首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken DNase was purified to apparent homogeneity from the pancreas extract. It showed two isoforms, A and B forms, on cation-exchange chromatography. On SDS-PAGE it was a 30-kDa protein. When analyzed on an electrospray-mass analyzer, form A showed a major mass peak of 30859, and form B, 30882. The enzyme was bound to concanavalin A, indicating its glycoprotein nature. The carbohydrate side chain could be removed by endoglycosidase F. Chicken DNase was activated by metal ions and for half-maximum activation, Mn2+ and Mg2+ required were 1 mM and 4 mM, respectively. The pH optimum was between 7 and 8 depending on the metal ions used. In the presence of Cu2+, it was almost completely inactivated by 0.1 M iodoacetate within 1 min. In the absence of Ca2+ at pH 8, chicken DNase resisted to the trypsin or -mercaptoethenol inactivation. When the purified enzyme was subjected to protein sequencing, 93% of the sequence was established. Based on the amino acid sequence, the cDNA of chicken DNase was amplified, cloned and sequenced. The cDNA sequence consisted of 1079 nucleotides in which 67 were of the 5-untranslated region and 166 of the 3 and, in the 5-untranslated region, two types of sequences occurred. The polypeptide chain of 282 amino acids, translated from the open reading frame, was composed of the mature protein of 262 amino acids and a putative signal peptide of 20 amino acids. As compared with mammalian DNases, chicken DNase had an overall 58 ± 61% sequence identity, one less potential N-glycosylation site, and one extra disulfide. The cDNA was cloned into the pET15b expression vector. When induced, active recombinant chicken DNase was expressed in Escherichia coli strain BL21(DE3)pLysS and was present in the insoluble fraction of cell lysates.  相似文献   

2.
Streptomyces coelicolor A3(2) produces several intra and extracellular enzymes with deoxyribonuclease activities. The examined N-terminal amino acid sequence of one of extracellular DNAases (TVTSVNVNGLL) and database search on S. coelicolor genome showed a significant homology to the putative secreted exodeoxyribonuclease. The corresponding gene (exoSc) was amplified, cloned, expressed in Escherichia coli, purified to homogeneity and characterized. Exonuclease recExoSc degraded chromosomal, linear dsDNA with 3'-overhang ends, linear ssDNA and did not digest linear dsDNA with blunt ends, supercoiled plasmid ds nor ssDNA. The substrate specificity of recExoSc was in the order of dsDNA>ssDNA>3'-dAMP. The purified recExoSc was not a metalloprotein and exhibited neither phosphodiesterase nor RNase activity. It acted as 3'-phosphomonoesterase only at 3'-dAMP as a substrate. The optimal temperature for its activity was 57 degrees C in Tris-HCl buffer at optimal pH=7.5 for either ssDNA or dsDNA substrates. It required a divalent cation (Mg(2+), Co(2+), Ca(2+)) and its activity was strongly inhibited in the presence of Zn(2+), Hg(2+), chelating agents or iodoacetate.  相似文献   

3.
Plasmodium lactate dehydrogenase (pLDH), owing to unique structural and kinetic properties, is a well known target for antimalarial compounds. To explore a new approach for high level soluble expression of Plasmodium falciparum lactate dehydrogenase (PfLDH) in E. coli, PfLDH encoding sequence was cloned into pQE-30 Xa vector. When transformed E. coli SG13009 cells were induced at 37 °C with 0.5 mM isopropyl β-d-thiogalactoside (IPTG) concentration, the protein was found to be exclusively associated with inclusion bodies. By reducing cell growth temperature to 15 °C and IPTG concentration to 0.25 mM, it was possible to get approximately 82% of expressed protein in soluble form. Recombinant PfLDH (rPfLDH) was purified to homogeneity yielding 18 mg of protein/litre culture. rPfLDH was found to be biologically active with specific activity of 453.8 μmol/min/mg. The enzyme exhibited characteristic reduced substrate inhibition and enhanced kcat [(3.2 ± 0.02) × 104] with 3-acetylpyridine adenine dinucleotide (APAD+). The procedure described in this study may provide a reliable and simple method for production of large quantities of soluble and biologically active PfLDH.  相似文献   

