首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine 3',5'-cyclic monophosphate (cAMP) concentration and 3',5'-cyclic-nucleotide phosphodiesterase (PDE) activity were measured in skeletal muscle, heart, and liver of rats exposed to 1, 3, 5, and 7 days of cold. Cyclic nucleotide concentration increased in fast-twitch red muscle at the same time that PDE activity was decreasing. Nucleotide concentration and enzyme activity of slow-twitch red muscle were not altered by the cold exposure. The PDE activity of fast-twitch white muscle was elevated approximately 50% above control after 1 and 3 days of cold exposure. By the 5th day in the cold, white muscle PDE activity had returned to control levels and remained there through the 7th day of experimentation. cAMP concentration in hearts of cold-exposed rats was significantly (P less than 0.01) elevated above control at all time points measured. Myocardial PDE activity was elevated above control (P less than 0.05) at 1 and 3 days of cold exposure but returned to control levels by the 5th day in the cold. Hepatic cAMP and PDE activity were elevated above control at all time points analyzed. These data suggest that changes in cyclic nucleotide metabolism play a role in attaining homeostasis during acute cold exposure.  相似文献   

2.
Ischemia-reperfusion (IR) is a form of oxidant injury known to increase microvascular permeability in the lung. Agents that increase adenosine 3',5'-cyclic monophosphate (cAMP) levels have been shown to have beneficial effects in several models of oxidant lung injury associated with increased microvascular permeability. We investigated the role of adenylate cyclase activation with isoproterenol (ISO) or forskolin (FSK) in reversing the increased microvascular permeability associated with IR. ISO or FSK administered after 45 min of ischemia and 46 min of reperfusion caused a reduction in the capillary filtration coefficient (Kfc) from 1.25 +/- 0.13 to 0.53 +/- 0.08 and 0.55 +/- 0.10 ml.min-1.cmH2O-1.100 g tissue-1, respectively, at 90 min of reperfusion. This reduction in Kfc was accompanied by a rise in perfusate cAMP levels from 16.5 +/- 4.9 and 31.2 +/- 11.9 pmol/ml at 45 min of reperfusion to 444.2 +/- 147.8 and 276.1 +/- 91.0 pmol/ml at 105 min of reperfusion in lungs treated with ISO or FSK, respectively, at 46 min of reperfusion. Dibutyryl cAMP (DBcAMP), a membrane-permeable cAMP analogue, mimicked the permeability effect by reducing Kfc to 0.67 +/- 0.15 at 90 min of reperfusion. Significant hemodynamic changes occurred but were small and cannot explain the observed effect on Kfc. Photomicrographs from lungs treated with ISO or FSK revealed a reversal of the morphological manifestations of increased microvascular permeability. We conclude that the increased microvascular permeability associated with IR can be reversed by ISO, FSK, and DBcAMP and that cAMP produced by the lung contributes to the observed reversal.  相似文献   

3.
The regulation of the secondary messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is crucial in the hormonal regulation of bone metabolism. Both cAMP and cGMP are inactivated by cyclic nucleotide phosphodiesterases (PDEs), a superfamily of enzymes divided into 11 families (PDE1-11). We compared the PDEs of cultured human osteoblasts (NHOst) and SaOS-2 osteosarcoma cells. The PDE activity of NHOst cells consisted of PDE1, PDE3 and PDE7, whereas PDE1, PDE7 and PDE4, but no PDE3 activity was detected in SaOS-2 cells. In line with the difference in the PDE profiles, rolipram, a PDE4 inhibitor, increased the accumulation of cAMP in SaOS-2, but not in NHOst cells. Expression of PDE subtypes PDE1C, PDE3A, PDE4A, PDE4B, PDE7A and PDE7B was detected in both cell types. NHOst cells additionally expressed PDE1A.  相似文献   

4.
The cyclic nucleotide phosphodiesterases (PDEs) are intracellular enzymes that catalyze the hydrolysis of 3,'5'-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5'nucleotide monophosphates. These enzymes play an important role in controlling cellular concentrations of cyclic nucleotides and thus regulate a variety of cellular signaling events. PDEs are emerging as drug targets for several diseases, including asthma, cardiovascular disease, attention-deficit hyperactivity disorder, Parkinson's disease, and Alzheimer's disease. Although biochemical assays with purified recombinant PDE enzymes and cAMP or cGMP substrate are commonly used for compound screening, cell-based assays would provide a better assessment of compound activity in a more physiological context. The authors report the development and validation of a new cell-based PDE4 assay using a constitutively active G-protein-coupled receptor as a driving force for cAMP production and a cyclic nucleotide-gated cation channel as a biosensor in 1536-well plates.  相似文献   

