首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vivo regulation of the serotonin-2 receptor in rat brain   总被引:1,自引:0,他引:1  
Serotonin-2 (5-HT-2) receptors in brain were measured using [3H]ketanserin. We examined the effects of amitriptyline, an antidepressant drug, of electroconvulsive shock (ECS) and of drug-induced alterations in presynaptic 5-HT function on [3H]ketanserin binding to 5-HT-2 receptors in rat brain. The importance of intact 5-HT axons to the up-regulation of 5-HT-2 receptors by ECS was also investigated, and an attempt was made to relate the ECS-induced increase in this receptor to changes in 5-HT presynaptic mechanisms. Twelve days of ECS increased the number of 5-HT-2 receptors in frontal cortex. Neither the IC50 nor the Hill coefficient of 5-HT in competing for [3H]ketanserin binding sites was altered by ECS. Repeated injections of amitriptyline reduced the number of 5-HT-2 receptors in frontal cortex. Reserpine, administered daily for 12 days, caused a significant increase in 5-HT-2 receptors, but neither daily injections of p-chlorophenylalanine (PCPA) nor lesions of 5-HT axons with 5,7-dihydroxytryptamine (5,7-DHT) affected 5-HT-2 receptors. However, regulation of 5-HT-2 receptors by ECS was dependent on intact 5-HT axons since ECS could not increase the number of 5-HT-2 receptors in rats previously lesioned with 5,7-DHT. Repeated ECS, however, does not appear to affect either the high-affinity uptake of [3H]5-HT or [3H]imipramine binding, two presynaptic markers of 5-HT neuronal function. 5-HT-2 receptors appear to be under complex control. ECS or drug treatments such as reserpine or amitriptyline, which affect several monoamine neurotransmission systems including 5-HT, can alter 5-HT-2 receptors. While depleting 5-HT alone (5,7-DHT or PCPA) does not alter [3H]ketanserin binding to 5-HT-2 receptors, intact 5-HT axons are necessary for the adaptive up-regulation of the receptor following ECS.  相似文献   

2.
Many different cells' signalling pathways are universally regulated by Ca(2+) concentration [Ca(2+)] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+) signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+) signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+) imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+) reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+)] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+) response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+)] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca(2+)] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+) stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+) signalling pathways and for functional mapping of neurophysiological processes in the fly brain.  相似文献   

3.
The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3’-deoxy-3’-[18F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting.  相似文献   

4.
5.
It has been accepted that bone marrow cells infiltrate the brain and play important roles in neuroinflammation. However, there is no good tool for the visualization of these cells in living animals. In this study, we generated mice that were transplanted with GFP- or luciferase-expressing bone marrow cells, and performed in vivo fluorescence imaging (FLI) and in vivo bioluminescence imaging (BLI) to visualize the infiltrated cells. Brain inflammation was induced by intrahippocampal injection of lipopolysaccharide (LPS). Immunohistochemical investigation demonstrated an increase in the infiltration of bone marrow cells into the hippocampus because of the LPS injection and differentiation of the infiltrated cells into microglia, but not into neurons or astrocytes. BLI, but not FLI, successfully detected an increase in signal intensity with the LPS injection, and the increase of BLI coincided with that of luciferase activity in hippocampus. BLI could quantitatively and continuously monitor bone marrow-derived cells in vivo.  相似文献   

6.
Studies of ligand-receptor binding and the development of receptor antagonists would benefit greatly from imaging techniques that translate directly from cell-based assays to living animals. We used Gaussia luciferase protein fragment complementation to quantify the binding of chemokine (C-X-C motif) ligand 12 (CXCL12) to chemokine (C-X-C motif) receptor 4 (CXCR4) and CXCR7. Studies established that small-molecule inhibitors of CXCR4 or CXCR7 specifically blocked CXCL12 binding in cell-based assays and revealed differences in kinetics of inhibiting chemokine binding to each receptor. Bioluminescence imaging showed CXCL12-CXCR7 binding in primary and metastatic tumors in a mouse model of breast cancer. We used this imaging technique to quantify drug-mediated inhibition of CXCL12-CXCR4 binding in living mice. We expect this imaging technology to advance research in areas such as ligand-receptor interactions and the development of new therapeutic agents in cell-based assays and small animals.  相似文献   

