首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  To evaluate the antioxidant effect of carotenoids from Deinococcus radiodurans on protein.
Methods and Results:  Deinococcus radiodurans strain R1 (ATCC 13939) and its mutant strain R1ΔcrtB were used for this study. The total carotenoids (R1ex) from D. radiodurans were obtained by extraction with acetone/methanol (7 : 2, by vol), and their antioxidant activity was measured using the DPPH˙ (2,2-diphenyl-1-picrylhydrazyl) system. The protein oxidation level, in vitro and in the cell, was measured using the DNPH (2,4-dinitrophenyl hydrazine) method. The carotenoid extract R1ex scavenged 40·2% DPPH˙ radicals compared to β-carotene (31·7%) at a concentration of 0·5 mg ml−1. The intracellular level of protein oxidation in mutant R1ΔcrtB, which does not contain carotenoid, was 0·0212 mmol mg−1 protein which is significantly greater than that in the wild type (0·0169 mmol mg−1 protein) following the treatment with H2O2. The purified major carotenoid product (deinoxanthin) from the wild type showed a greater inhibition of oxidative damage in bovine serum albumin than lycopene or lutein.
Conclusions:  Carotenoids prevent protein oxidation and contribute to the resistance to cell damage in D. radiodurans .
Significance and Impact of the Study:  Our results provide the evidence that carotenoids can protect proteins in D. radiodurans against oxidative stress.  相似文献   

2.
Deinococcus radiodurans is highly resistant to reactive oxygen species (ROS). The antioxidant effect of carotenoids in D. radiodurans was investigated by using a targeted mutation of the phytoene synthase gene to block the carotenoid synthesis pathway and by evaluating the survival of cells under environmental stresses. The colorless mutant R1DeltacrtB of D. radiodurans failed to synthesize carotenoids, and was more sensitive to ionizing radiation, hydrogen peroxide, and desiccation than the wild type, suggesting that carotenoids in D. radiodurans help in combating environmental stresses. Chemiluminescence analyses showed that deinoxanthin, a major product in the carotenoid synthesis pathway, had significantly stronger scavenging ability on H2O2 and singlet oxygen than two carotenes (lycopene and beta-carotene) and two xanthophylls (zeaxanthin and lutein). Deinoxanthin also exhibited protective effect on DNA. Our findings suggest that the stronger antioxidant effect of deinoxanthin contribute to the resistance of D. radiodurans. The higher antioxidant effect of deinoxanthin may be attributed to its distinct chemical structure which has an extended conjugated double bonds and the presence of a hydroxyl group at C-1' position, compared with other tested carotenoids.  相似文献   

3.
Deinococcus radiodurans is highly resistant to reactive oxygen species (ROS). The antioxidant effect of carotenoids in D. radiodurans was investigated by using a targeted mutation of the phytoene synthase gene to block the carotenoid synthesis pathway and by evaluating the survival of cells under environmental stresses. The colorless mutant R1ΔcrtB of D. radiodurans failed to synthesize carotenoids, and was more sensitive to ionizing radiation, hydrogen peroxide, and desiccation than the wild type, suggesting that carotenoids in D. radiodurans help in combating environmental stresses. Chemiluminescence analyses showed that deinoxanthin, a major product in the carotenoid synthesis pathway, had significantly stronger scavenging ability on H2O2 and singlet oxygen than two carotenes (lycopene and β-carotene) and two xanthophylls (zeaxanthin and lutein). Deinoxanthin also exhibited protective effect on DNA. Our findings suggest that the stronger antioxidant effect of deinoxanthin contribute to the resistance of D. radiodurans. The higher antioxidant effect of deinoxanthin may be attributed to its distinct chemical structure which has an extended conjugated double bonds and the presence of a hydroxyl group at C-1′ position, compared with other tested carotenoids.  相似文献   

