首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid mice of the (B6 X bm12)F1 combination were inoculated i.v. with parental B6 spleen cells to induce a class II graft-vs-host disease (GVH). Such mice failed to generate in vitro cytotoxic T lymphocyte (CTL) responses that were dependent upon L3T4+ T helper cell (Th) function (e.g., anti-B6-TNP) but were capable of generating in vitro CTL responses that could be mediated by Lyt-2+ Th cells (anti-allo class I). When Th function was assayed directly by interleukin 2 (IL 2) secretion, class II GVH animals were found to be deficient in L3T4+ but not Lyt-2+ IL 2-secreting Th cells. This selective deficiency in L3T4+ Th function correlates with a selective decrease in class II GVH mice of host-derived derived L3T4+ T cells. In addition, it was found that the spleens of class II GVH mice contained cells capable of selectively suppressing L3T4+ Th function. In contrast, mice in which a class I + II GVH occurred were depleted of both L3T4+ and Lyt-2+ Th function as assessed by IL 2 production. The findings that class II GVH selectively depletes L3T4+ T cells and T cell functions are discussed with respect to the immune function of distinct T cell subsets in normal and diseased states.  相似文献   

2.
The inoculation of B6D2F1 mice with T lymphocytes from the C57BL/6 parental strain induces an "immunosuppressive" graft-vs-host reaction (B6 GVH), whereas inoculation of T cells from the other, DBA/2 parental strain induces an "immunostimulatory" GVH reaction and a lupus-like disease (DBA GVH). The present study compares cytotoxic T lymphocyte (CTL) function in the spleens of these GVH mice as well as differences in the donor inoculum that could account for these different types of GVH. We observed that the B6 GVH induces an immunodeficiency that encompasses CTL precursors (and possibly T helper cells) and results in suppressor cells that abrogate responses to both trinitrophenyl (TNP)-modified self and third party alloantigens. In contrast, the DBA GVH induces only a T helper cell immunodeficiency and results in suppressor cells selective for class II restricted L3T4+ T helper cells. Chimeric T cells were detected in both types of GVH. In the B6 GVH both L3T4+ and Lyt-2+ donor cells were observed, although Lyt-2+ cells predominated. In the DBA GVH, donor T cells were almost exclusively of the L3T4+ phenotype. The lack of appreciable donor Lyt-2+ cells in the DBA GVH can be explained by a defect in the DBA donor inoculum manifested by a naturally occurring two-fold reduction in Lyt-2+ cell numbers as well as a nine-fold reduction in CTL precursors with anti-F1 specificity. T cells in the DBA inoculum, therefore, are predominantly L3T4+. A similar defect induced in B6 donor cells by anti-Lyt2 antibody and complement not only converted the suppressive GVH to a stimulatory GVH, as measured by anti-DNA antibodies, but also resulted in a T cell immune deficiency characteristic of the DBA GVH, i.e., a selective loss of the TNP-self CTL response. Thus the presence or absence of adequate numbers of functioning Lyt-2+ cells in the donor inoculum is correlated with the development of either a suppressive or stimulatory GVH, respectively. That donor Lyt-2+ cells mediate a suppressive GVH through cytolytic mechanisms is evidenced by greater than 70% reduction in B6 GVH spleen cell numbers and readily demonstrable anti-F1 CTL activity by these spleen cells despite an inability to generate anti-allogeneic or anti-TNP self CTL activity even in the presence of added T helper factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Our study investigates the effect of a prior graft-vs-host (GVH) reaction on the subsequent ability of irradiated, bone marrow-re-populated mice to develop T cell function. The results indicate that such GVH-bone marrow transplanted (BMT) mice do not generate CTL responses to trinitrophenyl-modified syngeneic cells (TNP-self), but do generate strong CTL activity to H-2 alloantigens. This selective deficiency in TNP-self CTL response potential appeared as early as 10 days after GVH, and required both L3T4+ and Lyt-2+ donor T cells. The in vitro addition of either soluble Th factors or L3T4-enriched spleen cells from normal mice circumvented the defect in the TNP-self response in GVH-BMT mice. These results indicate that T effector function was not defective, and instead suggest a Th defect. Cell depletion and antibody-blocking, as well as IL-2 production experiments, indicate that the Th defect was selective for L3T4+ Th population and not for Lyt-2+ Th population. This defect in L3T4 Th function is not accounted for by the approximate twofold reduction in L3T4 cell numbers in GVH-BMT mice, because IL-2 production and CTL generation to L3T4-dependent Ag were at least eightfold below control levels. Rather, defective L3T4 Th function appears to be the consequence of a GVH-induced defect in thymic maturation because the defect was corrected in vivo by a neonatal parental thymus graft before irradiation and bone marrow transplantation. This system may be useful for elucidating the role of the thymus in the maturation of Th cells. Our findings raise the possibility that impaired development of T cell function occurring in marrow grafted patients who have undergone a GVH reaction could be partly due to a GVH-induced thymic defect.  相似文献   

