首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lim B  Sim SH  Sim M  Kim K  Jeon CO  Lee Y  Ha NC  Lee K 《Journal of bacteriology》2012,194(9):2214-2220
In Escherichia coli, the corA gene encodes a transporter that mediates the influx of Co(2+), Mg(2+), and Ni(2+) into the cell. During the course of experiments aimed at identifying RNase III-dependent genes in E. coli, we observed that steady-state levels of corA mRNA as well as the degree of cobalt influx into the cell were dependent on cellular concentrations of RNase III. In addition, changes in corA expression levels by different cellular concentrations of RNase III were closely correlated with degrees of resistance of E. coli cells to Co(2+) and Ni(2+). In vitro and in vivo cleavage analyses of corA mRNA identified RNase III cleavage sites in the 5'-untranslated region of the corA mRNA. The introduction of nucleotide substitutions at the identified RNase III cleavage sites abolished RNase III cleavage activity on corA mRNA and resulted in prolonged half-lives of the mRNA, which demonstrates that RNase III cleavage constitutes a rate-determining step for corA mRNA degradation. These findings reveal an RNase III-mediated regulatory pathway that functions to modulate corA expression and, in turn, the influx of metal ions transported by CorA in E. coli.  相似文献   

3.
Purified RNase III of Escherichia coli cleaved the initial 479-nucleotide sequence of lac operon mRNA at four specific sites and also gave limited cleavage of trp operon mRNA. This action explains the inactivation of mRNA coding capacity by RNase III in vitro.  相似文献   

4.
5.
Mutations in the Escherichia coli rne (ams) gene have a general effect on the rate of mRNA decay in vivo. Using antibodies we have shown that the product of the rne gene is a polypeptide of relative mobility 180kDa. However, proteolytic fragments as small as 70kDa, which can arise during purification, also exhibit RNase E activity, in vitro studies demonstrate that the rne gene product, RNase E, is an endoribonuclease that cleaves mRNA at specific sites. RNase E cleaves rne mRNA and autoregulates the expression of the rne gene. In addition we demonstrate RNase E-dependent endonucleolytic cleavage of ompA mRNA, at a site known to be rate-determining for degradation and reported to be cieaved by RNase K. Our data are consistent with RNase K being a proteolytic fragment of RNase E.  相似文献   

6.
Effects of chaperones on mRNA stability and gene expression were studied in order to develop an efficient Escherichia coli expression system that can maximize gene expression. The stability of mRNA was modulated by introducing various secondary structures at the 5'-end of mRNA. Four vector systems providing different 5'-end structures were constructed, and genes encoding GFPuv and endoxylanase were cloned into the four vector systems. Primer extension assay revealed different mRNA half-lives depending on the 5'-end secondary structures of mRNA. In addition to the stem-loop structure at the 5'-end of mRNA, coexpression of dnaK-dnaJ-grpE or groEL-groES, representative heat-shock genes in E. coli, increased the mRNA stability and the level of gene expression further, even though the degree of stabilization was varied. Our work suggests that some of the heat-shock proteins can function as mRNA stabilizers as well as protein chaperones.  相似文献   

7.
The mechanism of segmental decay of the uncB sequence near the 5' end of the 7-kb Escherichia coli unc operon mRNA was investigated. Northern (RNA) blots of mRNA expressed from a plasmid carrying the uncBE portion of the operon revealed that the uncB message was rapidly degraded by multiple internal cleavages which resulted in the formation of at least five discrete species having a common 3' end. Turnover studies indicated that processing rapidly converted all species to the smallest. Identification of the 5' ends by primer extension analysis revealed that the cleavages were made either in the uncB coding region or in the intercistronic region between uncB and uncE, the latter being the most 3' cleavage. An rne mutant strain contained much higher levels of the uncBE message, implying that RNase E, the product of the rne gene, is essential for the normal degradation of uncB, and a number of the 5' ends were not detected in the rne mutant. The cleavage sites in chromosomally encoded unc mRNA were also identified by primer extension. These studies reveal that the segmental decay of the uncB region of unc mRNA occurs rapidly through a series of endonucleolytic cleavages. The rapid decay of uncB is expected to play a role in limiting expression of this gene relative to that of the other genes of the operon.  相似文献   

8.
9.
10.
11.
12.
13.
14.

