首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Tetrahymena pyriformis, 6-phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) is membrane-bound. Enzyme activity is solubilized by treatment of membranes with Triton X-100 or by high ionic strength in the presence of a chelator. The solubilized enzyme has an approximate molecular weight of 300 000. Both the membrane-bound enzyme and the solubilized enzyme exhibit maximum activity over a wide pH range. At low pH, the membrane-bound form of the enzyme is irreversibly inactivated, whereas the solubilized enzyme is not. The membrane-bound enzyme is inactivated by incubation with Mg2+, ATP, fluoride and a soluble factor that is heat labile, nondialysis, (NH4)2SO4 precipitable and sensitive to trypsin. The solubilized enzyme is not inactivated under similar conditions.  相似文献   

2.
A new prolyl hydroxylase having a novel substrate specificity was isolated from the suspension-cultured cells of Vinca rosea. This enzyme was solubilized with 0.05 M Tris-HCl buffer (pH 7.4) containing 0.1% Triton X-100, 0.3 M NaCl and 0.5 mM beta-mercaptoethanol from the membrane fractions of the cells, and was partially purified by (NH4)2SO4 fractionation and DEAE-Sephadex A-50 column chromatography. The enzyme preparation was found to require O2, Fe2+, ascorbate, alpha-ketoglutarate and poly-L-proline to attain maximum activity. The plant enzyme does not hydroxylate free proline and di-, tri- and tetra-L-proline, but hydroxylates octa-L-proline and poly-L-proline (Mr greater than 2000). Model peptides of unhydroxylated collagen, (Pro-Pro-Gly)5 and (Pro-Pro-Gly)10 are poor substrates for the plant enzyme. This means that the plant enzyme has a novel substrate specificity in regard to peptidyl substrate, and this differs from vertebrate prolyl hydroxylase, proline,2-oxoglutarate dioxygenase (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase, EC 1.14.11.2).  相似文献   

3.
1. Xanthine oxidase (EC 1.2.3.2) was found to represent more than 8% of the intrinsic protein of the bovine milk-fat-globule membranes. 2. Less than 25% of the xanthine oxidase activity of the fat-globule membrane was solubilized with 0.1 M-sodium pyrophosphate buffer or 2M-NaCl. Of the particulate activity remaining 56% was solubilized with Triton X-100. 3. The xanthine oxidase activity solubilized with buffer, 2M-NaCl or Triton X-100 was not liberated as the free enzyme. Only tryptic digestion was found to release the free enzyme from the fat-globule membrane. Tryptic digestion also liberated free xanthine oxidase from those fractions solubilized by buffer or NaCl, but not from those fractions solubilized with Triton X-100 or by sonication. 4. The effect of membrane association on the catalytic properties of the enzyme could be mimicked by low pH or by the presence in the assay mixture of certain concentrations of 2-methyl-propan-2-ol, but not 1,4-dioxan, suggesting that hydrogen-bonding rather than low dielectric constant may be involved. 5. The origin of the milk-fat-globule membrane is discussed with reference to the intrinsic nature of the associated xanthine oxidase activity.  相似文献   

4.
1. The inactivation of cytosol enzymes in liver extracts was carried out by several subcellular fractions, with plasma membranes having the highest specific activity. Rough and smooth microsomal fractions were both active, whereas lysosmal inactivation capacity appeared to be derived entirely from contaminating plasma-membrane fragments. 2. Inactivation capacity in liver fractions was derived from parenchymal cells. Of the non-liver cells tested, plasma membranes from H35 hepatoma cells were able to inactivate glucose 6-phosphate dehydrogenase (EC 1.1.1.49), adipocyte "ghosts" showed slight activity and erythrocyte and reticulocyte "ghosts" were inactive. 3. Liposomes prepared from pure lipids with net negative, positive or neutral charge did not possess inactivation capacity. 4. Liver plasma-membrane inactivation capacity was destroyed by heating at 50 degrees C. 5. Inactivation factor solubilized from membranes by trypsin plus Triton X-100 treatment was partially purified by (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography and hydroxyapatite chromatography. 6. Partially purified inactivation factor analysed by gel electrophoresis gave a major protein band that co-migrated with capacity for inactivation of glucose 6-phosphate dehydrogenase. 7. It is concluded that inactivation factor is a membrane protein whose intracellular distribution and other properties are consistent with a possible role for this activity in the initial step of protein degradation.  相似文献   

