to level of constitutivity, but only that portion of synthesis attributable to the dsdC mutation is cyclic AMP dependent.  相似文献   

7.
Mutants constitutive for D-serine deaminase (Dsdase) synthesis were isolated by utilizing D-serine as sole nitrogen or carbon source in the chemostat. This method generated only regulatory constitutive (dsdC) mutants. The altered dsdC gene product in these strains is apparently able to bind D-serine more efficiently than the wild-type dsdC+ gene product--a selective advantage. Constitutive synthesis of Dsdase in all of these dsdC mutants is extremely sensitive to catabolite repression, and catabolite repression is reversed by the addition of D-serine. Of the 15 mutants generated by this method, none are suppressible by supD, supE, or supF. Mutations to a low level of constitutivity (maximal specific activity of 9) occur much more frequently than mutations to a high level (maximal specific activity of 79). High level constitutive synthesis of Dsdase results from the synthesis of an altered dsdC gene product--not from loss of ability to form the dsdC product. Dsdase synthesis is not regulated by the nitrogen supply in the medium, as nitrogen starvation does not result in the derepression of Dsdase synthesis.  相似文献   

8.
Plants are sensitive to D-serine, but functional expression of the dsdA gene, encoding D-serine ammonia lyase, from Escherichia coli can alleviate this toxicity. Plants, in contrast to many other organisms, lack the common pathway for oxidative deamination of D-amino acids. This difference in metabolism has major consequences for plant responses to D-amino acids, since several D-amino acids are toxic to plants even at relatively low concentrations. Therefore, introducing an enzyme specific for a phytotoxic D-amino acid should generate a selectable characteristic that can be screened. Here we present the use of the dsdA gene as a selectable marker for transformation of Arabidopsis. D-serine ammonia lyase catalyses the deamination of D-serine into pyruvate, water and ammonium. dsdA transgenic seedlings can be clearly distinguished from wild type, having an unambiguous phenotype immediately following germination when selected on D-serine containing medium. The dsdA marker allows flexibility in application of the selective agent: it can be applied in sterile plates, in foliar sprays or in liquid culture. Selection with D-serine resistance was compared with selection based on kanamycin resistance, and was found to generate similar transformation frequencies but also to be more unambiguous, more rapid and more versatile with respect to the way the selective agent can be supplied.  相似文献   

9.
De Miranda J  Santoro A  Engelender S  Wolosker H 《Gene》2000,256(1-2):183-188
High levels of D-serine are found in mammalian brain, where it is an endogenous agonist of the strichinine-insensitive site of N-methyl D-aspartate type of glutamate receptors. D-serine is enriched in protoplasmic astrocytes that occur in gray matter areas of the brain and was shown to be synthesized from L-serine. We now report cloning and expression of human serine racemase, an enzyme that catalyses the synthesis of D-serine from L-serine. The enzyme displays a high homology to the murine serine racemase. It contains a pyridoxal 5'-phosphate attachment sequence similar to bacterial biosynthetic threonine dehydratase. Northern-blot analysis show high levels of human serine racemase in areas known to contain large amounts of endogenous D-serine, such as hippocampus and corpus callosum. Robust synthesis of D-serine was detected in cells transfected with human serine racemase, demonstrating the conservation of D-amino acid metabolism in humans. Serine racemase may be a therapeutic target in psychiatric diseases as supplementation of D-serine greatly improves schizophrenia symptoms. We identify the human serine racemase genomic structure and show that the gene encompasses seven exons and localizes to chromosome 17q13.3. Identification of the intron-exon boundaries of the human serine racemase gene will be useful to search for mutations in neuropsychiatric disorders.  相似文献   

10.
Pantothenate, the precursor of coenzyme A, is an essential nutrient for the intraerythrocytic stage of the malaria parasite Plasmodium falciparum. Pantothenate enters the malaria-infected erythrocyte via new permeation pathways induced by the parasite in the host cell membrane (Saliba, K. J., Horner, H. A., and Kirk, K. (1998) J. Biol. Chem. 273, 10190-10195). We show here that pantothenate is taken up by the intracellular parasite via a novel H(+)-coupled transporter, quite different from the Na(+)-coupled transporters that mediate pantothenate uptake into mammalian cells. The plasmodial H(+):pantothenate transporter has a low affinity for pantothenate (K(m) approximately 23 mm) and a stoichiometry of 1 H(+):1 pantothenate. It is inhibited by low concentrations of the bioflavonoid phloretin and the thiol-modifying agent p-chloromercuribenzene sulfonate. On entering the parasite, pantothenate is phosphorylated (and thereby trapped) by an unusually high affinity pantothenate kinase (K(m) approximately 300 nm). The combination of H(+)-coupled transporter and kinase provides the parasite with an efficient, high affinity pantothenate uptake system, which is distinct from that of the host and is therefore an attractive target for antimalarial chemotherapy.  相似文献   