4.
Chondroitin lyases (or chondroitinases) are a family of enzymes that depolymerize chondroitin sulfate (CS) and dermatan sulfate (DS) galactosaminoglycans, which have gained prominence as important players in central nervous system biology. Two distinct chondroitinase ABC enzymes, cABCI and cABCII, were identified in Proteus vulgaris. Recently, cABCI was cloned, recombinantly expressed, and extensively characterized structurally and biochemically. This study focuses on recombinant expression, purification, biochemical characterization, and understanding the structure-function relationship of cABCII. The biochemical parameters for optimal activity and kinetic parameters associated with processing of various CS and DS substrates were determined. The profile of products formed by action of cABCII on different substrates was compared with product profile of cABCI. A homology-based structural model of cABCII and its complexes with CS oligosaccharides was constructed. This structural model provided molecular insights into the experimentally observed differences in the product profile of cABCII as compared with that of cABCI. The critical active site residues involved in the catalytic activity of cABCII identified based on the structural model were validated using site-directed mutagenesis and kinetic characterization of the mutants. The development of such a contaminant-free cABCII enzyme provides additional tools to decode the biologically important structure-function relationship of CS and DS galactosaminoglycans and offers novel therapeutic strategies for recovery after central nervous system injury.  相似文献   

5.
The SARS-CoV S glycoprotein: expression and functional characterization   总被引:36,自引:0,他引:36  
We have cloned, expressed, and characterized the full-length and various soluble fragments of the SARS-CoV (Tor2 isolate) S glycoprotein. Cells expressing S fused with receptor-expressing cells at neutral pH suggesting that the recombinant glycoprotein is functional, its membrane fusogenic activity does not require other viral proteins, and that low pH is not required for triggering membrane fusion; fusion was not observed at low receptor concentrations. S and its soluble ectodomain, S(e), were not cleaved to any significant degree. They ran at about 180-200kDa in SDS gels suggesting post-translational modifications as predicted by previous computer analysis and observed for other coronaviruses. Fragments containing the N-terminal amino acid residues 17-537 and 272-537 but not 17-276 bound specifically to Vero E6 cells and purified soluble receptor, ACE2, recently identified by M. Farzan and co-workers [Nature 426 (2003) 450-454]. Together with data for inhibition of binding by antibodies developed against peptides from S, these findings suggest that the receptor-binding domain is located between amino acid residues 303 and 537. These results also confirm that ACE2 is a functional receptor for the SARS virus and may help in the elucidation of the mechanisms of SARS-CoV entry and in the development of vaccine immunogens and entry inhibitors.  相似文献   

6.
Myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1.) is in Brassicaceae species such as Brassica napus and Sinapis alba encoded by two differentially expressed gene families, MA and MB, consisting of about 4 and 10 genes, respectively. Southern blot analysis showed that Arabidopsis thaliana contains three myrosinase genes. These genes were isolated from a genomic library and two of them, TGG1 and TGG2, were sequenced. They were found to be located in an inverted mode with their 3 ends 4.4 kb apart. Their organization was highly conserved with 12 exons and 11 short introns. Comparison of nucleotide sequences of TGG1 and TGG2 exons revealed an overall 75% similarity. In contrast, the overall nucleotide sequence similarity in introns was only 42%. In intron 1 the unusual 5 splice border GC was used. Phylogenetic analyses using both distance matrix and parsimony programs suggested that the Arabidopsis genes could not be grouped with either MA or MB genes. Consequently, these two gene families arose only after Arabidopsis had diverged from the other Brassicaceae species. In situ hybridization experiments showed that TGG1 and TGG2 expressing cells are present in leaf, sepal, petal, and gynoecium. In developing seeds, a few cells reacting with the TGG1 probe, but not with the TGG2 probe, were found indicating a partly different expression of these genes.  相似文献   