7.
Lederman L 《BioTechniques》2008,45(4):375, 377, 379
  相似文献   

8.
In vivo bioluminescence imaging   总被引:3,自引:0,他引:3  
In vivo bioluminescent imaging (BLI) is a versatile and sensitive tool that is based on detection of light emission from cells or tissues. Bioluminescence, the biochemical generation of light by a living organism, is a naturally occurring phenomenon. Luciferase enzymes, such as that from the North American firefly (Photinus pyralis), catalyze the oxidation of a substrate (luciferin), and photons of light are a product of the reaction. Optical imaging by bioluminescence allows a low-cost, noninvasive, and real-time analysis of disease processes at the molecular level in living organisms. Bioluminescence has been used to track tumor cells, bacterial and viral infections, gene expression, and treatment response. Bioluminescence in vivo imaging allows longitudinal monitoring of a disease course in the same animal, a desirable alternative to analyzing a number of animals at many time points during the course of the disease. We provide a brief introduction to BLI technology, specific examples of in vivo BLI studies investigating bacterial/viral pathogenesis and tumor growth in animal models, and highlight some future perspectives of BLI as a molecular imaging tool.  相似文献   

9.
Adult neurogenesis is a highly dynamic process modulated by several pathologic and environmental factors, as well as by various compounds. So far, available techniques to study neurogenesis are lengthy and personnel and cost intensive. We developed a new tool based on the doublecortin promoter driving the expression of the luciferase reporter gene (DCX-promo-luciferase) in transgenic mice to perform in vivo imaging of neurogenesis. Indeed, the DCX-promo-luciferase mice allowed optical in vivo imaging of the onset of and increase in neurogenesis in developing fetal brains, as well as imaging of neurogenesis in the intact adult mouse central nervous system. Moreover, the capacity to specifically detect a small number of migrating neuronal precursors in vivo after transplantation is for the first time feasible using this DCX-promo-luciferase transgenic tool. The present imaging approach offers several crucial advantages over methods currently available, such as bromodeoxyuridine incorporation or labeling using iron oxide nanoparticles. Hence, it allows longitudinal study of neurogenesis in intact animals without the requirement of cellular prelabeling. Moreover, it guarantees that detection is specific for neuronal precursors and restricted to viable cells. Hence, our DCX-promo-luciferase transgenic model constitutes an effective tool that answers the pressing need for rapid investigation of the impact on neurogenesis of a large number of candidate compounds waiting to be tested.  相似文献   

10.
The deleterious effects of stress on the gastrointestinal tract seem to be mainly mediated by the induction of intestinal barrier dysfunction and subsequent subtle mucosal inflammation. Cannabinoid 1 receptor (CB1R) is expressed in the mammalian gut under physiological circumstances. The aim of this investigation is to study the possible role of CB1R in the maintenance of mucosal homeostasis after stress exposure. CB1R knockout mice (CB1R(-/-)) and their wild-type (WT) counterparts were exposed to immobilization and acoustic (IA) stress for 2 h per day during 4 consecutive days. Colonic protein expression of the inducible forms of the nitric oxide synthase and cyclooxygenase (NOS2 and COX2), IgA production, permeability to (51)Cr-EDTA, and bacterial translocation to mesenteric lymph nodes were evaluated. Stress exposure induced greater expression of proinflammatory enzymes NOS2 and COX2 in colonic mucosa of CB1R(-/-) mice when compared with WT animals. These changes were related with a greater degree of colonic barrier dysfunction in CB1R(-/-) animals determined by 1) a significantly lower IgA secretion, 2) higher paracellular permeability to (51)Cr-EDTA, and 3) higher bacterial translocation, both under basal conditions and after IA stress exposure. Pharmacological antagonism with rimonabant reproduced stress-induced increase of proinflammatory enzymes in the colon described in CB1R(-/-) mice. In conclusion, CB1R exerts a protective role in the colon in vivo through the regulation of intestinal secretion of IgA and paracellular permeability. Pharmacological modulation of cannabinoid system within the gastrointestinal tract might be therapeutically useful in conditions on which intestinal inflammation and barrier dysfunction takes place after exposure to stress.  相似文献   