5.
The properties of particulate guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from purified rabbit skeletal muscle membrane fragments were studied. Four membrane fractions were prepared by sucrose gradient centrifugation and the fractions characterized by analysis of marker enzymes. Guanylate cyclase activity was highest in the fraction possessing enzymatic properties typical of sarcolemma, while fractions enriched with sarcoplasmic reticulum had lower activities. In the presence of suboptimal Mn2+ concentrations, Mg2+ stimulated particulate guanylate cyclase activity both before and after solubilization in 1% Triton X-100. Guanylate cyclase activity was biphasic in the presence of Ca2+. Increasing the Ca2+ concentration from 10(-8) to 10(-5) M decreased the specific activity. As the Ca2+ concentration was further increased to 5 . 10(-4) M enzyme activity again increased. After solubilization of the membranes in 1% Triton X-100, Ca2+ suppressed enzyme activity. Studies utilizing ionophore X537A indicated that the altered effect of Ca2+ upon the solubilized membranes was independent of asymmetric distribution of Ca2+ and Mg2+.  相似文献   

6.
A liver particle fraction containing lysosomes catalyzes the conversion of native rabbit liver fructose 1,6-bisphosphatase (EC 3.1.3.11), having a neutral pH optimum, to a modified form with an alkaline pH optimum. The “converting enzyme” activity is partially recovered with the membranes from disrupted particles, and is also detected in “intact” particles isolated and maintained in isotonic buffered sucrose. The converting enzyme activity associated with the membrane fraction is expressed at pH 6.5, but not at pH 4.5, although activity at the lower pH appears when the enzyme is released from the membranes with Triton X-100. In contrast, proteolytic activity as measured with peptide and protein substrates is maximal at pH 5.0 or below, and is the same for the membrane-bound or solubilized proteases. The results suggest that a specific converting enzyme, at least partially associated with a particle (possibly lysosomal) membrane, is responsible for the modification of fructose bisphosphatase and the change in its catalytic properties.  相似文献   

7.
NAD glycohydrolase, or NADase (NAD+ glycohydrolase, EC 3.2.2.5) was solubilized with porcine pancreatic lipase from isolated fractions of microsomes and plasma membranes obtained from rat livers. The enzyme from each organelle was further purified by DEAE-cellulose chromatography, gel filtration and isoelectric focusing. The solubilized, partially purified enzymes had similar molecular weights, pH-activity profiles and Km values. Marked charge heterogeneity was observed for the microsomal enzyme on isoelectric focusing between pH 6 and 8 with maximum activity focusing at pH 8.0. Plasma membrane NADase displayed a single peak at pH 6.7. Treatment of the partially purified microsomal or plasma membrane enzyme with neuraminidase resulted in a single peak of activity on isoelectric focusing (pH 3.5--10) with a pI of 9.2. Polyacrylamide gel electrophoresis of either NADase revealed a periodate-Schiff positive band which was coincident with enzyme activity. Compositional analyses of the microsomal enzyme focusing at pH 8.0 confirmed the presence of hexoses, hexosamines and sialic acid. Differences in carbohydrate composition might be important in determining the subcellular distribution of this enzyme.  相似文献   

8.
Two isozymes of membrane-bound beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) with activity towards 4-methylumbelliferyl-beta-D-glucopyranoside have been identified in human cells. One of these isozymes was found to have a pH optimum of 5.0, a Km of 0.4 mM and to be rapidly inactivated at pH 4.0 ("acid-labile"). The second isozyme had a pH optimum of 4.5, a Km of 0.8 mM and was stable at pH 4.0 ("acid-stable"). Cultured long-term lymphoid lines and peripheral blood leukocytes contained both isozymes while cultured skin fibroblasts contained only the "acid-stable" form in detectable amounts. The specific activity of the "acid-stable" isozyme was severely reduced in cultured skin fibroblasts, cultured long-term lines and peripheral leukocytes from patients with Gaucher's disease. The specific activity of the "acid-labile" enzyme in the latter two cell types was apparently unaffected. The beta-glucosidase activity in all three cell types examined was predominantly particulate but the enzyme could be solubilized with low concentrations of Triton X-100. The solubilized enzyme required sodium taurocholate (0.2%) for maximum activity. Solubilized beta-glucosidase did not exhibit the cell-specific differences in pH optimum and Km shown by the membrane-bound enzyme.  相似文献   