4.
We reported previously that the Rhodococcus erythropolis strain AN12 synthesizes the monocyclic carotenoids 4-keto -carotene and -carotene. We also identified a novel lycopene -monocyclase in this strain. Here we report the identification of the rest of the carotenoid synthesis genes in AN12. Two of these showed apparent homology to putative phytoene dehydrogenases. Analysis of Rhodococcus knockout mutants suggested that one of them ( crtI) encodes a phytoene dehydrogenase, whereas the other ( crtO) encodes a -carotene ketolase. Expression of the -carotene ketolase gene in an Escherichia coli strain which accumulates -carotene resulted in the production of canthaxanthin. In vitro assays using a crude extract of the E. coli strain expressing the crtO gene confirmed its ketolase activity. A crtO homologue (DR0093) from Deinococcus radiodurans R1 was also shown to encode a -carotene ketolase, despite its sequence homology to phytoene dehydrogenases. The Rhodococcus and Deinococcus CrtO ketolases both catalyze the symmetric addition of two keto groups to -carotene to produce canthaxanthin. Even though this activity is similar to the CrtW-type of ketolase activity, the CrtO ketolases show no significant sequence homology to CrtW-type ketolases. The presence of six conserved regions may be a signature for the CrtO-type of -carotene ketolases.Communicated by E. Cerdá-Olmedo  相似文献   

5.
Abstract High level expression of the functional β-carotene ketolase gene bkt from Haematococcus pluvialis occurred in Escherichia coli transformants producing β-carotene or zeaxanthin as a result of the presence of additional carotenoid genes from Erwinia uredovora . Requirement of molecular oxygen for the insertion of the keto group was demonstrated. The final product of this two-step ketolase reaction from β-carotene is canthaxanthin (4,4'-diketo-β-carotene) with the 4-monoketo derivative echinenone as an intermediate. A reaction sequence for the formation of astaxanthin from β-carotene was established based on kinetic data on astaxanthin formation in E. coli transformants carrying the hydroxylase gene crtZ from Erwinia along with bkt . We conclude that the carotenoids zeaxanthin and adonixanthin which accumulate in addition to astaxanthin in this transformant are products of side reactions rather than direct precursors of astaxanthin. The possible mechanisms for the formation of the keto derivatives are discussed.  相似文献   

6.
Rhodococcus erythropolis naturally synthesizes monocyclic carotenoids: 4-keto-γ-carotene and γ-carotene. The genes and the pathway for carotenoid synthesis in R. erythropolis were previously described. We heterologously expressed a β-carotene desaturase gene (crtU) from Brevibacterium in Rhodococcus to produce aryl carotenoids such as chlorobactene. Expression of the crtU downstream of a chloramphenicol resistance gene on pRhBR171 vector showed higher activity than expression downstream of a native 1-deoxyxylulose-5-phosphate synthase gene (dxs) on pDA71 vector. Expression of the crtU in the β-carotene ketolase (crtO) knockout Rhodococcus host produced higher purity chlorobactene than expression in the wild-type Rhodococcus host. Growth of the engineered Rhodococcus strain in eight different media showed that nutrient broth yeast extract medium supplemented with fructose gave the highest total yield of chlorobactene. This medium was used for growing the engineered Rhodococcus strain in a 10-l fermentor, and ∼18 mg of chlorobactene was produced as the almost exclusive carotenoid by fermentation.  相似文献   

7.
SYNOPSIS.
The carotenoid compositions of 15 nitrosoguanidine-induced mutants of Crypthecodinium cohnii , a heterotrophic dinoflagellate, were determined by chromatographic and mass spectral analyses. Wild-type C. cohnii grown with irradiation of 250 W/cm2 visible light at 27 C synthesizes β-carotene (33%) and γ-carotene (67%) amounting to 0.083 mg/g dry wt. There are 4 types of carotenoid-deficient mutants: (I) albinos which synthesize no C40-carotonoids: (II) albinos blocked at the level of phytoene desaturation; (III) cream-colored cells which accumulate mainly §–carotene, with phytoene and/or β-zeacarotene also present; and (IV) light-orange strains which synthesize reduced amounts of β-carotene and γ-carotene.
Dark-grown wild-type cells produced 35% as much carotenoids as light-grown cells. Inhibition studies revealed that diphenylamine (3 γ) caused phytoene accumulation; nicotine at 0.9 mM blocked the final cyclization, to cause γ-carotene to accumulate in wild-type cells. Inhibition by adenine and guanine (1.5 mM) of carotenogenesis was demonstrated for the first time in any system. The effect of these purines was similar to that of diphenylamine addition: phytoene desaturation was largely inhibited.
The carotenogenic system in this dinoflagellate is similar to that of green algae and higher plants, and is under nuclear genetic control.  相似文献   