11.
In vivo near-infrared fluorescence imaging   总被引:12,自引:0,他引:12  
Photon penetration into living tissue is highly dependent on the absorption and scattering properties of tissue components. The near-infrared region of the spectrum offers certain advantages for photon penetration, and both organic and inorganic fluorescence contrast agents are now available for chemical conjugation to targeting molecules. This review focuses on those parameters that affect image signal and background during in vivo imaging with near-infrared light and exogenous contrast agents. Recent examples of in vivo near-infrared fluorescence imaging of animals and humans are presented, including imaging of normal and diseased vasculature, tissue perfusion, protease activity, hydroxyapatite and cancer.  相似文献   

12.
Mice bearing targeted gene mutations that affect insulin receptor (Insr) function have contributed important new information on the pathogenesis of type 2 diabetes. Whereas complete Insr ablation is lethal, conditional mutagenesis in selected tissues has more limited consequences on metabolism. Studies of mice with tissue-specific ablation of Insr have indicated that both canonical (e.g. muscle and adipose tissue) and noncanonical (e.g. liver, pancreatic beta-cells, and brain) insulin target tissues can contribute to insulin resistance, albeit in a pathogenically distinct fashion. Furthermore, experimental crosses of Insr mutants with mice carrying mutations that affect insulin action at more distal steps of the insulin signaling cascade have begun to unravel the genetics of type 2 diabetes. These studies are consistent with an oligogenic inheritance, in which synergistic interactions among few alleles may account for the genetic susceptibility to diabetes. In addition to mutant alleles conferring an increased risk of diabetes, these studies have uncovered mutations that protect against insulin resistance, thus providing proof-of-principle for the notion that certain alleles may confer resistance to diabetes.  相似文献   

13.
Heussler V  Doerig C 《Trends in parasitology》2006,22(5):192-5; discussion 195-6
In vivo infection routes of parasites have remained something of a "black box", in which only snapshot views of fixed tissues are available. Clearly, there exists a strong need for imaging approaches to visualise living parasites within intact organs and animals. In vivo imaging of fluorescent Plasmodium parasites now provides us with exciting insights into the infection process, from the bite of the infected mosquito to the invasion of liver cells, and alternative approaches using luciferase-expressing parasites have been used to monitor their dissemination in mice. This rapidly developing field will go a long way towards deepening our understanding of host-parasite interactions at different levels.  相似文献   

14.
15.
In vivo imaging of islet transplantation   总被引:17,自引:0,他引:17  
Type 1 diabetes mellitus is characterized by the selective destruction of insulin-producing beta cells, which leads to a deficiency in insulin secretion and, as a result, to hyperglycemia. At present, transplantation of pancreatic islets is an emerging and promising clinical modality, which can render individuals with type 1 diabetes insulin independent without increasing the incidence of hypoglycemic events. To monitor transplantation efficiency and graft survival, reliable noninvasive imaging methods are needed. If such methods were introduced into the clinic, essential information could be obtained repeatedly and noninvasively. Here we report on the in vivo detection of transplanted human pancreatic islets using magnetic resonance imaging (MRI) that allowed noninvasive monitoring of islet grafts in diabetic mice in real time. We anticipate that the information obtained in this study would ultimately result in the ability to detect and monitor islet engraftment in humans, which would greatly aid the clinical management of this disease.  相似文献   

