首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新生血管生成是绝大多数肿瘤得以生长和转移的必要前提。所以 ,通过抑制肿瘤血管生成来抑制肿瘤是非常有前途的一种方法 ,有望发展成为一种新型的癌症疗法。主要可以分为两大类 :一是通过抑制促血管生成信号或扩大抑制血管生成因子的作用来干扰肿瘤新生血管的形成过程 ,这领域的广泛研究已经发现了一系列促血管生成因子及其抑制剂和血管生成抑制因子 ;二是利用肿瘤血管与正常血管的差别来携带杀伤性药物直接特异性破坏已形成的肿瘤血管 ;另外 ,内皮细胞及其前体细胞制成疫苗也可起到直接杀伤作用。到目前为止 ,虽然很多抑制肿瘤血管的药物已经被用于临床试验 ,但结果往往不尽如人意 ,从长远来看 ,需要更有效的治疗方法。包括抗血管基因治疗策略 ,靶向药物导入系统的研究 ,以及抗血管生成药物和免疫疗法、化疗和放射治疗的联合应用都在探讨中。随着肿瘤模型评估系统的发展 ,抗血管治疗肿瘤的方法在不久的将来一定会广泛进入临床应用。  相似文献   

2.
Thrombospondins-1 and -2 (TSP-1, TSP-2) are matricellular glycoproteins with potent antiangiogenic activity. We have previously shown that the antiangiogenic activity of TSP-1 is mediated by the interaction of the type I repeats (TSR) with the receptor CD36, although other domains of TSP-1 have also been implicated. We now show that the antiangiogenic activity of TSP-2, which contains three TSRs but, unlike TSP-1, lacks the capacity to activate TGF-beta, is similarly dependent on CD36. Using the corneal pocket assay we found that TSP-2 did not inhibit bFGF-induced angiogenesis in CD36 null mice. We then demonstrated that (125)[I]-TSP-2 bound to murine macrophages and that binding was diminished by 70% by anti-CD36 antibody or by using cells from CD36 null animals. Solid-phase binding studies revealed that (125)[I]-TSP-2 bound to CD36/glutathione-S-transferase (GST) fusion proteins encoding the region spanning amino acids 93-120, but not amino acids 298-439. This 93-120 amino acid region, previously identified as the TSP-1 binding site, is homologous to domains on other TSP binding proteins, such as LIMP-2 and histidine-rich glycoprotein (HRGP). Finally, we showed with an immunoabsorbent binding assay that TSP-2 bound HRGP with high affinity and that HRGP blocked the antiangiogenic activity of TSP-2, acting like a "decoy" receptor. These data suggest that modulation of the TSR/CD36 system may play an important role in the regulation of the angiogenic "switch," and may provide a target for therapeutic interventions.  相似文献   

3.
Angiogenesis, the formation of new blood vessels from preexisting vessels, is a highly complex process. It is regulated in a finely-tuned manner by numerous molecules including not only soluble growth factors such as vascular endothelial growth factor and several other growth factors, but also a diverse set of insoluble molecules, particularly collagenous and non-collagenous matrix constituents. In this review we have focused on the role and potential mechanisms of a multifunctional small leucine-rich proteoglycan decorin in angiogenesis. Depending on the cellular and molecular microenvironment where angiogenesis occurs, decorin can exhibit either a proangiogenic or an antiangiogenic activity. Nevertheless, in tumorigenesis-associated angiogenesis and in various inflammatory processes, particularly foreign body reactions and scarring, decorin exhibits an antiangiogenic activity, thus providing a potential basis for the development of decorin-based therapies in these pathological situations.  相似文献   

4.
Angiogenesis inhibition has been proposed as a general strategy to fight cancer. However, in spite of the promising preclinical results, a first generation of antiangiogenic compounds yielded poor results in clinical trials. Conceptual errors and mistakes in the design of trials and in the definition of clinical end-points could account for these negative results. In this context of discouraging results, a second generation of antiangiogenic therapies is showing positive results in phases II and III trials at the beginning of the twenty-first century. In fact, several combined treatments with conventional chemotherapy and antiangiogenic compounds have been recently approved. The discovery and pharmacological development of future generations of angiogenesis inhibitors will benefit from further advances in the understanding of the mechanisms involved in human angiogenesis. New styles of trials are necessary, to avoid missing potential therapeutic effects. Different clinical end-points, new surrogate biomarkers and methods of imaging will be helpful in this process. Real efficacy in clinical trials may come with the combined use of antiangiogenic agents with conventional chemotherapy or radiotherapy, and combinations of several antiangiogenic compounds with different mechanisms of action. Finally, the existing antiangiogenic strategies should include other approaches such as vascular targeting or angioprevention.  相似文献   