8.
The conclusion based on transmission electron microscopy, "the tightly packed ring-like nucleoid of the Deinococcus radiodurans R1 is a key to radioresistance", has instigated lots of debates. In this study, according to the previous research of PprI’s crucial role in radioresistance of D. radiodurans, we have attempted to examine and compare the nucleoid morphology differences among wild-type D. ra-diodurans R1 strain, pprI function-deficient mutant (YR1), and pprI function-complementary strains (YR1001, YR1002, and YR1004) before and after exposure to ionizing irradiation. Fluorescence mi-croscopy images indicate: (1) the majority of nucleoid structures in radioresistant strain R1 cells ex-hibit the tightly packed ring-like morphology, while the pprI function-deficient mutant YR1 cells carrying predominate ring-like structure represent high sensitivity to irradiation; (2) as an extreme radioresistant strain similar to wild-type R1, pprI completely function-complementary strain YR1001 almost displays the loose and irregular nucleoid morphologies. On the other hand, another radioresistant pprI partly function-complementary strain YR1002’s nucleiods exhibit about 60% ring-like structure; (3) a PprI C-terminal deletion strain YR1004 consisting of approximately 60% of ring-like nucleoid is very sensi-tive to radiation. Therefore, our present experiments do not support the conclusion that the ring-like nucleoid of D. radiodurans does play a key role in radioresistance.  相似文献   

9.
Aim:  The aim of this study was to evaluate the effect of γ radiation on the carotenoid content of two strains of the Enterobacteriaceae : Pantoea agglomerans .
Methods and Results:  Pantoea agglomerans strains ATCC 49174 and RL1 were used for this study. Successive radiation treatments were performed to study the radiotolerance. Total carotenoids were obtained by multiple extraction using chloroform/methanol (2 : 1), quantified by measuring the optical density at 453 nm and their antioxidant activity measured by a colorimetric method. The D 10 studies were conducted using a UC-15A irradiator loaded with 60Co. Bacterial counts from various dilutions were carried out after irradiation. Strain ATCC 49174 irradiated at 1 kGy produced 4·3 times more carotenoids than the control, whereas carotenoid synthesis increased by 2·9-fold in the strain RL1. However, there was no significant difference in the D 10 values.
Conclusion:  Carotenoid increased production is influenced by γ radiation but does not modify the tolerance to radiations.
Significance and Impact of the Study:  To our knowledge, this is the first study to demonstrate the effects of γ radiation on carotenoid production levels.  相似文献   

10.
The composition of the carotenes and xanthophylls of Chlamydomonas reinhardtii Dang. C-41, a mutant of a unicellular green alga and a superproducer of ζ-carotene, was studied. The light-harvesting complexes and a complex of the PS-II reaction center were established to be disrupted in the C-41 mutant. However, the mutant retained a high (up to 46%) photosynthetic activity and the capacity to accumulate chlorophylls and carotenoids (up to 50%). The composition of carotenes was studied, and it was shown that, in contrast to wild-type K(+) cells, which accumulate up to 95% of β-carotene and 5% α-carotene, cells of the C-41 mutant contained 43% β-carotene, 19% β-zeacarotene, and 38% ζ-carotene. The high level of C-41 mutant biomass accumulation made it possible to recommend the mutant as a superproducer of ζ-carotene in phytobiotechnology.  相似文献   

11.
Abstract Treatment of Saccharomyces cerevisiae with the morpholine fungicide fenpropimorph was examined using both a wild-type and a mutant strain ( erg2 ) defective in sterol Δ 8 → 7-isomerase. No resistance to fenpropimorph was observed in the mutant strain after 3 days, although after 7 days the mutant and the wild-type strains had grown in concentrations of fenpropimorph close to the saturating dose. Re-inoculation of both strains into fresh medium containing fenpropimorph resulted in continued growth and this adaptation to fungicide tolerance was lost on subculture in the absence of fenpropimorph. Analysis of the sterols present in the cells indicated that fenpropimorph treatment resulted in the accumulation of Δ 8,14-sterols. This accumulation and the corresponding depletion of ergosterol were correlated with growth inhibition rather than the presence of Δ 8-sterols. Together with an absence of gene dosage effect for ERG2 on fenpropimorph sensitivity, this supports the hypothesis that sterol Δ 8 → 7-isomerase inhibition does not contribute to the fungicidal activity of fenpropimorph.  相似文献   