16.
Multiple sclerosis is a disease of the central nervous system that is associated with leukocyte recruitment and subsequent inflammation, demyelination and axonal loss. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and its ligand, alpha4beta1 integrin, are key mediators of leukocyte recruitment, and selective inhibitors that bind to the alpha4 subunit of alpha4beta1 substantially reduce clinical relapse in multiple sclerosis. Urgently needed is a molecular imaging technique to accelerate diagnosis, to quantify disease activity and to guide specific therapy. Here we report in vivo detection of VCAM-1 in acute brain inflammation, by magnetic resonance imaging in a mouse model, at a time when pathology is otherwise undetectable. Antibody-conjugated microparticles carrying a large amount of iron oxide provide potent, quantifiable contrast effects that delineate the architecture of activated cerebral blood vessels. Their rapid clearance from blood results in minimal background contrast. This technology is adaptable to monitor the expression of endovascular molecules in vivo in various pathologies.  相似文献   

17.
The ability of cannabinoid CB(1) receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB(1) receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB(1) /CB(2) receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB(1) and SR144528 for CB(2) ) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA-induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB(1) receptor function. In contrast, blockade of CB(1), but not CB(2), receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest a critical involvement of CB(1) receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo.  相似文献   

18.
Astrocytes possess GPCRs (G-protein-coupled receptors) for neuroactive substances and can respond via these receptors to signals originating from neurons as well as astrocytes. Like many transmembrane proteins, GPCRs exist in a dynamic equilibrium between receptors expressed at the plasma membrane and those present within intracellular trafficking compartments. The characteristics of GPCR trafficking within astrocytes have not been investigated. We therefore monitored the trafficking of recombinant fluorescent protein chimeras of the CB1R (cannabinoid receptor 1) that is thought to be expressed natively in astrocytes. CB1R chimeras displayed a marked punctate intracellular localization when expressed in cultured rat visual cortex astrocytes, an expression pattern reminiscent of native CB1R expression in these cells. Based upon trafficking characteristics, we found the existence of two populations of vesicular CB1R puncta: (i) relatively immobile puncta with movement characteristic of diffusion and (ii) mobile puncta with movement characteristic of active transport along cytoskeletal elements. The predominant direction of active transport is oriented radially to/from the nuclear region, which can be abolished by disruption of the microtubule cytoskeleton. CB1R puncta are localized within intracellular acidic organelles, mainly co-localizing with endocytic compartments. Constitutive trafficking of CB1R to and from the plasma membrane is an energetically costly endeavour whose function is at present unclear in astrocytes. However, given that intracellular CB1Rs can engage cell signalling pathways, it is likely that this process plays an important regulatory role.  相似文献   

19.
In vivo microscopy is an exciting tool for neurological research because it can reveal how single cells respond to damage of the nervous system. This helps us to understand how diseases unfold and how therapies work. Here, we review the optical imaging techniques used to visualize the different parts of the nervous system, and how they have provided fresh insights into the aetiology and therapeutics of neurological diseases. We focus our discussion on five areas of neuropathology (trauma, degeneration, ischaemia, inflammation and seizures) in which in vivo microscopy has had the greatest impact. We discuss the challenging issues in the field, and argue that the convergence of new optical and non-optical methods will be necessary to overcome these challenges.  相似文献   

20.
How does the brain process incoming information and produce thoughts? These questions represent, to all likelihood, the most challenging matters ever faced by natural sciences, matters which may never be fully comprehended. The evolution of the nervous system that, in about billion of years, brought into existence the human brain progressed through an ever-increasing complexity of neural networks. This evolution began from the diffuse nervous system, in which primordial neurons were able to sense the environmental inputs and convey them to effector organs and to the neighbouring neurons. At the next evolutionary stage the conglomerates of neuronal cell bodies, the ganglia, appeared, thus forming the primitive centralized nervous system. The developments which ensued went through a continuous increase in complexity of neuronal conglomerates, which eventually formed the central nervous system, which attained maximal perfection in mammals. In this issue of ASN NEURO, Osborne et al. have described details of real-time imaging of cannabinoid receptor trafficking in astrocytes, a technique that will help to elucidate the role of these receptors in the ever-increasing complex neural networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号