5.
A novel series of 17-modified and 2,17-modified analogs of 2-methoxyestradiol (2ME2) were synthesized and characterized. These analogs were designed to retain or potentiate the biological activities of 2ME2 and have diminished metabolic liability. The analogs were evaluated for antiproliferative activity against MDA-MB-231 breast tumor cells, antiangiogenic activity in HUVEC, and estrogenic activity on MCF-7 cell proliferation. Several analogs were evaluated for metabolic stability in human liver microsomes and in vivo in a rat cassette dosing model. This study lead to several 17-modified analogs of 2ME2 that have similar or improved antiproliferative and antiangiogenic activity, lack estrogenic properties and have improved metabolic stability compared to 2ME2.  相似文献   

6.
The formation of a 'tumor-associated vasculature', a process referred to as tumor angiogenesis, is a stromal reaction essential for tumor progression. Inhibition of tumor angiogenesis suppresses tumor growth in many experimental models, thereby indicating that tumor-associated vasculature may be a relevant target to inhibit tumor progression. Among the antiangiogenic molecules reported to date many are peptides and proteins. They include cytokines, chemokines, antibodies to vascular growth factors and growth factor receptors, soluble receptors, fragments derived from extracellular matrix proteins and small synthetic peptides. The polypeptide tumor necrosis factor (TNF, Beromun) was the first drug registered for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of the tumor vasculature. More recently, bevacizumab (Avastin), an antibody against vascular endothelial growth factor (VEGF)-A, was approved as the first systemic antiangiogenic drug that had a significant impact on the survival of patients with advanced colorectal cancer, in combination with chemotherapy. Several additional peptides and antibodies with antiangiogenic activity are currently tested in clinical trials for their therapeutic efficacy. Thus, peptides, polypeptides and antibodies are emerging as leading molecules among the plethora of compounds with antiangiogenic activity. In this article, we will review some of these molecules and discuss their mechanism of action and their potential therapeutic use as anticancer agents in humans.  相似文献   

7.
Sharks: A Potential Source of Antiangiogenic Factors and Tumor Treatments   总被引:3,自引:0,他引:3  
Since angiogenesis is a key feature of tumor growth, inhibiting this process is one way to treat cancer. Cartilage is a natural source of material with strong antiangiogenic activity. This report reviews knowledge of the anticancer properties of shark cartilage and clinical information on drugs such as neovastat and squalamine. Because their entire endoskeleton is composed of cartilage, sharks are thought to be an ideal source of angiogenic and tumor growth inhibitors. Shark cartilage extract has shown antiangiogenic and antitumor activities in animals and humans. The oral administration of cartilage extract was efficacious in reducing angiogenesis. Purified antiangiogenic factors from shark cartilage, such as U-995 and neovastat (AE-941), also showed antiangiogenic and antitumor activity. AE-941 is under phase III clinical investigation. Squalamine, a low molecular weight aminosterol, showed strong antitumor activity when combined with chemotherapeutic materials. The angiogenic tissue inhibitor of metalloprotease 3 (TIMP-3) and tumor suppressor protein (snm23) genes from shark cartilage were cloned and characterized.  相似文献   

8.
R-(-)-β-O-methylsynephrine (OMe-Syn) is a naturally occurring small molecule that was identified in a previous screen as an inhibitor of angiogenesis. In this study, we conducted two animal model experiments to investigate the in vivo antiangiogenic activity of OMe-Syn. OMe-Syn significantly inhibited angiogenesis in a transgenic zebrafish model as well as in a mouse retinopathy model. To elucidate the underlying mechanisms responsible for the antiangiogenic activity of OMe-Syn, we used phage display cloning to isolate potential OMe-Syn binding proteins from human cDNA libraries and identified nucleoporin 153 kDa (NUP153) as a primary binding partner of OMe-Syn. OMe-Syn competitively inhibited mRNA binding to the RNA-binding domain of NUP153. Furthermore, depletion of NUP153 in human cells or zebrafish embryos led to an inhibition of angiogenesis, in a manner similar to that seen in response to OMe-Syn treatment. These data suggest that OMe-Syn is a promising candidate for the development of a novel antiangiogenic agent and that inhibition of NUP153 is possibly responsible for the antiangiogenic activity of OMe-Syn.  相似文献   

