首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
Determination of glycogen with the anthrone reagent   总被引:9,自引:0,他引:9  
  相似文献   

4.
5.
6.
Summary The exchange of protons and deuterons by phosphoglucoisomerase during the single passage conversion of D-[2-13C,1-2H]fructose 6-phosphate in H2O or D-[2-13C]fructose 6-phosphate in D2O to D-[2-13C]glucose 6-phosphate, as coupled with the further generation of 6-phospho-D-[2-13C]gluconate in the presence of excess glucose-6-phosphate dehydrogenase was investigated by 13C NMR spectroscopy of the latter metabolite. In H2O, the intramolecular deuteron transfer from the C1 of D-fructose 6-phosphate to the C2 of D-glucose 6-phosphate amounted to 65%, a value only slightly lower than the 72% intramolecular proton transfer in D2O. Both percentages, especially the latter one, were lower than those previously recorded during the single passage conversion of D-[1-13C,2-2H]glucose 6-phosphate in H2O or D-[1-13C]glucose 6-phosphate in D2O to D-fructose 6-phosphate and then to D-fructose 1,6-bisphosphate. These differences indicate that the sequence of interactions between the hexose esters and the binding sites of phosphoglucoisomerase is not strictly in mirror image during, respectively, the conversion of the aldose phosphate to ketose phosphate and the opposite process.  相似文献   

7.
8.
The analogue of fructose 1,6-bisphosphate in which the phosphate group, -O-PO3H2, on C-6 is replaced by the phosphonomethyl group, -CH2-PO3H2, was made enzymically from the corresponding analogue of 3-phosphoglycerate. It was a substrate for aldolase, which was used to form it, but not for fructose 1,6-bisphosphatase. It was hydrolysed chemically to yield the corresponding analogue of fructose 6-phosphate [i.e. 6-deoxy-6-(phosphonomethyl)-D-fructose, or, more strictly, 6,7-dideoxy-7-phosphono-D-arabino-2-heptulose]. This proved to be a substrate for the sequential actions of glucose 6-phosphate isomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Thus seven out of the nine enzymes of the glycolytic and pentose phosphate pathways so far tested catalyse the reactions of the phosphonomethyl isosteres of their substrates.  相似文献   

9.
The isotopic discrimination, diastereotopic specificity and intramolecular hydrogen transfer characterizing the reaction catalyzed by phosphomannoisomerase are examined. During the monodirectional conversion of D-[2-3H]mannose 6-phosphate to D-fructose 6-phosphate and D-fructose 1,6-bisphosphate, the reaction velocity is one order of magnitude lower than with D-[U-14C]mannose 6-phosphate and little tritium (less than 6%) is transferred intramolecularly. Inorganic phosphate decreases the reaction velocity but favours the intramolecular transfer of tritium. Likewise, when D-[1-3H]fructose 6-phosphate prepared from D-[1-3H]glucose is exposed solely to phosphomannoisomerase, the generation of tritiated metabolites is virtually restricted to 3H2O and occurs at a much lower rate than the production of D-[U-14C]mannose 6-phosphate from D-[U-14C]fructose 6-phosphate. However, no 3H2O is formed when D-[1-3H]fructose 6-phosphate generated from D-[2-3H]glucose is exposed to phosphomannoisomerase, indicating that the diastereotopic specificity of the latter enzyme represents a mirror image of that of phosphoglucoisomerase. Advantage is taken of such a contrasting enzymic behaviour to assess the back-and-forth flow through the reaction catalyzed by phosphomannoisomerase in intact cells exposed to D-[1-3H]glucose, D-[5-3H]glucose or D-[6-3H]glucose. Relative to the rate of glycolysis, this back-and-forth flow amounted to approx. 4% in human erythrocytes and rat parotid cells, 9% in tumoral cells of the RINm5F line and 47% in rat pancreatic islets.  相似文献   