5.
This study evaluated the physiological effects of compounds that increase adenosine 3',5'-cyclic monophosphate (cAMP) on changes in pulmonary capillary permeability and vascular resistance induced by ischemia-reperfusion (I-R) in isolated blood-perfused rabbit lungs. cAMP was elevated by 1) beta-adrenergic stimulation with isoproterenol (ISO, 10(-5) M), 2) post-beta-receptor stimulation of adenylate cyclase with forskolin (FSK, 10(-5) M), 3) and dibutyryl cAMP (DBcAMP, 1 mM), a cAMP analogue. Vascular permeability was assessed by determining the capillary filtration coefficient (Kf,c), and capillary pressure was measured using the double occlusion technique. The total, arterial, and venous vascular resistances were calculated from measured pulmonary arterial, venous, and capillary pressures and blood flow. Reperfusion after 2 h of ischemia significantly (P less than 0.05) increased Kf,c (from 0.115 +/- 0.028 to 0.224 +/- 0.040 ml.min-1.cmH2O-1.100 g-1). These I-R-induced changes in capillary permeability were prevented when ISO, FSK, or DBcAMP was added to the perfusate at reperfusion (0.110 +/- 0.022 and 0.103 +/- 0.021, 0.123 +/- 0.029 and 0.164 +/- 0.024, and 0.153 +/- 0.030 and 0.170 +/- 0.027 ml.min-1.cmH2O-1.100 g-1, respectively). I-R significantly increased total, arterial, and venous vascular resistances. These increases in vascular resistance were also blocked by ISO, FSK, and DBcAMP. These data suggest that beta-adrenergic stimulation, post-beta-receptor activation of adenylate cyclase, and DBcAMP prevent the changes in pulmonary vascular permeability and vascular resistances caused by I-R in isolated rabbit lungs through a mechanism involving an increase in intracellular levels of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
To investigate whether heart failure alters beta-adrenergic receptors on skeletal muscle and its associated vasculature, the density of beta-adrenergic receptors, isoproterenol-stimulated adenylate cyclase activity, and coupling of the guanine nucleotide-binding regulatory protein were compared in 18 control dogs and 16 dogs with heart failure induced by 5-8 wk of ventricular pacing at 260 beats/min. Hindlimb vascular responses to isoproterenol were compared in eight controls and eight of the dogs with heart failure. In dogs with heart failure, the density of beta-receptors on skeletal muscle was reduced in both gastrocnemius (control: 50 +/- 5; heart failure: 33 +/- 8 fmol/mg of protein) and semitendinosus muscle (control: 43 +/- 9; heart failure: 27 +/- 9 fmol/mg of protein, both P less than 0.05). Receptor coupling to the ternary complex, as determined by isoproterenol competition curves with and without guanosine 5'-triphosphate (GTP), was unchanged. Isoproterenol-stimulated adenylate cyclase activity was significantly decreased in semitendinosus muscle (control: 52.4 +/- 4.6; heart failure: 36.5 +/- 9.5 pmol.mg-1.min-1; P less than 0.05) and tended to be decreased in gastrocnemius muscle (control: 40.1 +/- 8.5; heart failure: 33.5 +/- 4.5 pmol.mg-1.min-1; P = NS). Isoproterenol-induced hindlimb vasodilation was not significantly different in controls and in dogs with heart failure. These findings suggest that heart failure causes downregulation of skeletal muscle beta-adrenergic receptors, probably due to receptor exposure to elevated catecholamine levels, but does not reduce beta-receptor-mediated vasodilation in muscle.  相似文献   