9.
The present article overviews the role of bisphosphonates for the treatment and prevention of bone metastases and their antiangiogenic effects and antitumoral activity. The skeleton is a frequent and clinically relevant site of metastasis in cancer patients. The major events related to bone metastases include bone pain, bone loss, hypercalcemia, spinal cord compression, and fractures. On the basis of their radiographic features, bone metastases are classified as osteoblastic, osteoclastic, or mixed. The primary goals of treatment of bone metastases are reduction of the risk of pathological fractures and other skeletal-related events, and pain control. Bisphosphonates are used to prevent pathological fractures by inhibition of osteoclasts. Recent studies suggest that bisphosphonates have some direct antitumoral activity, mainly mediated through the blockade of angiogenic pathways. Further clinical studies are needed to determine the optimal treatment duration, timing and schedule of bisphosphonates, assess their role as adjuvant therapy for the prevention of bone metastases, and establish their antiangiogenic activity in association with standard cytotoxic and hormonal drugs for treatment of patients with advanced disease.  相似文献   

10.
Angiogenesis and vasculogenesis are regulated in large part by several different growth factors and their associated receptor tyrosine kinases (RTKs). Foremost among these is the vascular endothelial growth factor (VEGF) family including VEGF receptor (VEGFR)-2 and -1. VEGFR ligand binding and biological activity are regulated at many levels, one of which is by a soluble, circulating form of VEGFR-1 (sVEGFR-1). This sVEGFR-1 can act as a competitive inhibitor of its ligand, serve as a possible biomarker, and play important roles in cancer and other diseases such as preeclampsia. Recombinant forms of sVEGFR-2 have been shown to have antiangiogenic activity, but a naturally occurring sVEGFR-2 has not been described previously. Here, we report such an entity. Having a molecular weight of approximately 160 kDa, sVEGFR-2 can be detected in mouse and human plasma with several different monoclonal and polyclonal anti-VEGFR-2 antibodies using both ELISA and immunoprecipitation techniques. In vitro studies have determined that the sVEGFR-2 fragment can be found in the conditioned media of mouse and human endothelial cells, thus suggesting that it may be secreted, similar to sVEGFR-1, or proteolytically cleaved from the cell. Potential biological activity of this protein was inferred from experiments in which mouse sVEGFR-2 could bind to VEGF-coated plates. Similar to sVEGFR-1 and other soluble circulating RTKs, sVEGFR-2 may have regulatory consequences with respect to VEGF-mediated angiogenesis as well as potential to serve as a quantitative biomarker of angiogenesis and antiangiogenic drug activity, particularly for drugs that target VEGF or VEGFR-2.  相似文献   

11.
16K prolactin (PRL) is the name given to the 16-kDa N-terminal fragment obtained by proteolysis of rat PRL by tissue extracts or cell lysates, in which cathepsin D was identified as the candidate protease. Based on its antiangiogenic activity, 16K PRL is potentially a physiological inhibitor of tumor growth. Full-length human PRL (hPRL) was reported to be resistant to cathepsin D, suggesting that antiangiogenic 16K PRL may be physiologically irrelevant in humans. In this study, we show that hPRL can be cleaved by cathepsin D or mammary cell extracts under the same conditions as described earlier for rat PRL, although with lower efficiency. In contrast to the rat hormone, hPRL proteolysis generates three 16K-like fragments, which were identified by N-terminal sequencing and mass spectrometry as corresponding to amino acids 1-132 (15 kDa), 1-147 (16.5 kDa), and 1-150 (17 kDa). Biochemical and mutagenetic studies showed that the species-specific digestion pattern is due to subtle differences in primary and tertiary structures of rat and human hormones. The antiangiogenic activity of N-terminal hPRL fragments was assessed by the inhibition of growth factor-induced thymidine uptake and MAPK activation in bovine umbilical endothelial cells. Finally, an N-terminal hPRL fragment comigrating with the proteolytic 17-kDa fragment was identified in human pituitary adenomas, suggesting that the physiological relevance of antiangiogenic N-terminal hPRL fragments needs to be reevaluated in humans.  相似文献   

12.
Inhibition of angiogenesis-promoting factors such as fibroblast growth factors is considered to be a potential procedure for inhibiting solid tumor growth. Although several peptide-based inhibitors are currently under study, the development of antiangiogenic compounds of small molecular size is a pharmacological goal of considerable interest. We have already shown that certain naphthalene sulfonates constitute minimal functional substitutes of the antiangiogenic compounds of the suramin and suradista family. Using those data as a lead, we have carried out a rational search for new angiogenesis inhibitors that could provide new pharmacological insights for the development of antiangiogenic treatments. The results of the study strongly underline the relevance of the stereochemistry for an efficient inhibition of acidic fibroblast growth factor mitogenic activity by the naphthalene sulfonate family and allow us to formulate rules to aid in searching for new inhibitors and pharmaceutical developments. To provide further leads for such developments and acquire a detailed insight into the basis of the inhibitory activity of the naphthalene sulfonate derivatives, we solved the three-dimensional structure of acidic fibroblast growth factor complexed to 5-amino-2-naphthalenesulfonate, the most pharmacologically promising of the identified inhibitors. The structure shows that binding of this compound would hamper the interaction of acidic fibroblast growth factor with the different components of the cell membrane mitogenesis-triggering complex.  相似文献   