7.
We have identified a novel glycoprotein expressed exclusively in frog olfactory neuroepithelium, which we have named "olfactomedin". Olfactomedin is a 57-kDa glycoprotein recognized by seven monoclonal antibodies, previously shown to react solely with proteins of olfactory cilia preparations. It undergoes posttranslational modifications, including dimerization via intermolecular disulfides and attachment of complex carbohydrate moieties that contain N-acetylglucosamine and beta-D-galactoside sugars. Olfactomedin strongly binds to Ricinus communis agglutinin I and has been purified to homogeneity by lectin affinity chromatography. Polyclonal rabbit antiserum raised against purified olfactomedin confirmed that it is expressed only in olfactory tissue. Immunohistochemical studies at the light microscopic and electron microscopic level show that olfactomedin is localized in secretory granules of sustentacular cells, in acinar cells of olfactory glands, and at the mucociliary surface. The massive production of olfactomedin and its striking deposition at the chemosensory surface of the olfactory neuroepithelium suggest a role for this protein in chemoreception.  相似文献   

8.
提取了台湾家白蚁总RNA并反转录获得eDNA,PCR扩增出白蚁内切葡聚糖酶的基因,并将目的基因分别克隆到大肠杆菌和酿酒酵母载体中,构建了产内切-β-1,4-葡聚糖酶的基因工程菌。由于大肠杆菌会有少量的泄漏表达,而所用的酿酒酵母表达载体是本实验室构建带有INU信号肽的表达载体,故都可采用刚果红平板染色法筛选具有羧甲基纤维素酶(CMCase)活性的重组转化子。利用金属镍亲和层析对大肠杆菌表达的内切-β-1,4-葡聚糖酶进行纯化,CMC酶活检测显示纯化酶的最适温度和最适pH值分别为42℃、6.5;内切-β-1,4-葡聚糖酶的Vmax为0.071mg/mL·min,Km值为80.2712mg/mL。  相似文献   

9.
Arabinogalactan-proteins (AGPs) are a family of complex proteoglycans widely distributed in plants. The Arabidopsis rat1 mutant, previously characterized as resistant to Agrobacterium tumefaciens root transformation, is due to a mutation in the gene for the Lys-rich AGP, AtAGP17. We show that the phenotype of rat1 correlates with down-regulation of AGP17 in the root as a result of a T-DNA insertion into the promoter of AGP17. Complementation of rat1 plants by a floral dip method with either the wild-type AGP17 gene or cDNA can restore the plant to a wild-type phenotype in several independent transformants. Based on changes in PR1 gene expression and a decrease in free salicylic acid levels upon Agrobacterium infection, we suggest mechanisms by which AGP17 allows Agrobacterium rapidly to reduce the systemic acquired resistance response during the infection process.  相似文献   

10.
Recombinant glucagon was expressed inEscherichia coli as a fusion protein including the glucagon sequence therein as previously reported [Ishizakiet al. (1992).Appl. Microbiol. Biotechnol.36, 483–486]. We developed a large-scale method for the isolation and purification of recombinant glucagon. After cell disruption, the resultant pellets were solubilized with 2 M guanidine-HCl, to whichStaphylococcus aureus V8 protease had been added, and were digested into intermediates composed of 53- and 60-residue peptides containing the glucagon moiety. After the digestion came to an end, the solution was desalted, and the remaining V8 protease was allowed to resume digestion of the intermediates into glucagon, followed by partial purification by S-Sepharose and Sephacryl S-100 chromatographies. The glucagon obtained was found to be not less than 99.5% pure by analytical HPLC. One liter of culture produced about 180 mg of pure glucagon. The amino acid composition and the sequence agreed well with the theoretical values. Radioreceptor assay gave an affinity constant similar to that of pancreatic glucagon, and similar activities in cAMP production and glycogenolysis were also observed. Thus, the recombinant glucagon was confirmed to be biochemically identical with pancreatic glucagon.  相似文献   