4.
The present study investigates the distinctiveness of Class I H-2 alloantigen-reactive Lyt-2+ helper/proliferative T cell subset in the aspect of tolerance induction. Primary mixed lymphocyte reactions (MLR) revealed that Lyt-2+ and L3T4+ T cell subsets from C57BL/6 (B6) mice were exclusively capable of responding to class I H-2 [B6-C-H-2bm1 (bm1)]- and class II H-2 [B6-C-H-2bm12 (bm12)]-alloantigens, respectively. Anti-bm12 MLR was not affected by i.v. injection of bm12 spleen cells into recipient B6 mice. In contrast, a single i.v. administration of bm1 spleen cells into B6 mice resulted in the abrogation of the capacity of recipient B6 spleen and lymph node cells to give anti-bm1 MLR. This suppression was bm1 alloantigen-specific, since lymphoid cells from B6 mice i.v. presensitized with bm1 cells exhibited comparable anti-bm12 primary MLR to that obtained by normal B6 lymphoid cells. Such tolerance was rapidly (24 h after the i.v. injection of bm1 cells) inducible and lasting for at shortest 3 wk. Addition of lymphoid cells from anti-bm1-tolerant B6 mice to cultures of normal B6 lymphoid cells did not suppress the proliferative responses of the latter cells, indicating that the tolerance is not due to the induction of suppressor cells but attributed to the elimination or functional impairment of anti-bm1 proliferative clones. The tolerance was also demonstrated by the failure of tolerant lymphoid cells to produce IL-2. It was, however, found that anti-bm1 CTL responses were generated by tolerant lymphoid cells which were unable to induce the anti-bm1 MLR nor to produce detectable level of IL-2. These results demonstrate that class I H-2 alloantigen-reactive Lyt-2+ Th cell subset exhibits a distinct property which is expressed by neither Lyt-2+ CTL directed to class I H-2 nor L3T4+ Th cells to class II H-2 alloantigens.  相似文献   

5.
C57BL/6 (B6) mice were i.v. presensitized with class I H-2-disparate B6-C-H-2bm1 (bm1) spleen cells. Such presensitization resulted in almost complete abrogation of bm1-specific Lyt-2+ T cell-mediated proliferative and IL-2-producing capacities as measured by MLC of lymphoid cells from presensitized B6 mice with stimulating bm1 cells. In contrast, comparable magnitude of CTL responses was generated in bulk cultures from presensitized B6 lymphoid cells to that obtained in unpresensitized B6 responding cultures. These differential influences of Lyt-2+ T cell functions were also demonstrated by limiting dilution assays; frequencies of proliferative and IL-2-producing T cell precursors were as low as undetectable in presensitized B6 lymphoid cells, whereas an appreciable frequency of CTL precursors in a portion of the same lymphoid cells was observed. When bm1 skin grafting was performed in B6 mice i.v. presensitized with bm1 cells, the strikingly prolonged survival of bm1 skin grafts was observed. It was also demonstrated that the bm1 skin graft-bearing B6 mice which had been presensitized with bm1 cells not only exhibited a continuing suppressive state of bm1-specific helper (proliferative and IL-2-producing) function but also failed to generate anti-bm1 CTL responses. These results indicate that 1) i.v. presensitization with class I H-2 alloantigens results in selective tolerance of Lyt-2+ Th cells which is adequate for inducing prolonged graft survival, 2) the induction of complete abrogation of CTL potential is not absolute requirement for the prolongation of graft survival, and 3) residual CTL potential is attenuated after grafting so far as Th cells are rendered tolerant.  相似文献   