13.
Methods to prepare pure, bioactive recombinant human vascular endothelial growth inhibitor (rhVEGI), a potent inhibitor of angiogenesis potentially applicable in antiangiogenic cancer therapy, are in urgent demand for preclinical investigation as well as future clinical trials of the protein. Here, we report expression and purification of rhVEGI‐192, a recombinant VEGI isoform, comparatively using host strains BL21 (DE3) pLysS and Origami B (DE3) with IPTG‐induction and autoinduction techniques. Our study identified that a combined use of Origami B (DE3) strain and autoinduction expression system gave rise to a high yield of purified rhVEGI‐192 at 105.38 mg/L culture by immobilized‐metal affinity chromatography on Ni‐NTA column. The antiangiogenic activity was effectively restored after the insoluble fractions being dissolved in 8M urea and subsequently subjected to a gradient‐dialysis refolding process. Functional tests demonstrated that the purified rhVEGI‐192 potently inhibited endothelial growth, induced endothelial apoptosis and suppressed neovascularization in chicken chorioallantoic membrane, indicating that the developed method allows preparation of rhVEGI‐192 with high yield, solubility, and bioactivity. Most importantly, our study also demonstrates that VEGI‐192 is capable of forming polymeric structure, which is possibly required for its antiangiogenic activity.  相似文献   

14.
The formation of new vessels, a process referred to as neoangiogenesis, is one of the key pathophysiological mechanisms in the development and progression of cancer. It contributes to tumour growth and dissemination of neoplastic cells and can determine response or resistance to anticancer therapies. It involves different signaling pathways including the vascular endothelial growth factor (VEGF) pathway and integrins, which are also preferred targets for the development of antiangiogenic therapies. Changes in the microvasculature induced by antiangiogenic treatments occur before morphological changes can be detected with conventional imaging approaches. The development of molecular tools enabling an assessment of these targets before initiating therapy, or early detection of response or recurrence during or following treatment is essential for the close monitoring of antiangiogenic treatments. These outstanding needs call for the development of specific probes enabling the characterization of the molecules and pathways involved. This review summarizes the major signaling pathway involved in promoting tumor neoangiogenes is, the different radiotracers recently developed in preclinical and clinical settings, as well as their potential use in humans in order to improve the management of patients treated with antiangiogenic treatments.  相似文献   

15.
Endostatin has demonstrated potent antiangiogenic and antitumor activity in mouse models. We have investigated the ex vivo rat aortic ring assay and a human vein model to assess the biological activity of murine and human endostatin. Rat aortic rings were exposed to recombinant murine endostatin (Spodoptera frugipera; Calbiochem, San Diego, CA) or recombinant human endostatin (Pichia pastoris; EntreMed, Rockville, MD). After 5 days, murine endostatin (500 microgram/ml) demonstrated inhibition of microvessel outgrowth with dose-dependent effects (down to 16 microgram/ml). No significant inhibition was observed with human endostatin in the rat assay. Human endostatin at 250 and 500 microgram/ml inhibited outgrowths from human saphenous vein rings after a 14-day incubation. Electron microscopy assessed the formation of basal lamina, confirming that the microvessels were progenitors of patent vessels. Immunostaining for Factor VIII or CD34 demonstrated that the microvessel cells were endothelial. BrdU incorporation assays supported the presence of proliferating endothelial cells, correlating with neovascularization from the aortic wall. We conclude that the rat aortic ring assay confirms the antiangiogenic activity of murine but not human endostatin, suggesting that the model may have species specificity. However, the human form shows biological activity against human vascular tissue.  相似文献   