11.
Scolari MJ  Acosta GB 《Amino acids》2007,33(4):563-574
Summary. Gliotransmission is a process in which astrocytes are dynamic elements that influence synaptic transmission and synaptogenesis. The best-known gliotransmitters are glutamate and ATP. However, in the past decade, it has been demonstrated that D-serine, a D-amino acid, acts as a gliotransmitter in glutamatergic synapses. The physiological relevance of D-serine is sustained by the way in which it modulates the action of glutamatergic neurotransmission, neuronal migration and long-term potentiation (LTP). In addition, the synthesis and degradation mechanisms of D-serine have been proposed as potential therapeutic targets for the treatment of Alzheimer’s disease, schizophrenia and related disorders. In the present review, detailed information is provided about the physiological and physiopathological relevance of D-serine, including metabolic and regulation aspects.  相似文献   

12.
Coenzyme A (CoA) holds a central position in cellular metabolism and therefore can be assumed to be an ancient molecule. Starting from the known E. coli and human enzymes required for the biosynthesis of CoA, phylogenetic profiles and chromosomal proximity methods enabled an almost complete reconstruction of archaeal CoA biosynthesis. This includes the identification of strong candidates for archaeal pantothenate synthetase and pantothenate kinase, which are unrelated to the corresponding bacterial or eukaryotic enzymes. According to this reconstruction, the topology of CoA synthesis from common precursors is essentially conserved across the three domains of life. The CoA pathway is conserved to varying degrees in eukaryotic pathogens like Giardia lamblia or Plasmodium falciparum, indicating that these pathogens have individual uptake-mechanisms for different CoA precursors. Phylogenetic analysis and phyletic distribution of the CoA biosynthetic enzymes suggest that the enzymes required for the synthesis of phosphopantothenate were recruited independently in the bacterial and archaeal lineages by convergent evolution, and that eukaryotes inherited the genes for the synthesis of pantothenate (vitamin B5) from bacteria. Homologues to bacterial enzymes involved in pantothenate biosynthesis are present in a subset of archaeal genomes. The phylogenies of these enzymes indicate that they were acquired from bacterial thermophiles through horizontal gene transfer. Monophyly can be inferred for each of the enzymes catalyzing the four ultimate steps of CoA synthesis, the conversion of phosphopantothenate into CoA. The results support the notion that CoA was initially synthesized from a prebiotic precursor, most likely pantothenate or a related compound.  相似文献   

13.
The properties and regulation of pantothenate kinase from rat heart   总被引:2,自引:0,他引:2  
Pantothenate kinase (ATP:D-pantothenate 4'-phosphotransferase, EC 2.7.1.33), the first enzyme in the pathway of CoA synthesis, was partially purified from rat heart. A study of the properties of the kinase showed that it possesses a broad pH optimum between 6 and 9, is activated or inhibited nonspecifically by various anions, and has MgATP as the nucleotide substrate. The Km for MgATP is 0.6 mM and that for pantothenate is 18 microM. CoA and acyl esters of CoA are inhibitors of the kinase with the inhibition by acetyl-CoA being only slightly greater than that by free CoA. The inhibition by free CoA is uncompetitive with respect to pantothenate concentration, with a Ki for inhibition of 0.2 microM. L-Carnitine was found to be a nonessential activator of the kinase. This compound had no effect by itself but specifically reversed the inhibition of the kinase by CoA. The Ka for deinhibition by L-carnitine is 0.27 mM. Free carnitine content was measured in perfused hearts and is found to vary in correlation with perfusion conditions that are known to alter rates of intracellular phosphorylation of pantothenate. These properties of pantothenate kinase provide a potential mechanism for the control of CoA synthesis. The enzyme is regulated by feedback inhibition by CoA and its acyl esters and this inhibition is modified by changes in the concentration of free carnitine.  相似文献   

14.
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.  相似文献   

15.
The product of the FEN2 gene of Saccharomyces cerevisiae has previously been described as a protein conferring sensitivity to the antifungal agent fenpropimorph. Fen2p was postulated to act as a common regulator of carbon and nitrogen catabolite repression and of amino acid and ergosterol biosynthesis. In this paper, we present experimental evidence characterizing Fen2p as a plasma membrane-localized transporter for the vitamin pantothenate. The high affinity transport system (Km = 3.5 microM) is sensitive to uncouplers, suggesting a H+-pantothenate cotransport. Pantothenate transport rates in yeast are modulated by extracellular pantothenate, being maximal at low pantothenate concentrations. It is demonstrated that beta-alanine can suppress the growth defect of FEN2 wild-type and fen2 mutant cells on pantothenate-free medium. Evidence is presented that beta-alanine is transported by the general amino acid permease Gap1p. The relation among pantothenate transport, nitrogen catabolite repression, and sensitivity to the antifungal agent fenpropimorph is discussed.  相似文献   