6.
Autoimmune diseases are known to be induced in some donor-recipient combinations of mice undergoing the graft-vs-host reaction (GVHR). In this paper, we report on the development of primary biliary cirrhosis (PBC)-like hepatic lesions and also on pancreatic insulitis in (B6 x bm12)F1 mice injected with B6 CD4+ T cells. At the sites of these lesions, cellular infiltration around ductal structure was observed. Immunohistochemical studies revealed that both CD4+ and CD8+ T cells were present in the lesions of the liver and pancreas. To clarify the role of the CD8+ T cells, which were probably of host origin, we used a mAb against the Lyt-2 molecule. Both the PBC-like hepatic lesions and pancreatic insulitis were exacerbated by eliminating CD8+ T cells from mice with MHC class II GVHR. Also, autoantibodies against the pyruvate dehydrogenase-E2 component, which has been recently found to contain an immunodominant site (autoepitope) for B cell reactivity in patients with PBC, were detected in the sera of these mice by ELISA and their presence was confirmed by immunoblotting procedures. Our findings suggest that similar mechanisms as in GVHR caused by MHC class II disparity are active in the development of PBC. It should also be noted that, in addition to the hepatic lesions, insulitis closely resembling that seen in the nonobese diabetic mouse was induced in our experimental system. The results suggest that our model provides a unique opportunity to study organ-specific autoimmune diseases. Because the effector in our experimental system was defined to be CD4+ T cells responding to Iabm12 Ag, our findings support the hypothesis that an excessive immune response directed against Ia Ag can produce autoimmune disease.  相似文献   

7.
This study was undertaken to determine whether bone marrow (BM) cells contain a cell population with the capacity to induce an unresponsiveness of T cells specific to the BM self-H-2 class I antigens in vivo, i.e., veto cell population. Recombinant or congenic mice were infused intravenously with H-2-incompatible BM cells. One to several weeks later, donor H-2-and irrelevant H-2-specific responses in mixed lymphocyte reaction cultures of recipient T cells were assessed. Transfusion of H-2-incompatible BM of C57BL/10 (B10) recombinant strains caused a long-lasting cytotoxic T lymphocyte (CTL) unresponsiveness to the donor class I antigens in recipient lymph node cells. When class I plus class II-disparate BM cells were transfused, an anti-donor class I CTL response and a response against a third-party class I antigen, which was presented on the stimulator cells coexpressing the donor class I and class II, were significantly suppressed. This linked suppression lasted for less than 2 weeks after transfusion. Transfusion of class I-alone-disparate BM induced the donor class I-specific CTL unresponsiveness, but not the linked suppression. The induction of linked suppression was prevented considerably by transfusing nylon wool-nonadherent BM or by treating recipients with cyclophosphamide 2 days before transfusion. An anti-third-party class I CTL response, stimulated in vitro with fully allogeneic spleen cells, was not hampered by the BM transfusion. Coculturing the lymph node (LN) cells obtained from the class I plus class II-disparate BM recipient with normal LN cells interfered with the generation of both anti-donor class I and anti-linked third-party class I CTL, whereas, coculturing LN cells from the class I alone-disparate BM recipient inhibited neither specificity of CTL generation. Transfusion of class I plus class II-disparate BM resulted in a significant suppression of the donor class II-specific proliferative response. In contrast, transfusion of class I alone-disparate BM did not suppress any proliferative responses, including even a "linked" third-party class II-specific response. Transfusion of bm 1, (B6 X bm 1)F1, or (bm 1 X bm 12)F1 BM to B6 did not induce unresponsiveness in bm 1-specific CTL responses. However, the transfusion resulted in a significant suppression of bm 1-reactive proliferative response of recipient LN cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The induction of class I and class II MHC-restricted CTL in response to different forms of A/JAP/57 influenza virus was compared. Splenocytes removed from influenza-immune BALB/c mice and stimulated in vitro with infected syngeneic splenocytes are mainly CD8+ (Lyt-2+) and specifically lyse infected Ia- and Ia+ target cells. To a lesser extent they also lyse non-infectious virus-pulsed Ia+ but not Ia- target cells. In contrast, syngeneic stimulators pulsed with non-infectious virus (exogenous Ag) induce effector T cells that specifically lyse both infected and non-infectious virus-pulsed Ia+ target cells. The cells present in this heterogeneous culture predominantly express the CD4 (L3T4) cell surface marker. Frequency analysis by limiting dilution of splenocytes derived directly from influenza-immune mice revealed a similar pattern of precursor induction: In vitro stimulation with infected splenocytes yielded primarily class I MHC-restricted CTL, whereas stimulation with non-infectious virus reciprocally induced primarily class II MHC-restricted CTL. Thus, the Ag form and consequently the intracellular route of viral Ag presentation profoundly influence the MHC restriction of CTL precursors induced.  相似文献   