16.
Angiogenesis is now known to play an important role in both growth and metastasis of lung cancer. The intense interest in angiogenesis has led to a re-examination of the activity of many established cytotoxic agents. Some results of recent experimental studies have suggested that frequent administration of certain cytotoxic agents at low doses increases the antiangiogenic activity of the drugs. In the present study, we investigated the efficacy of the combination of low-dose cyclophosphamide and ginsenoside Rg3 for the antiangiogenic effect on Lewis lung carcinoma. Our findings suggest that continuous low-dose regimen of CTX increases the efficacy of targeting the tumor microvasculature, which produces therapeutic activity with decreased toxicity. The effects of the low-dose schedule of CTX may be further enhanced by concurrent administration of angiogenic inhibitor ginsenoside Rg3. As an antiangiogenic method, this regimen has the advantage of a reduced susceptibility to drug resistance mechanisms and improved animal survival.  相似文献   

17.
The inhibition of angiogenesis is regarded as a promising avenue for cancer treatment. Although some antiangiogenic compounds are in the process of development and testing, these often prove ineffective in vivo, therefore the search for new inhibitors is critical. We have recently identified a ten amino acid fragment of the Alzheimer Aβ peptide that is anti-angiogenic both in vitro and in vivo. In the present study, we investigated the antitumoral potential of this decapeptide using human MCF-7 breast carcinoma xenografts in nude mice. We observed that this decapeptide was able to suppress MCF-7 tumor growth more potently than the antiestrogen tamoxifen. Inhibition of tumor vascularization as determined by PECAM-1 immunostaining and decreased tumor cell proliferation as determined by Ki67 immunostaining were observed following treatment with the Aβ fragment. In vitro, this peptide had no direct impact on MCF-7 tumor cell proliferation and survival suggesting that the inhibition of tumor growth and tumor cell proliferation observed in vivo is related to the antiangiogenic activity of the peptide. Taken together these data suggest that this short Aβ derivative peptide may constitute a new antitumoral agent.  相似文献   

18.

Background

Angiogenesis, the formation of new blood vessels, has become an important target in cancer therapy. Angiogenesis plays an important role in tumor growth and metastasis. Koetjapic acid (KA) is a seco-A-ring oleanene triterpene isolated from S. koetjape. The solvent extract of this plant species was shown previously to have strong antiangiogenic activity; however the active ingredient(s) that conferred the biological activity and the mode of action was not established. Given the high concentration of KA in S. koetjape, an attempt has been made in this study to investigate the antiangiogenic properties of KA.

Results

Treatment with 10-50 μg/ml KA resulted in dose dependent inhibition of new blood vessels growth in ex vivo rat aortic ring assay. KA was found to be non-cytotoxic against HUVECs with IC50 40.97 ± 0.37 μg/ml. KA inhibited major angiogenesis process steps, endothelial cell migration and differentiation as well as VEGF expression.

Conclusions

The non-cytotoxic compound, KA, may be a potent antiangiogenic agent; its activity may be attributed to inhibition of endothelial cells migration and differentiation as well VEGF suppression.  相似文献   

19.
Cathepsins are lysosomal enzymes that were shown to release the antiangiogenic fragments 16K prolactin (PRL), endostatin, and angiostatin by processing precursors at acidic pH in vitro. However, the physiological relevance of these findings is questionable because the neutral pH of physiological fluids is not compatible with the acidic conditions required for the proteolytic activity of these enzymes. Here we show that cathepsin D secreted from various tissues is able to process PRL into 16K PRL outside the cell. To specifically target extracellular proteolysis, we used tissues from PRL receptor-deficient mice, which are unable to internalize PRL. As assessed by the use of specific inhibitors of proton extruders, we show that the proteolytic activity of cathepsin D requires local acid secretion driven by Na(+)/H(+) exchangers and H(+)/ATPase. Although it is usually assumed that cathepsin-mediated generation of antiangiogenic peptides occurs in the moderately acidic pericellular milieu found in malignant tumors, we propose a new mechanism explaining the extracellular activity of this acidic protease under physiological pH. Our data support the concept that secreted lysosomal enzymes could be involved in the maintenance of angiogenesis dormancy via the generation of active antiangiogenic peptides in nonpathological contexts.  相似文献   

20.
Several lines of evidence support the beneficial effect of tocotrienol (T3; an unsaturated vitamin E) on inhibition of tumor development. Many factors, including decrease in oxidative stress and modulation of cell signaling pathways in tumor and endothelial cells, have been implicated in such anticancer action of T3, while the in vivo potency and exact intracellular mechanisms for the anticancer properties of T3 remain not fully understood. We have hypothesized that the inhibitory effect of T3 on cancer may be attributable to the antiangiogenic activity of T3, and we found that T3 acts as a potent regulator of growth-factor-dependent signaling in endothelial cells and as an antiangiogenic agent minimizing tumor growth. In this work, we review the history and biological action (i.e., anticancer) of vitamin E and describe current research on the antiangiogenic effects of T3 and its mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号