16.
Worldwide, perinatal asphyxia is an important cause of morbidity and mortality among term-born children. Overactivation of the N-methyl-D-aspartate receptor (NMDAr) plays a central role in the pathogenesis of cerebral hypoxia-ischemia, but the role of both endogenous NMDAr co-agonists D-serine and glycine remains largely elusive. We investigated D-serine and glycine concentration changes in rat glioma cells, subjected to oxygen and glucose deprivation (OGD) and CSF from piglets exposed to hypoxia-ischemia by occlusion of both carotid arteries and hypoxia. We illustrated these findings with analyses of cerebrospinal fluid (CSF) from human newborns affected by perinatal asphyxia. Extracellular concentrations of glycine and D-serine were markedly increased in rat glioma cells exposed to OGD, presumably through increased synthesis from L-serine. Upon reperfusion glycine concentrations normalized and D-serine concentrations were significantly lowered. The in vivo studies corroborated the finding of initially elevated and then normalizing concentrations of glycine and decreased D-serine concentrations upon reperfusion These significant increases of both endogenous NMDAr co-agonists in combination with elevated glutamate concentrations, as induced by global cerebral ischemia, are bound to lead to massive NMDAr activation, excitotoxicity and neuronal damage. Influencing these NMDAr co-agonist concentrations provides an interesting treatment target for this common, devastating and currently poorly treatable condition.  相似文献   

17.
BACKGROUND AND AIMS: All plants synthesize pantothenate but its synthesis and regulation are not well understood. The aim of this work is to study the effect of exogenous supply of precursor compounds on pantothenate levels in leaves. METHODS: Precursor compounds were supplied in solution to excised leaves and the pantothenate content was measured using a microbial method. KEY RESULTS: Pantothenate levels in excised leaves of Limonium latifolium, tomato (Lycopersicon esculentum), bean (Phaseolus vulgaris) and grapefruit (Citrus x paradisi) were examined following an exogenous supply of the precursor compounds pantoyl lactone or beta-alanine. Significantly higher levels of extractable pantothenate were found when pantoyl lactone was supplied, but not when beta-alanine was supplied despite a measurable uptake of beta-alanine into the leaf. CONCLUSIONS: The results suggested that the pantoate supply may be rate-limiting or regulating pantothenate synthesis in leaves.  相似文献   

18.
Substrate specificity is studied of cysteine lyase, a phosphopyridoxal-dependent enzyme belonging to the subgroup of beta-replacing lyases. This enzyme has a narrow specificity for the amino substrate; its only primary substrate is L-cysteine. Cysteine lyase has a broad specificity for the cosubstrate (replacing agent), catalysing the synthesis of L-cysteic acid from L-cysteine and sulfite ion or cystein thioesters (in the presence of some thiols). Enzyme is incapable to use alpha-phenyl- and alpha-methylcysteine as substrates. It is found that enzyme catalyses the exchange of alpha-H atoms of the aminoacid substrate cysteine with 3H2O. It does not catalyse alpha-hydrogenexchange in close structural analogues of substrate: L-alanine, D-serine, treonine, allo-threonine and 3-phosphoserine. L-Serine inhibited the synthesis of S-hydroxyethylcystein from cysteine and beta-mercaptoethanol (Ki of L-serine is 0,8-10(-2) M), participating at the first stage of reaction: the formation of a pyridoxylidenic derivative, which does not undergo the further alpha,beta-elimination of beta-replacement reactions.  相似文献   

19.
Pantothenate and coenzyme A in bacterial growth   总被引:2,自引:2,他引:0  
Toennies, G. (Temple University School of Medicine, Philadelphia, Pa.), D. N. Das, and F. Feng. Pantothenate and coenzyme A in bacterial growth. J. Bacteriol. 92:707-713. 1966.-The effect of environmental pantothenate levels on the growth of Streptococcus faecalis 9790 was studied in terms of growth rate, depletion phenomena, cellular coenzyme A (CoA) content, and differential rates of wall and membrane synthesis. Low concentrations of pantothenate yielded normal exponential growth curves up to peak turbidities which are a function of pantothenate concentration. Attainment of these peaks was followed by lysis. Under such conditions, bacterial CoA increased initially in proportion with cell substance, but attained a peak level much earlier than cell substance, and then gradually decreased down to vanishing amounts. With higher pantothenate concentrations, cellular CoA levels increased to a maximum, and, under these conditions, the CoA content remained constant during exponential growth. Four-fifths of the pantothenate requirement of growing cells was eliminated by environmental oleate and palmitate. When CoA disappeared during growth on low pantothenate levels, cell wall synthesis seemed to continue at nearly normal rates, but membrane synthesis was severely curtailed. The data suggest that in fermentative organisms pantothenate action might be confined to wall and membrane synthesis, that these two processes differ in their quantitative dependence on pantothenate, and that pantothenate might occur in the form of acyl carrier protein as well as CoA.  相似文献   

20.
He WJ  Ruan HZ 《生理科学进展》2009,40(4):303-307
D-丝氨酸(D-Ser)是一种重要的胶质细胞递质,也是N-甲基-D-天冬氨酸(NMDA)受体NR1亚基上"甘氨酸位点"的主要内源性配体,具有比甘氨酸更高的结合效能.D-Ser在体内主要由丝氨酸消旋酶将L-丝氨酸消旋而来,受多种因素调控,在中枢神经系统参与调节突触可塑性、感觉信息传递、神经发育及神经兴奋性毒性等生理及病理过程,并成为阿尔采末病(AD)等神经系统疾病新的治疗靶点.本文对D-Ser在中枢神经系统的产生、代谢、生理及病理作用的研究予以综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号