7.
We developed a microassay for heme oxygenase, in which bilirubin (BR) production was measured by HPLC, and compared it to previously reported spectrophotometric methods. The microassay required as little as 5 mg wet human, rat, or chick embryo liver. Using the HPLC assay, values for heme oxygenase activity in extracts (10,000 g supernatant) of normal human liver obtained by needle biopsies were 44 +/- 7 (pmol BR.min-1.mg protein-1). Spectrophotometric assays of homogenates of human liver resulted in low values for heme oxygenase, due to unknown sources of interference. Comparative values of microsomal heme oxygenase activity were 294 +/- 25, 95 +/- 3, and 87 +/- 9 pmol BR.min-1.mg protein-1 for chick, rat, and human livers, respectively.  相似文献   

8.
The potent neutral endopeptidase inhibitor SQ 28,603 (N-(2-(mercaptomethyl)-1-oxo-3-phenylpropyl)-beta-alanine) significantly increased excretion of sodium from 4.9 +/- 2.3 to 14.3 +/- 2.1 muequiv./min and cyclic 3',5'-guanosine monophosphate from 118 +/- 13 to 179 +/- 18 pmol/min after intravenous administration of 300 mumol/kg (approximately 80 mg/kg) in conscious female cynomolgus monkeys. SQ 28,603 did not change blood pressure or plasma atrial natriuretic peptide concentrations in the normal monkeys. In contrast, 1-h infusions of 3, 10, or 30 pmol.kg-1.min-1 of human atrial natriuretic peptide lowered blood pressure by -3 +/- 4, -9 +/- 4, and -27 +/- 3 mmHg (1 mmHg = 133.322 Pa), increased cyclic guanosine monophosphate excretion from 78 +/- 11 to 90 +/- 6, 216 +/- 33, and 531 +/- 41 pmol/min, and raised plasma atrial natriuretic peptide from 7.2 +/- 0.7 to 21 +/- 4, 62 +/- 12, and 192 +/- 35 fmol/mL without affecting sodium excretion. In monkeys receiving 10 pmol.kg-1.min-1 of atrial natriuretic peptide, 300 mumol/kg of SQ 28,603 reduced mean arterial pressure by -13 +/- 5 mmHg and increased sodium excretion from 6.6 +/- 3.2 to 31.3 +/- 6.0 muequiv./min, cyclic guanosine monophosphate excretion from 342 +/- 68 to 1144 +/- 418 pmol/min, and plasma atrial natriuretic peptide from 124 +/- 8 to 262 +/- 52 fmol/mL. In conclusion, SQ 28,603 stimulated renal excretory function in conscious monkeys, presumably by preventing the degradation of atrial natriuretic peptide by neutral endopeptidase.  相似文献   

9.
The phenomenon of contractile agonist-dependent relaxation by isoproterenol (ISO) of active tension elicited by acetylcholine (ACh), histamine (HIS), serotonin (5-HT), and potassium chloride-substituted Krebs-Henseleit solution (KCl) was studied in 210 tracheal smooth muscle (TSM) strips from 28 mongrel dogs in vitro. All TSM strips were contracted to similar active tensions [target tension (TT) = 50% of the maximal active tension elicited by 127 mM KCl] with ACh, HIS, 5-HT, or KCl and relaxed with either ISO, forskolin (FSK), N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (db-cAMP), or 3-isobutyl-1-methylxanthine (IMX). The concentrations of ISO causing 50% relaxation from TT (RC50) were ACh (2.9 +/- 1.1 x 10(-6) M) greater than 5-HT (8.4 +/- 1.5 x 10(-8) M) approximately KCl (8.1 +/- 2.1 x 10(-8) M) greater than HIS (1.6 +/- 0.2 x 10(-8) M). FSK and IMX relaxed TSM in the same rank order of potency as ISO. In contrast to the contractile agonist-dependent relaxation elicited by ISO, FSK, and IMX, db-cAMP was nearly equipotent in relaxing similarly contracted strips. These results are consistent with contractile agonist-specific interaction with cAMP production by ISO and FSK. These data demonstrate that the phenomenon of contractile agonist-dependent relaxation by ISO is not related specifically to the beta-adrenoceptor.  相似文献   