12.
Two types of non-homologous beta-carotene ketolases (CrtW and CrtO) were previously described. We report improvement of a CrtO-type of beta-carotene ketolase for canthaxanthin production in a methylotrophic bacterium, Methylomonas sp. 16a, which could use the C1 substrate (methane or methanol) as sole carbon and energy source. The crtO gene from Rhodococcus erythropolis was improved for canthaxanthin production in an E. coli strain engineered to produce high titer carotenoids by error-prone PCR mutagenesis followed by in vitro recombination. The best mutants from protein engineering could produce approximately 90% of total carotenoids as canthaxanthin in the high titer E. coli strain compared to approximately 20% canthaxanthin produced by the starting gene. Canthaxanthin production in Methylomonas was also significantly improved to approximately 50% of total carotenoids by the mutant genes. Further improvement of canthaxanthin production to approximately 93% in Methylomonas was achieved by increased expression of the best mutant gene. Some mutations were found in many of the improved genes, suggesting that these sites, and possibly the regions around these sites, were important for improving the crtO's activity for canthaxanthin production.  相似文献   

13.
The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium -mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (β-carotene ketolase) and CrtZ (β-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO2 concentrations of 1500 μmol photons m−2 s−1 light intensity.  相似文献   

14.
Deinococcus radiodurans R1 and other members of this genus share extraordinary resistance to the lethal and mutagenic effects of ionizing radiation. We have recently identified a RecA homolog in strain R1 and have shown that mutation of the corresponding gene causes marked radiosensitivity. We show here that following high-level exposure to gamma irradiation (1.75 megarads, the dose required to yield 37% of CFU for plateau-phase wild-type R1), the wild-type strain repairs > 150 double-strand breaks per chromosome, whereas a recA-defective mutant (rec30) repairs very few or none. A heterologous Escherichia coli-D. radiodurans shuttle plasmid (pMD68) was constructed and found to be retained in surviving D. radiodurans R1 and rec30 following any radiation exposure up to the highest dose tested, 3 megarads. Plasmid repair was monitored in vivo following irradiation with 1.75 megarads in both R1/pMD68 and rec30/pMD68. Immediately after irradiation, plasmids from both strains contained numerous breaks and failed to transform E. coli. While irradiation with 1.75 megarads was lethal to rec30 cultures, a small amount of supercoiled plasmid was regenerated, but it lacked the ability to transform E. coli. In contrast, wild-type cultures showed a cell division arrest of about 10 h, followed by exponential growth. Supercoiled plasmid was regenerated at normal levels, and it readily transformed E. coli. These studies show that D. radiodurans retains a heterologous plasmid following irradiation and repairs it with the same high efficiency as its chromosomal DNA, while the repair defect in rec30 prevents repair of the plasmid. Taken together, the results of this study suggest that plasmid DNA damaged in vivo in D. radiodurans is repaired by recA-dependent mechanisms similar to those employed in the repair of chromosomal DNA.  相似文献   

15.
Aims:  To develop solid-state fermentation system (SSF) for hyper production of tylosin from a mutant γ-1 of Streptomyces fradiae NRRL-2702 and its parent strain.
Methods and Results:  Various agro-industrial wastes were screened to study their effect on tylosin production in SSF. Wheat bran as solid substrate gave the highest production of 2500 μg of tylosin g−1 substrate by mutant γ-1 against parent strain (300 μg tylosin g−1 substrate). The tylosin yield was further improved to 4500 μg g−1 substrate [70% moisture, 10% inoculum (v/w), pH 9·2, 30°C, supplemental lactose and sodium glutamate on day 9]. Wild-type strain displayed less production of tylosin (655 μg of tylosin g−1 substrate) in SSF even after optimization of process parameters.
Conclusion:  The study has shown that solid-state fermentation system significantly enhanced the tylosin yield by mutant γ-1.
Significance and Impact of the Study:  This study proved to be very useful and resulted in 6·87 ± 0·30-fold increase in tylosin yield by this mutant when compared to that of wild-type strain.  相似文献   

16.
Entry of the bacterial pathogen Listeria monocytogenes into non-phagocytic mammalian cells is mainly mediated by the InlB protein. Here we show that in the human epithelial cell line HEp-2, the invasion protein InlB activates sequentially a p85β-p110 class IA PI 3-kinase and the phospholipase C-γ1 (PLC-γ1) without detectable tyrosine phosphorylation of PLC-γ1. Purified InlB stimulates association of PLC-γ1 with one or more tyrosine-phosphorylated proteins, followed by a transient increase in intracellular inositol 1,4,5-trisphosphate (IP3) levels and a release of intracellular Ca2+ in a PI 3-kinase-dependent manner. Infection of HEp-2 cells with wild-type L. monocytogenes bacteria also induces association of PLC-γ1 with phosphotyrosyl proteins. This interaction is undetectable upon infection with a Δ inlB mutant revealing an InlB specific signal. Interestingly, pharmacological or genetic inactivation of PLC-γ1 does not significantly affect InlB-mediated bacterial uptake, suggesting that InlB-mediated PLC-γ1 activation and calcium mobilization are involved in post-internalization steps.  相似文献   