11.
Carica papaya latex has been reported to contain lipolytic activity since 1925, nevertheless the efforts to isolate lipolytic enzymes directly from the latex matrix have been unsuccessful. Nowadays papaya genome is known and heterologous expression is an alternative to overcome this problem. Therefore, in this study, Carica papaya lipase 1 sequence (CpLip1) has been identified in papaya genome and for the first time, functionally expressed using Pichia pastoris as host system. Purification of the recombinant enzyme was carried out by affinity chromatography and reached a 7-fold purification factor with 25 U/mg in the purified fraction. Interestingly, homology modeling with lipases of known structure revealed homology with microbial lipases. The biochemical characterization of the purified enzyme shows that CpLip1 hydrolyzed preferentially long-chain triglycerides, it has an optimal pH of 8.5 and an optimal temperature of 35 °C. Finally, the study of its stability in organic solvents showed that, as many lipases, CpLip1 activity is affected in polar solvents. This contribution opens the possibility of studying the catalytic performance of pure CpLip1 in several reactions, and a better understanding of the role of lipases in Carica papaya.  相似文献   

12.
A number of strategies and protocols for the expression, purification and kinetic characterization of human caspases are described in the literature. We have systematically revised these protocols and present comprehensive optimized expression and purification protocols for caspase-1 to -9 as well as improved assay conditions for their reproducible kinetic characterization. Our studies on active site titration revealed that the reproducibility is strongly affected by the presence of DTT in the assay buffer. Furthermore, we observed that not all caspases show a linear relationship between enzymatic activity and protein concentration, which explains the discrepancy between published values of specific activities from different laboratories. Our broad kinetic analysis allows the conclusion that the dependency of caspase activities on protein concentration is an effect of concentration-dependent dimerization, which can also be influenced by kosmotropic salts. The protocol recommendations as an outcome of this work will yield higher reproducibility regarding expression and purification of human caspases and contribute to standardization of enzyme kinetic data.  相似文献   

13.
14.
15.
Wu S  Liu Y  Zhao G  Wang J  Sun W 《Biochimie》2006,88(3-4):237-244
A d-carbamoylase from Sinorhizobium morelens S-5 was purified and characterized. The enzyme was purified 189-fold to homogeneity with a yield of 19.1% by aqueous two-phase extraction and two steps of column chromatography. The enzyme is a homotetramer with a native molecular mass of 150 kDa and a subunit relative molecular mass of 38 kDa. The optimum pH and temperature of the enzyme were pH 7.0 and 60 degrees C, respectively. The enzyme showed high thermal and oxidative stability. It was found to have a K(m) of 3.76 mM and a V(max) of 383 U/mg for N-carbamoyl-d-p-hydroxyphenylglycine. The hyuC gene coding for this enzyme was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence encoded by the hyuC gene exhibited high homology to the amino acid sequences of d-carbamoylase from other sources. The gene could be highly expressed in Escherichia coli, and the product was purified to homogeneity from the recombinant. Our results show that the enzyme has great potential for industrial application.  相似文献   

16.
17.
Cofactor-independent phosphoglyceromutase (PGM) was purified to homogeneity from developing castor seed endosperm. Immunological characterization using monospecific antisera raised against this protein indicates that the enzyme is located in the cytosol and that there is no immunologically related polypeptide in the leucoplast from this tissue. Isolation and sequence determination of full-length cDNA clones for castor and tobacco PGM demonstrate that the protein is highly conserved in these plants and is closely related to the maize enzyme. A comparison of the amino acid sequence of peptides derived from Neurospora crassa PGM with the cofactor-independent enzyme from higher plants demonstrated that they are related and may have diverged from a common ancestral gene. The previously proposed relationship between higher-plant PGM and alkaline phosphatases is not supported by sequence analysis of the castor and tobacco enzymes. Expression of the single castor cytosolic PGM gene correlates well with other cytosolic glycolytic genes in developing and germinating castor seeds, and with the appearance of enzyme activity and PGM polypeptides in these tissues.Institute of Cell and Molecular Biology  相似文献   