9.
Activation and membrane binding of carboxypeptidase E   总被引:3,自引:0,他引:3  
Carboxypeptidase E (CPE) is a carboxypeptidase B-like enzyme that is thought to be involved in the processing of peptide hormones and neurotransmitters. Soluble and membrane-associated forms of CPE have been observed in purified secretory granules from various hormone-producing tissues. In this report, the influence of membrane association on CPE activity has been examined. A substantial amount of the membrane-associated CPE activity is solubilized upon extraction of bovine pituitary membranes with either 100 mM sodium acetate buffer (pH 5.6) containing 0.5% Triton X-100 and 1 M NaCl, or by extraction with high pH buffers (pH greater than 8). These treatments also lead to a two- to threefold increase in CPE activity. CPE extracted from membranes with either NaCl/Triton X-100 or high pH buffers hydrolyzes the dansyl-Phe-Ala-Arg substrate with a lower Km than the membrane-associated CPE. The Vmax of CPE present in extracts and membrane fractions after the NaCl/Triton X-100 treatment is twofold higher than in untreated membranes. Treatment of membranes with high pH buffers does not affect the Vmax of CPE in the soluble and particulate fractions. Pretreatment of membranes with bromoacetyl-D-arginine, an active site-directed irreversible inhibitor of CPE, blocks the activation by NaCl/Triton X-100 treatment. Thus the increase in CPE activity upon extraction from membranes is probably not because of the conversion of an inactive form to an active one, but is the result of changes in the conformation of the enzyme that effect the catalytic activity.  相似文献   

10.
Cytoplasmic membranes were isolated from late-exponential phase Staphylococcus aureus 6539 P and the membrane proteins examined under non-denaturing conditions by thin-layer isoelectric focusing (TLIEF) in a pH 3.5-9.5 gradient. Isolated membrane preparations retained protein integrity as judged by the demonstration of membrane bound adenosine triphosphatase (ATPase) activity in addition to four other solubilized membrane enzyme markers. Membranes were effectively solubilized with 2.5% Triton X-100 (final concentration). Examination of Triton X-100 solubilized membrane preparations established the presence of 22 membrane proteins with isoelectric points between 3.7 and 6.0. The focused proteins displayed the following enzymatic activities and isoelectric points by zymogram methods: ATPase (EC 3.6.1.3), 4.20; malate dehydrogenase (EC 1.1.1.37), 3.90; lactate dehydrogenase (EC 1.1.1.27), 3.85; two membrane proteins exhibited multiple bands upon enzymatic staining NADH dehydrogenase (EC 1.6.99.3), 4.25, 4.35; succinate dehydrogenase (EC 1.3.99.1), 4.85, 5.10, 5.35.  相似文献   

11.
D Fabbro  R J Desnick  S Gatt 《Enzyme》1984,31(2):122-127
Studies were undertaken to characterize the beta-glucosidase activity in freshly homogenized liver from Sprague-Dawley rats. About 95% of the total beta-glucosidase activity was associated with the particulate fraction, whereas only about 3-7% was found in the cytosol. Storage of fresh liver at room temperature for several hours or repeated freezing and thawing of fresh rat liver prior to homogenization, solubilized 20-30% of the total hepatic beta-glucosidase activity. An additional 30% could be solubilized by extracting the particulate sediments with water or Triton X-100. The enzymatic activity in both the particulate and solubilized fractions optimally hydrolyzed 4-methylumbelliferyl-beta-D-glucoside as well as the glycolipid substrate, glucosylceramide, at an acidic pH. The rates of hydrolysis of either substrate by all subcellular fractions were stimulated by addition of sodium taurocholate or phosphatidylserine. The particulate, cytosolic and solubilized enzymes bound to concanavalin A, were inhibited by conduritol B epoxide and migrated more electronegatively on cellulose acetate than the cytosolic acid beta-glucosidase from human liver or spleen. These data indicated that the liver of Sprague-Dawley rats contained primarily the lysosomal acid beta-glucosidase ('glucocerebrosidase') and little, if any, 'nonspecific' beta-glucosidase. This, and the fact that about 60% of the rat hepatic beta-glucosidase could be solubilized by autolysis, freezing and rethawing or extraction with water, contrasts with the beta-glucosidases in human liver since about 80% of the total beta-glucosidase activity is cytosolic and does not hydrolyze glucosylceramide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A membrane-bound D-gluconate dehydrogenase [EC 1.1.99.3] was solubilized from membranes of Pseudomonas aeruginosa and purified to a homogeneous state with the aid of detergents. The solubilized enzyme was a monomer in the presence of at least 0.1% Triton X-100, having a molecular weight of 138,000 on polyacrylamide gel electrophoresis or 124,000--131,000 on sucrose density gradient centrifugation. In the absence of Triton X-100, the enzyme became dimeric, having a molecular weight of 240,000--260,000 on sucrose density gradient centrifugation. Removal of Triton X-100 caused a decrease in enzyme activity. Enzyme activity was stimulated by addition of phospholipid, particularly cardiolipin, in the presence of Triton X-100. The enzyme had a cytochrome c1, c-554(551), which might be a diheme cytochrome, and it also contained a covalently bound flavin but not ubiquinone. In the presence of sodium dodecyl sulfate, the enzyme was dissociated into three components with molecular weights of 66,000, 50,000, and 22,000. The components of 66,000 and 50,000 daltons corresponded to a flavoprotein and cytochrome c1, respectively, but that of 22,000 dalton remained unclear as to its function.  相似文献   