9.
The reactivity of Lyt-2+ or L3T4+ T cells stimulated with either mutant class I or class II MHC alloantigens was studied. Whereas stimulation with class I MHC antigens induced only Lyt-2+ T cells to proliferate and to secrete IL 2, stimulation with class II MHC alloantigens induced L3T4+ but not Lyt-2+ T cells. When the frequencies of precursors of IL 2-secreting T lymphocytes (IL 2TL-p) were determined by limiting dilution analyses, class I MHC-reactive Lyt-2+ T cells displayed frequencies (f = 1/200) as high in magnitude as those within class II MHC-reactive L3T4+ (f = 1/100). Clonally developing IL 2TL of either T cell subset were antigen-specific, as shown in split-culture experiments. Whereas L3T4+ helper TL could be induced to specific IL 2 secretion over a long time period (days 3 to 9), Lyt-2+ TL showed a marked time optimal on day 4; thereafter, the number of TL colonies inducible to secrete IL 2 decreased steadily. IL 2 production and IL 2TL-p frequencies of unseparated T responder cells were not the numerical superposition of the two individual T cell subsets (Lyt-2+ + L3T4+); the latter finding is likely to reflect regulatory influences of Lyt-2+ T cells on IL 2-secreting L3T4+ T cells.  相似文献   

10.
The goal of the present study was to evaluate the relationship among function, Lyt phenotype, and MHC recognition specificity in primary allospecific T cell populations. By using Lyt-2+ and L3T4+ T cells obtained from the same responder populations, we assessed the ability of T cells of each phenotype to generate cytotoxic effector cells (CTL) and IL 2-secreting helper T cells in response to either class I or class II MHC allodeterminants. It was found that a discordance between Lyt phenotype and MHC recognition specificity does exist in primary allospecific T cells, but only in one T cell subpopulation with limited functional potential: namely, Lyt-2+ T cells with cytotoxic, but not helper, function that recognize class II MHC alloantigens. Target cell lysis by these Lyt-2+ class II-allospecific CTL was inhibited by anti-Ia monoclonal antibodies (mAb), but not anti-Lyt-2 mAb, indicating that they recognized class II MHC determinants as their "restriction" specificity and not as their "nominal" specificity even though they were Lyt-2+. A second allospecific T cell subset with limited functional potential was also identified but whose Lyt phenotype and MHC restriction specificity were not discordant: namely, an L3T4+ T cell subset with helper, but not cytotoxic, function specific for class I MHC allodeterminants presented in the context of self-Ia. Thus, the present study demonstrates that primary allospecific T cell populations contain phenotypically identical subpopulations of helper and effector cells that express fundamentally different MHC recognition specificities. Because the recognition specificities expressed by mature T cells reflect the selection pressures they encountered during their differentiation into functional competence, these findings suggest that functionally distinct but phenotypically identical T cell subsets may be selected independently of one another during ontogeny. Thus, the existence of Lyt-2+ CTL specific for class II allodeterminants can be explained by the hypothesis that the association of Lyt phenotype with MHC recognition specificity results from the process of thymic selection that these Lyt-2+ effector cells avoid.  相似文献   