Background  

RNase III is a dsRNA specific endoribonuclease which is involved in the primary processing of rRNA and several mRNA species in bacteria. Both primary structural elements and the secondary structure of the substrate RNA play a role in cleavage specificity.  相似文献   

15.
16.
17.
Citrate transport in Lactococcus lactis biovar diacetylactis (L. diacetylactis) is catalyzed by citrate permease P (CitP), which is encoded by the plasmidic citP gene. Two partial overlapping open reading frames citQ and citR are located upstream of citP. These two genes, together with citP, constitute the citQRPoperon. In this report it was shown that in L. diacetylactis and Escherichia coli, cit mRNA is subject to the same specific cleavages at a complex secondary structure which includes the central region of citQ and the 5'-end of citR. The role of ribonucleases in the fate of the cit mRNA processing was investigated in E. coli RNase mutant strains. The results obtained indicate that both endoribonucleases RNase E and RNase III are involved in the generation of mRNA processed species. RNase E is responsible for the major cleavages detected within citQ and upstream of citR, whereas RNase III cleaves citR within its ribosomal binding site. Preliminary results indicate the existence of a RNaselll-like enzyme in L. diacetylactis. Based on these results, a model for the role of cit mRNA processing in the expression of citP is presented.  相似文献   

18.
Using RNA-directed synthesis of the alpha-peptide of beta-galactosidase as an assay, a factor was purified that inactivated further function of the mRNA. In the presence of Ca2+ ions to inhibit most nuclease activity, inactivation of mRNA occurred during incubation with ribosomes or with a 1 M KCl wash of ribosomes. The inactivation activity required Mg2+ ions, and purified as a single factor which did not bind to DEAE-cellulose, but bound reversibly to phosphocellulose. The factor eluted from Sephadex G-150 with an apparent molecular weight of about 43,000. Purified 700-fold, it showed no detectable exonuclease activity, and little or no cleavage of a variety of single-stranded substrates, including full length lac operon mRNA; but repurified inactivated mRNA was still inactive for protein synthesis. The factor did not inhibit poly(U)-directed polyphenylalanine synthesis. When proteins isolated from the ribosomal wash were individually tested, highly purified RNase III, which purifies in the same way and has the same size, also inactivated lac mRNA. The ribosomal wash from an RNase III- strain showed little if any activity compared to that from an isogenic RNase III+ strain. The possibility of a site-specific inactivating cleavage of mRNA by RNase III at or near the 5' end is considered.  相似文献   

19.
A previously unreported endoRNase present in the spheroplast fraction of Escherichia coli degraded homoribopolymers and small RNA oligonucleotides but not polymer RNA. Like the periplasmic endoRNase, RNase I, the enzyme cleaved the phosphodiester bond between any nucleotides; however, RNase I degraded polymer RNA as fast as homopolymers or oligomers. Both enzymes migrated as 27-kDa polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and could not be separated by various chromatographic procedures. In rna insertion mutants, both enzymes were completely missing; the spheroplast enzyme is called RNase I*, since it must be a form of RNase I. The two forms could be distinguished by physical treatments. RNase I could be activated by Zn2+, while RNase I* was inactive in the presence of Zn2+. RNase I was inactivated very slowly at 100 degrees C over a wide pH range, while RNase I* was inactivated slowly by heat at pH 4.0 but much more rapidly as the pH was increased to 8.0. In the presence of a thiol-binding agent, the inactivation at the higher pH values was much slower. These results suggest that RNase I*, but not RNase I, has free sulfhydryl groups. RNase I* activity in the cell against a common substrate was estimated to be several times that of RNase I. All four 2',3'-phosphomonoribonucleotides were identified in the soluble pools of growing cells. Such degradative products must arise from RNase I* activity. The activity would be suited for the terminal step in mRNA degradation, the elimination of the final oligonucleotide fragments, without jeopardizing the cell RNA. An enzyme with very similar specificity was found in Saccharomyces cerevisiae, suggesting that the activity may be widespread in nature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号