13.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 degrees C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

14.
Phosphatidylinositol 4-phosphate (PIP) kinase (E.C. 2.7.1.68) has been purified about 1200-fold from rat liver plasma membranes, taking advantage of affinity chromatography on quercetin-Sepharose as a novel step. The purified PIP kinase showed no contamination by the following enzyme activities: phosphatidylinositol (PI) kinase (EC 2.7.1.67), protein kinase C (EC 2.7.1.-), diacylglycerol kinase (EC 2.7.1.-), phospholipase C (EC 3.1.4.11), protein-tyrosine kinase (EC 2.7.1.112), alkaline phosphatase (EC 3.1.3.1), triphosphoinositide phosphomonoesterase (EC 3.1.3.36), adenylate kinase (EC 2.7.4.3) and cAMP-dependent protein kinase (EC 2.7.1.37). The liver membrane enzyme requires high Mg2+ concentrations with a KM value of 10 mM. Ca2+ or Mn2+ could replace Mg2+ to a certain, though small, extent. Apparent KM values with respect to PIP and ATP were 10 and 65 microM, respectively. GTP was slightly utilized by the kinase as phosphate donor while CTP was not. Quercetin inhibited the enzyme with Ki = 34 microM. Extending our previous observations (Urumow, T. and Wieland, O.H. (1986) FEBS Lett. 207, 253-257 and Urumow, T. and Wieland, O.H. (1988) Biochim. Biophys. Acta 972, 232-238) [gamma S]pppG still stimulated the PIP kinase in extracts of solubilized liver membranes. 20-40% (NH4)2SO4 precipitation of the membrane extracts yielded a fraction that contained the bulk of enzyme activity but did not respond to stimulation by [gamma S]pppG any longer. This was restored by recombination with a protein fraction collected at 40-70% (NH4)2SO4 saturation, presumably containing a GTP binding protein and/or some other factor separated from the PIP kinase. In the reconstituted system [gamma S]pppG stimulated PIP kinase in a concentration dependent manner with maximal activation at 5 microM. This effect was not mimicked by [gamma S]pppA and was blocked by [beta S]ppG. These results strongly support our view that in liver membranes PIP kinase is regulated by a G-protein.  相似文献   