11.
Two class I MHC mutant mouse strains, bm14 and bm13, differ from the strain of origin B6 in one and three amino acids in the alpha 1 and alpha 2 domains of the H-2Db molecule, respectively. These alterations result in specific failure to generate a CTL (Tc) response to the male-specific Ag H-Y. Immunization and/or restimulation in vitro with syngeneic male dendritic cells (DC), expressing very high levels of class I MHC molecules, restored the H-Y-specific Tc response of bm14 but not of bm13 mice. Serologically Db determinants were lost in normal spleen cells of both mutants, because FACS analysis showed a decreased binding of Db domain-specific mAb. Although bm13 DC show a higher fluorescence than bm13 normal spleen cells it is still strongly reduced (30 to 50%) in comparison with B6 DC. Surprisingly, bm14 DC show an equally very strong binding compared with B6 DC with these mAb. The quantitative expression of class I molecules on APC thus appears to be a major determinant in the regulation of Tc responses. In addition, immunization with DC markedly influenced the target cell specificity of the ensuing Tc response. The combined data clearly demonstrate that besides the highly efficient class II-restricted presentation of Ag to Th, shown previously, DC are also superior in the presentation of Ag in the context of class I molecules to Tc. bm14 DC are capable of directly activating H-Y-specific Lyt-2+ Tc memory cells without the need for L3T4+ Th. These biologic effects of DC can at least in part be explained by their very high class I MHC expression. Moreover, these results reiterate that class I MHC Db mutants and different APC can be used to study the contribution of specific class I domains to Tc recognition and restriction specificity.  相似文献   

12.
Treatment of C57BL/6J (B6) murine splenocytes with L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) selectively removes NK cells, CTL precursors, and the capacity to cause lethal graft-vs-host disease (GVHD) in irradiated B6 X DBA/2 F1 mice. In contrast, alloantigen-induced L3T4(+) Th cell function has been shown to be relatively preserved after exposure to this agent. The present studies assessed the effects of Leu-Leu-OMe treatment of donor cells on induction of lethal GVHD in other murine strain combinations. When irradiated B6 X CBAF1 mice were infused with T and NK cell-depleted B6 bone marrow cells and 3 to 30 X 10(6) B6 spleen cells, uniformly lethal GVHD was observed. However, B6 X CBAF1 recipients of T and NK-depleted B6 bone marrow cells and similar numbers of Leu-Leu-OMe-treated B6 spleen cells demonstrated 90 to 100% long term survival. In contrast, Leu-Leu-OMe treatment of B6 donor cells had no beneficial effect on mortality rates in irradiated (B6 X B6-C-H-2bm12)F1 (B6 X bm12F1) recipients. When B6 spleen cells were stimulated in vivo or in vitro with either B6 X CBAF1 or B6 X bm12F1 stimulator cells, the capacity to generate alloantigen-specific CTL was abolished comparably by Leu-Leu-OMe treatment. Thus, the dramatic difference between the effects of Leu-Leu-OMe treatment of B6 spleen cells on the course of GVHD in B6 x CBAF1 and class II MHC only disparate B6 x bm12F1 recipients could not be explained by unique resistance of bm12-specific CTL precursors to Leu-Leu-OMe. These findings indicate that T cell effector mechanisms distinct from classic cell-mediated cytotoxicity are sufficient to generate lethal GVHD in class II MHC only disparate B6----B6 X bm12F1 mice.  相似文献   