10.
Gas chromatography of sugar phosphates and sugar nucleotides   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
Thermodynamics of the enzyme-catalyzed (alkaline phosphatase, EC 3.1.3.1) hydrolysis of glucose 6-phosphate, mannose 6-phosphate, fructose 6-phosphate, ribose 5-phosphate, and ribulose 5-phosphate have been investigated using microcalorimetry and, for the hydrolysis of fructose 6-phosphate, chemical equilibrium measurements. Results of these measurements for the processes sugar phosphate2- (aqueous) + H2O (liquid) = sugar (aqueous) + HPO2++-(4) (aqueous) at 25 degrees C follow: delta Ho = 0.91 +/- 0.35 kJ.mol-1 and delta Cop = -48 +/- 18 J.mol-1.K-1 for glucose 6-phosphate; delta Ho = 1.40 +/- 0.31 kJ.mol-1 and delta Cop = -46 +/- 11 J.mol-1.dK-1 for mannose 6-phosphate; delta Go = -13.70 +/- 0.28 kJ.mol-1, delta Ho = -7.61 +/- 0.68 kJ.mol-1, and delta Cop = -28 +/- 42 J.mol-1.K-1 for fructose 6-phosphate; delta Ho = -5.69 +/- 0.52 kJ.mol-1 and delta Cop = -63 +/- 37 J.mol-1.K-1 for ribose 5-phosphate; and delta Ho = -12.43 +/- 0.45 kJ.mol-1 and delta Cop = -84 +/- 30 J.mol-1.K-1 for the hydrolysis of ribulose 5-phosphate. The standard state is the hypothetical ideal solution of unit molality. Estimates are made for the equilibrium constants for the hydrolysis of ribose and ribulose 5-phosphates. The effects of pH, magnesium ion concentration, and ionic strength on the thermodynamics of these reactions are considered.  相似文献   

13.
14.
Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2,4-diphosphates and aldohexose-2,4,6-triphosphates. The reaction proceeds mainly through racemic erythrose-2,4-phosphate, and terminates with a large fraction of racemic altrose-2,4,6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 µm; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2,4,-diphosphates also form, but only as a small fraction of the hexose-2,4,6-phosphates.This paper represents communication No. 15 in the series, Chemistry of -Aminonitrile from the Zürich group; for communication No. 14 see Pitsch and Eschenmoser (1994).  相似文献   

15.
16.
Several methods were used to study the source of energy in the uptake of hexose phosphates by Escherichia coli K12. The uptake was sensitive to inhibition by agents that affect electron transport, such as lack of oxygen, cyanide, and heptylhydroxyquinoline-N-oxide, and by agents that affect ATP utilization, such as dicyclohexylcarbodiimide and arsenate. It was also sensitive to uncouplers in the presence of absence of oxygen. The strain of E. coli used extruded protons during respiration. Uncer anaerobic conditions, the uptake of approximately 1 eg to H+ per glucose 6-phosphate. These observations are consistent with a chemiosmotic mechanism of genergized glucose 6-phosphate uptake. The rate of glucose 6-phosphate uptake was maximal in KC1, but was also stimulated by MgC12 or CaC12. Inhibition by A217, a nigericin-like antibiotic, was prevented by K+ whereas valinomycin and gramicidin inhibited in the presence or absence of K+.  相似文献   

17.
18.
Summary The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of deuterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.  相似文献   

19.
The mechanism of the radiation-induced dephosphorylation reaction was investigated by studying the γ-radiolysis of 10mM solutions of D-glucopyranosyl phosphate, D-glucose 6-phosphate (Glc-6-P), and d-ribose 5-phosphate (Rib-5-P). Dephosphorylation occurred with OH-radical participation, since G(H3PO4) values for nitrous oxide-saturated solutions were 4.1, 1.7, and 2.3, and for nitrogen-saturated solutions 2.6, 1.1, and 1.6, respectively. The formation of phosphate-free compounds accompanied the release of inorganic phosphate. The main, neutral products of the radiolysis of Glc-6-P were 6-deoxyhexos-5-ulose (G = 0.2) and D-gluco-hexodialdose (G = 0.3). Irradiation of Rib-5-P gave ribo-pentodialdose and 5-deoxypentos-4-ulose as the main, neutral products. A scheme for the dephosphorylation process is proposed.  相似文献   

20.
Thermodynamics of isomerization reactions involving sugar phosphates have been studied using heat-conduction microcalorimetry. For the process glucose 6-phosphate2-(aqueous) = fructose 6-phosphate2- (aqueous), K = 0.285 +/- 0.004, delta Go = 3.11 +/- 0.04 kJ.mol-1, delta Ho = 11.7 +/- 0.2 kJ.mol-1, and delta Cop = 44 +/- 11 J.mol-1.K-1 at 298.15 K. For the process mannose 6-phosphate2- (aqueous) = fructose 6-phosphate2- (aqueous), K = 0.99 +/- 0.05, delta Go = 0.025 +/- 0.13 kJ.mol-1, delta Ho = 8.46 +/- 0.2 kJ.mol-1, and delta Cop = 38 +/- 25 J.mol-1.K-1 at 298.15 K. The standard state is the hypothetical ideal solution of unit molality. An approximate result (-14 +/- 5 kJ.mol-1) was obtained for the enthalpy of isomerization of ribulose 5-phosphate (aqueous) to ribose 5-phosphate (aqueous). The data from the literature on isomerization reactions involving sugar phosphates have been summarized, adjusted to a common reference state, and examined for trends and relationships to each other and to other thermodynamic measurements. Estimates are made for thermochemical parameters to predict the state of equilibrium of the several isomerizations considered herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号