17.
Abstract To study the physiological role of the red pigments in soil strain Pseudomonas K-62, we isolated a red pigment-deficient white mutant from the soil strain by treatment with mitomycin C and compared the phenotypic properties of the mutant and parent strain. The red pigments, which were classified as one of carotenoids based on their physicochemical properties, were separated into two groups, designated pigment A and B respectively on NH-Chromatorex HPLC.The crude pigments and pigment B which could react with Hg2+ in the wild-type Pseudomonas K-62 and its mercury-resistant plasmid-deficient strain were enhanced by the addition of Hg2+. The white mutant thus obtained showed a greater sensitivity to Hg2+ than the wild-type reddish strain despite containing the resistant plasmids. The major component in pigment B was identified by mass spectrometric analysis as 1-hydroxy-1-methoxy-1,2, 1',2',7',8'-hexahydro-ψ,ψ-caroten-4-one, a carotenoid monoketone. These results suggested that red pigments, especially pigment B, may account, at least partially, for defense against Hg2+ in the bacterial environments.  相似文献   

18.
Deinococcus radiodurans R1, a red-pigmented strain of the extremely radioresistant genus Deinococcus, contains a major carotenoid namely deinoxanthin. The high resistance of this organism against the lethal actions of DNA-damaging agents including ionizing radiation and ultraviolet light (UV) has been widely reported. However, the possible antioxidant role of carotenoids in this strain has not been completely elucidated. In this study, we constructed two colorless mutants by knockout of crtB and crtI genes, respectively. Comparative analysis of the two colorless mutants and the wild type showed that the two colorless mutants were more sensitive to ionizing radiation, UV, and hydrogen peroxide, but not to mitomycin-C (MMC). With electron spin resonance (ESR) and spin trapping techniques, we observed that hydroxyl radical signals occurred in the suspensions of UV irradiated Deinococcus radiodurans cells and the intensity of signals was influenced by carotenoids levels. We further showed that the carotenoid extract from the wild type could obviously scavenge superoxide anions generated by the irradiated riboflavin/EDTA system. These results suggest that carotenoids in D. radiodurans R1 function as free radical scavengers to protect this organism against the deleterious effects of oxidative DNA-damaging agents.  相似文献   

19.
Blakeslea trispora produces carotenoids mixtures consisting mainly of lycopene, γ-carotene and β-carotene, together with trace amounts of other carotenoid precursors. The yield of these carotenoids and their composition are greatly affected by culture substrate. The scavenging capacity of carotenoids extract from cultures of B. trispora growing in various substrates was estimated using the 2,2-diphenyl-1-picrylhydrazyl method. Fractions enriched in β-carotene, γ-carotene and lycopene, obtained after column chromatography in alumina basic II, were also examined. Substrates containing starch and oils mixture, Ni2+, and that with pantothenic acid presented higher antioxidant activity. An increase in the antioxidant activity of the crude carotenoid extract compared to that of the isolated fractions enriched in β-carotene, γ-carotene and lycopene respectively, observed in most samples, indicated a possible synergistic effect. The results are of interest and by expanding this study to more substrates and other microorganisms- producing antioxidants, a formulation of extract with high free radical scavenging potential could be produced.  相似文献   

20.
The complete carotenoid composition of the thermophilic green sulfur bacterium Chlorobium tepidum strain TNO was determined by spectroscopic methods. Major carotenoids were four kinds of carotenes: γ-carotene, chlorobactene, and their 1′,2′-dihydro derivatives (1′,2′-dihydro-γ-carotene and 1′,2′-dihydrochlorobactene). In lesser amounts, hydroxyl γ-carotene, hydroxyl chlorobactene, and their glucoside fatty acid esters were found. The only esterified fatty acid present was laurate, and OH-chlorobactene glucoside laurate is a novel carotenoid. In other strains of C. tepidum, the same carotenoids were found, but the composition varied from strain to strain. The overall pigment composition in cells of strain TNO was 4 mol carotenoids and 40 mol bacteriochlorophyll c per mol bacteriochlorophyll a. The effects of nicotine on carotenoid biosynthesis in C. tepidum differed from those in the thermophilic green nonsulfur bacterium Chloroflexus aurantiacus. Received: 3 February 1997 / Accepted: 6 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号