13.
The neonatal injection of semiallogeneic F1 spleen cells into newborn parental mice results in the induction of tolerance to the corresponding alloantigen (alloAg) and chimerism. In these F1 cell-injected mice, we have previously observed that this state of specific tolerance is associated with the development of a transient lupus-like autoimmune syndrome. In this study, we show that neonatal injection of mice with spleen cells differing from the host at major histocompatibility complex (MHC) class I, class II, class (I + II), or minor lymphocyte stimulating (Mls) alloAg induced a state of specific tolerance characterized by the absence of alloreactive CTL and/or Th cell responses in the spleen and the thymus of 6- to 12-week-old injected mice. However, in mice rendered tolerant to MHC class II or class (I + II) alloAg, the presence of high levels of IgG1 antibodies, of circulating immune complexes, of anti-ssDNA autoantibodies, and of tissue lesions were transiently observed. In these mice, an increased Ia Ag expression on lymphoid spleen cells was also detected at 1 wk. The elevated production of IgG1 and the overexpression of Ia Ag were almost completely prevented by treatment with an anti-IL-4 mAb. Such manifestations of B cell activation and autoimmunity were not observed in mice neonatally injected with F1 cells differing from the host only at MHC class I Ag. In mice neonatally tolerized to Mls Ag, a transient increase in IgG2a production and an overexpression of Ia Ag were detected without features of autoimmunity, and were prevented by anti-INF-gamma mAb treatment. In mice rendered tolerant to MHC class II, class (I + II), or Mls alloAg at birth, the manifestations of B cell activation were associated with the presence of in vivo-activated alloreactive CD4+ T cells in the spleen--but not the thymus--of 1-wk-old injected mice. Together, these results suggest that in mice neonatally injected with semiallogeneic F1 cells, the process of tolerance induction is not efficient during the early postnatal period, and could allow the maturation and peripheralization of some alloreactive CD4+ T cells, leading to transient B cell activation and, depending on the alloAg, to autoimmunity.  相似文献   

14.
We have analyzed the signals influencing the generation of major histocompatibility complex (MHC) class II allospecific cytolytic T lymphocytes (CTL) and have found that the development of these CTL is actively regulated in primary in vitro cultures by Lyt-2+ T cells triggered in response to MHC class I alloantigens. Class II allospecific CTL can be readily stimulated in primary cultures, but the presence of a simultaneous class I MHC stimulus in these cultures causes a marked reduction of class II-specific CTL activation. This reduction can be prevented by adding to culture a dose of monoclonal anti-Lyt-2 antibody (in the absence of complement) that does not block the generation of class I-specific CTL. The role of MHC class I alloantigens in the regulation of class II allospecific responses illustrates that T cells recognizing class I and class II MHC antigens in mixed leukocyte cultures interact in a complex and nonreciprocal manner to influence the final effector T cell repertoire elicited by this complex immunogenic challenge.  相似文献   

15.
A lethal graft-vs-host reaction (GVHR) was elicited by the injection into irradiated (700 rad) mice, reconstituted with T-depleted bone marrow cells (BM), of T lymphocytes incompatible for different loci of the major histocompatibility complex (MHC). The number of T cells needed to kill more than 50% of the recipients by day 40 was about 10(6) for GVHR elicited across the product of the K, D, or E locus, but about 10(5)--10--fold less-when the A locus was involved. The mortality was associated with a medullary aplasia in all strain combinations, but enteropathy was observed only in GVHR elicited by the products of class II, and not class I, loci. Mortality and medullary aplasia were diminished or absent in recipients reconstituted with BM cells from T cell donors instead of cells of the host genotype, which suggests a direct (cytolytic) T-hematopoietic cell interaction. Lymphoproliferation was evident within the host spleen and lymph node 5 days after injection of T lymphocytes incompatible for class II but not class I loci. Spleens from mice suffering from a lethal GVHR were examined by culture in limiting dilution to evaluate the frequency of anti-host T cells and to derive anti-host T cell clones and lines, whose properties were explored. In the GVHR elicited across the A or E region of the MHC, examined between days 7 and 19, a high frequency (10(-2] of anti-host cells was observed. The polyclonal cell lines isolated (16) all displayed MLR responsiveness, antigen-driven IL 2 production, and cytolysis for LPS blasts of the host genotype. However, among 13 clones isolated, two categories were observed: Lyt-2-, which were MLR responders and IL 2 producers (four of 13), and Lyt-2+, which were cytolytic but neither MLR responders nor IL 2 producers (nine of 13). In the GVHR elicited by the K or D region, examined between days 7 and 90, the frequency of anti-host cells was low (10(3) to 10(4], with a tendency to decrease during the progression of the disease. The lines (11) or clones (26) isolated from different mice were all Lyt-2+ and strongly cytolytic but proliferated poorly and produced no IL 2 in MLR. These findings suggest that the Lyt-2+ lymphocytes, recognizing the products of the class I loci, function in vivo without proliferation and without requiring helper T cells. Cell lines specific for class I or class II loci of the MHC produced interferon and colony-stimulating factors.  相似文献   