18.
The S-adenosylhomocysteine hydrolase gene (sahase) was cloned from the Gram-positive soil bacterium Corynebacterium glutamicum (ATCC 13032) and sequenced. The sahase gene possesses an open reading frame, which consists of 1,434 nucleotides that encode 478 amino acids. The sahase gene from C. glutamicum was expressed in Escherichia coli Rosetta cells by inserting the 1,434-bp fragment downstream from the isopropyl-beta-D-thiogalactopyranoside-inducible promoter of the pET28a+ expression vector. The recombinant S-adenosylhomocysteine hydrolase from C. glutamicum (CgrSAHase) was purified efficiently by a two-step procedure, tangential ultrafiltration and affinity chromatography. The molecular weight of the CgrSAHase, estimated by gel filtration, was about 210 kDa, while sodium dodecyl sulfate polyacrylamide gel electrophoresis yielded a relative molecular mass of 52 +/- 1 kDa. The Michaelis-Menten constants for the natural substrates of the enzyme, S-adenosylhomocysteine (SAH), adenosine, and homocysteine, were determined to be 12, 1.4, and 40 microM, respectively. The overexpression of CgrSAHase was achieved at high level (>40 mg protein/g wet cells). Because of its high capacity to synthesize SAH, this enzyme is of high biotechnological interest.  相似文献   

19.
An extracellular acid phosphatase (EC 3.1.3.2) from crude culture filtrate of Penicillium chrysogenum was purified to homogeneity using high-performance ion-exchange chromatography and size-exclusion chromatography. SDS-PAGE of the purified enzyme exhibited a single stained band at an Mr of approx. 57,000. The mobility of the native enzyme indicated the Mr to be 50,000, implying that the active form is a monomer. The isoelectric point of the enzyme was estimated to be 6.2 by isoelectric focusing. Like acid phosphatases from several yeasts and fungi the Penicillium enzyme was a glycoprotein. Removal of carbohydrate resulted in a protein band with an Mr of 50,000 as estimated by SDS-PAGE, suggesting that 12% of the mass of the enzyme was carbohydrate. The enzyme was catalytically active at temperatures ranging from 20 degrees C to 65 degrees C with a maximum activity at 60 degrees C and the pH optimum was at 5.5. The Michaelis constant of the enzyme for p-nitrophenyl phosphate was 0.11 mM and it was inhibited competitively by inorganic phosphate (ki = 0.42 mM).  相似文献   

20.
A serine protease secreted by the haloalkaliphilic archaeon Natrialba magadii at the end of the exponential growth phase was isolated. This enzyme was purified 83 fold with a total yield of 25% by ethanol precipitation, affinity chromatography, and gel filtration. The native molecular mass of the enzyme determined by gel filtration was 45 kDa. Na. magadii extracellular protease was dependent on high salt concentrations for activity and stability, and it had an optimum temperature of 60°C in the presence of 1.5 M NaCl. The enzyme was stable and had a broad pH profile (6–12) with an optimum pH of 8–10 for azocasein hydrolysis. The protease was strongly inhibited by diisopropyl fluorophosphate (DFP), phenylmethyl sulfonylfluoride (PMSF), and chymostatin, indicating that it is a serine protease. It was sensitive to denaturing agents such as SDS, urea, and guanidine HCl and activated by thiol-containing reducing agents such as dithiotreitol (DTT) and 2-mercaptoethanol. This protease degraded casein and gelatin and showed substrate specificity for synthetic peptides containing Phe, Tyr, and Leu at the carboxyl terminus, showing that it has chymotrypsin-like activity. Na. magadii protease presented no cross-reactivity with polyclonal antibodies raised against the extracellular protease of Natronococcus occultus, suggesting that although these proteases share several biochemical traits, they might be antigenically unrelated. Received: October 1, 1999 / Accepted: February 1, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号