15.
The efficiency of several nonionic detergents and a homologous series of zwitterionic detergents for the extraction of acetylcholinesterase (EC 3.1.1.7) from bovine erythrocyte membranes was examined. Of the nonionic detergents examined, the polyoxyethylene-based Tweens were the least effective solubilizing agents. Within this series, increasing the length of the saturated fatty acid chain progressively decreased the efficiency of enzyme recovery, while unsaturation in the side chain reversed this trend. In the Lubrol detergents, where the chain length of the alcohol group is variable, an increase in the length of the polyoxyethylene glycol group decreased the recovery of acetylcholinesterase in the solubilized state, without affecting the efficiency of extraction of total erythrocyte protein. As with the other nonionic detergents examined, Triton X-100 and octyl beta-D-glucoside were maximally effective in solubilizing acetylcholinesterase activity at concentrations greater than their respective critical micelle concentrations. In the sulfobetaine (N-alkyldimethylaminopropane sulphonate) zwitterionic detergent series, the longer alkyl chain zwittergents Z 316 and Z 314 were more efficient than the shorter chain length members of the series (Z 310 and Z 312). In contrast to the higher chain length compounds, short chain analogs were maximally effective at or below their critical micelle concentrations. After purification by ion-exchange chromatography and affinity chromatography, the enzyme extracted with the various detergents gave sedimentation coefficients between 6.8S and 7.6S, consistent with a dimeric structure. Acetylcholinesterase could also be efficiently released by 0.2 mM EDTA or 0.5 M NaCl from bovine erythrocyte membranes previously depleted of 70-80% of the membrane lipids by butanol. Nonlinear Arrhenius plots of enzyme activity were found whether acetylcholinesterase was solubilized with Tween 20, Lubrol PX, or Triton X-100. The present work confirms that bovine erythrocyte acetylcholinesterase requires detergents to solubilize it from membranes and that its activity depends on the structure of the amphiphiles used to solubilize the enzyme.  相似文献   

16.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

17.
11 beta-hydroxysteroid dehydrogenase (11-HSD, EC 1.1.1.146) from rat renal cortex microsomes was solubilized using several detergents, the most effective being Zwittergent 3-10 and Triton X-100. The activity ratio oxidation/reduction of the reversible reaction corticosterone in equilibrium 11-dehydrocoticosterone varied depending on the detergent used. We attribute this variation to direct effects of different detergents on enzyme kinetics. In contrast, comparable results obtained with liver 11-HSD have been attributed to the possibility of spatially separated 11-oxidase and 11-reductase activities. In order to test whether renal 11-HSD represents a uniform oxido-reductase as generally assumed, or a dual enzyme system as has been recently proposed an attempt was made to characterize 11-HSD solubilized from renal microsomal fractions using isoelectric focusing (IEF). When 11-HSD was extracted with 1% Triton X-100 (= partially solubilized fraction) a heterogenous peak pattern was obtained. In contrast, IEF of 11-HSD extracted with 10% Triton X-100 (= delipidated fraction) resulted in a single peak at about pH 5.9 with both oxidative and reductive activity at practically identical positions within the gels. From this observation we conclude that the degree of detergent solubilization of a membrane bound protein affects its amphoteric properties and that removal of membranous lipids is a prerequisite for the analysis of its behaviour. Since the more delipidated fraction of 11-HSD revealed only one activity peak the data are compatible with the uniform enzyme concept since oxidative and reductive activities of renal cortical 11-HSD could not be separated.  相似文献   

18.
Protease activity was detected in membranes of human bovine erythrocytes prepared by the conventional procedures which include washing and removal of the "buffy layer". The enzyme was extracted by 0.75 M KCNS or (NH4)2SO4 and was activated by 0.4 to 0.5 M of the same salts. Colored, particulate hide powder-azure, membrane fractions and soluble proteins such as hemoglobin, casein or albumin were susceptible to hydrolysis by the membraneous protease. Partial purification of the enzyme was accomplished through disc-gel electrophoresis on polyacrylamide in the presence of 0.25% positively charged detergents like cetyltrimethylammonium bromide. An alkaline protease (pH 7.4) with properties similar to those of the erythrocyte enzyme was found in leucocytes. The similarity between the properties of the leucocytic and erythrocytic proteases and the correlation of the activity in erythrocyte membranes with content of white cells in these preparations, suggest that enzymatic activities in the contaminating leucocytes are responsible for the activity of membraneous proteases in erythrocytes.  相似文献   

19.
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 °C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.  相似文献   

20.
STUDIES ON ACETYLCHOLINESTERASE OF RAT BRAIN SYNAPTOSOMAL PLASMA MEMBRANES   总被引:3,自引:1,他引:2  
Abstract— A fluorimetric assay has been used to examine some kinetic properties of AChE from synaptosomal plasma membranes prepared from rat brain. The AChE bound to the plasma membranes was compared to that solubilized with Triton X-100 and found to be essentially the same with respect to Michaelis constant and inhibitor constants for several AChE inhibitors. The two forms of the enzyme had slightly different pH optima. The kinetic studies revealed no evidence that synaptosomal plasma membrane AChE has allosteric properties. The solubilized enzyme was further purified by affinity chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号