16.
Most cytolytic T lymphocytes (CTL) recognize class I rather than class II MHC determinants, and relatively little is known about those CTL that do recognize class II MHC determinants. The present study was undertaken to document the specificity, phenotype, and precursor frequency of primary class II allospecific CTL. It was found that class II-allospecific CTL could be consistently generated in vitro from unprimed spleen or thymus populations in the presence of exogenously added helper factors. The class II MHC specificity of both the precursor and CTL effectors activated in primary cultures by Ia-disparate stimulator cells was documented both by blocking experiments with anti-Ia mAb and by the use of L cell transfectants. The mechanism by which primary allospecific CTL effectors lysed their targets appeared to involve direct cell-cell contact, because they failed to lyse bystander target cells. The frequency in unprimed spleen populations of precursor CTL specific for class II alloantigens was examined by limiting dilution analysis and was found to be as high as 1/15,000 splenocytes and approximately 10% of the frequency reported for primary class I allospecific CTL. Finally, the Lyt phenotype of primary class II allospecific CTL precursors and effectors was determined. It was found that anti-class II CTL derive from at least two distinct precursor subpopulations that are either L3T4+Lyt-2- or L3T4-Lyt-2+, and that the Lyt phenotype expressed by the CTL effectors are concordant with that of their precursors. No correlation was found between the I subregion gene products recognized by CTL effectors and the Lyt phenotype they expressed in that both I-A- and I-E-specific CTL were both L3T4+Lyt-2- and L3T4-Lyt-2+.  相似文献   

17.
The development of acute graft-vs-host disease (GVHD) is a common outcome after the injection of fully MHC disparate parental T cells into unirradiated F1 mice. Murine cytomegalovirus (MCMV) infection has been previously shown to augment the development of acute GVHD in the parent-into-F1 (P----F1) model, such that 10-fold fewer parental cells are required. In the present study, we have investigated the effect of MCMV infection on the induction of non-lethal GVHD that occurs in P----F1 combinations involving MHC class I only or class II only differences. Using P----F1 combinations involving either an H-2K only difference or an H-2D only difference, MCMV infection of F1 mice 3 days before the injection of parental spleen cells led to a profound T cell immunodeficiency that strongly resembled that observed in acute GVHD. Further studies examining the H-2K disparate P----F1 combination, C57Bl/6---- (C57Bl/6xB6.C-H-2bm1) F1 and combined MCMV infection showed that the immunodeficiency is characterized by a profound loss of in vitro Th cell production of IL-2 and an intrinsic defect in T effector function as shown by an inability of rIL-2 to restore defective CTL responses. Additional experiments in these mice revealed the presence of suppressor cells as well as significant parent-anti-F1 CTL activity possibly accounting for the suppressor effect. This pattern of immunodeficiency was not seen after the administration of either MCMV or MHC class I disparate parental cells alone. MCMV infection did not detectably alter the immunodeficiency observed in a P----F1 combination involving a MHC class II difference only. These results indicate that MCMV infection can alter the pattern of GVHD in the setting of an MHC class I disparity, but not in the setting of class II disparity, such that it resembles acute GVHD. These results may have relevance to the human transplant setting where intercurrent CMV infection has been associated with an adverse clinical outcome.  相似文献   

18.
T cell recognition of nonpolymorphic determinants on H-2 class I molecules   总被引:2,自引:0,他引:2  
Recognition of polymorphic determinants on class I or class II MHC Ag is required for T lymphocyte responses. Using cell-size artificial membranes (pseudocytes) bearing H-2 class I Ag it is demonstrated that T cells can, in addition, recognize nonpolymorphic determinants on class I proteins. Pseudocytes bearing class I alloantigen stimulate in vitro generation of secondary allogeneic CTL responses. At a suboptimal alloantigen surface density, incorporation of class I molecules identical to those of the responder cells (self-H-2) or from third-party cells resulted in dramatically enhanced responses, whereas incorporation of class II proteins had no effect. The receptor that mediates recognition of conserved class I determinants has not been identified, but results of antibody blocking studies are consistent with the Lyt-2/3 complex of CTL having this role. Thus, class I proteins on Ag-bearing cells can have two distinct roles in T cell activation, one involving recognition of polymorphic determinants by the Ag-specific receptor and the other involving recognition of conserved determinants.  相似文献   

19.
Class II-specific allogeneic cytolytic T lymphocytes (CTL) consist of two types of cells, i.e., Lyt-2+L3T4- and Lyt-2-L3T4 T cells. The Lyt-2+L3T4- class II-specific CTL population constitutes a conspicuous exception to the general correlation observed between the class of major histocompatibility complex antigen recognized and the type of accessory molecules expressed by T cells. In order to examine the specificity of such an exceptional T cell population, CTL clones were established by limiting dilution of a bulk CTL line developed in an I region incompatible combination of mouse strains, B10.QBR anti-B10.MBR. These CTL lines showed single genetic specificity indicating their clonal nature with respect to CTL activities. Lyt-2+L3T4- (2+4-), Lyt-2-L3T4+ (2-4+) and Lyt-2-L3T4- (2-4-) clones were obtained. Among many CTL clones showing a spectrum of genetic specificities, 2+4- and 2-4+ clones with apparent I-Ak-specificity, were studied further and four lines of evidence confirmed their class II specificity: 1) genes encoding the target antigen for these CTL clones were mapped within the I-A subregion by simple genetics; 2) an I-Ak-specific monoclonal antibody readily blocked specific cytolysis by these clones; 3) the clones failed to react with cells expressing mutated I-Ak antigens; and 4) a B cell tumor transfected with alpha- and beta-chain genes of I-Ak was specifically lysed by these CTL clones. These data therefore establish the existence of Lyt-2+ CTL with genuine class II specificity. All 2-4+ CTL were sensitive to the blocking effect of an antibody to L3T4, whereas none of the 2+4- class II-specific CTL were sensitive to blocking by an anti-Lyt-2 antibody, indicating that class II-specific CTL with "wrong phenotype" is not dependent on the function of the accessory molecule. Besides true class II-specific CTL clones, 2+4- clones with a spectrum of genetic specificities were obtained, including clones recognizing a combination of an I-Ak product and the Kb molecule. Two 2-4- clones were also specific for the combination of Kb + I-Ak. These clones most likely recognize an allogeneic class II antigen in the context of a class I antigen and therefore would more appropriately be included in the class I-restricted T cell population.  相似文献   

20.
Inoculation of 10(8) unirradiated, minor H antigen-incompatible spleen cells into recipients leads to a failure of the induction of cytolytic T lymphocytes (CTL) specific for these antigens. In contrast, a strong CTL response against minor H antigens is obtained when the inoculated cells are irradiated or treated with Thy-1-, Lyt-1- or Lyt-2-specific antibody and complement. Thus the failure of CTL induction is probably due to suppression mediated by radiosensitive, Lyt-1+2+ T cells in the immunizing inoculum. We demonstrate here that the inoculated cells must share class I MHC loci with the recipients for the suppression to occur. Thus, the interaction between the suppressor T (Ts) cells and their targets (presumably the CTL precursors) is restricted by class I molecules. A disparity at class II loci between the inoculated cells and the recipients overrides the class I-restricted suppression, possibly through a positive allogeneic effect. The simplest interpretation of the class I restriction of Ts cell-target cell interaction is that the CTL precursors recognize minor H antigens in the context of class I molecules on the surface of the Ts cells themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号