10.
Parturition in the pregnant sheep is preceded by an abrupt alteration in placental steroid metabolism causing a shift from progesterone to estrogen production. This change is believed to be a consequence of the prepartum rise in cortisol in the fetal circulation and involves increases in activities of the enzymes steroid 17 alpha-hydroxylase (cytochrome P-450(17)alpha), steroid C-17,20-lyase, and possibly aromatase. We have investigated the activity levels of aromatase and 17 alpha-hydroxylase in placental microsomes in late pregnancy and dexamethasone-induced labor. Over the gestational period of 118-140 days basal levels of placental aromatase were relatively constant [mean value (+/- SD) of 5.6 +/- 1.6 pmol min-1 mg microsomal protein-1 (n = 10)]. Steroid 17 alpha-hydroxylase activity was undetectable [less than 0.5 pmol min-1 mg microsomal protein-1 (n = 7)]. In six animals in labor induced with infusion of dexamethasone into the fetus, placental aromatase activity had a mean value of 14.0 +/- 2.5 pmol min-1 mg protein-1; placental steroid 17 alpha-hydroxylase, measured in four of the animals, had a mean (+/- SD) activity of 319 +/- 58 pmol min-1 mg microsomal protein-1. Immunoblotting of placental microsomal preparations with specific antibodies to cytochrome P-450(17)alpha and NADPH-cytochrome P-450-reductase indicated that the glucocorticoid-induced activity of 17 alpha-hydroxylase was associated with increased content of cytochrome P-450(17)alpha. Northern blotting with a cDNA probe for cytochrome P-450(17)alpha showed that glucocorticoid increased the levels of mRNA for the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Three new analogues of cAMP have been synthesized and characterized: 2-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic monophosphate (2-BDB-TcAMP), 2-[(3-bromo-2-oxopropyl)thio]-adenosine 3',5'-cyclic monophosphate (2-BOP-tcAMP), and 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic monophosphate (8-BDB-TcAMP). The bromoketo moiety has the ability to react with the nucleophilic side chains of several amino acids, while the dioxobutyl group can interact with arginine. These cAMP analogues were tested for their ability to inactivate the low Km (high affinity) cAMP phosphodiesterase from human platelets. The 2-BDB-TcAMP and 2-BOP-TcAMP were competitive inhibitors of cAMP hydrolysis by the phosphodiesterase with Ki values of 0.96 +/- 0.12 and 0.70 +/- 0.12 microM, respectively. However, 2-BDB-TcAMP and 2-BOP-TcAMP did not irreversibly inactivate the phosphodiesterase at pH values from 6.0 to 7.5 and at concentrations up to 10 mM. These results indicate that although the 2-substituted TcAMP analogues bind to the enzyme, there are no reactive amino acids in the vicinity of the 2-position of the cAMP binding site. In contrast, incubation of the platelet low Km cAMP phosphodiesterase with 8-BDB-TcAMP resulted in a time-dependent, irreversible inactivation of the enzyme with a second-order rate constant of 0.031 +/- 0.009 min-1 mM1. Addition of the substrates, cAMP and cGMP, and the product, AMP, to the reaction mixture resulted in marked decreases in the inactivation rate, suggesting that the inactivation was due to reaction at the active site of the phosphodiesterase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In the present study the activities of three different protein kinase were determined in squamous cell carcinoma from the upper aero-digestive tract, and compared with the activities in normal oral mucosa. The protein kinases investigated are: a) cAMP-dependent protein kinase; b) cGMP-dependent protein kinase, and c) casein kinase II. The basal protein kinase activity, when histone IIa was used as substrate, was about 3-fold higher in tumors, as compared to normal mucosa, in the soluble fraction (32.0 +/- 4.2 and 10.9 +/- 2.4 pmol 32P/mg prot. X min, respectively). In the particulate fraction the basal protein kinase activity was about 9 times higher in tumors as compared to normal mucosa (19.4 +/- 5.2 and 2.1 +/- 0.3 pmol 32P/mg prot X min, respectively). The protein kinase activity in the presence of cyclic nucleotide (cAMP/cGMP) minus the basal protein kinase activity was taken as the cAMP- and the cGMP-dependent protein kinase activity, respectively. Maximal protein kinase activity was obtained in the presence of 0.5 microM of cyclic nucleotide both in squamous cell carcinoma and normal mucosa. In the cytosolic fraction the cAMP-dependent protein kinase activity was 33.9 +/- 13.0 pmol 32P/mg prot. X min in tumors, and 28.2 +/- 5.8 pmol 32P/mg prot. X min in normal tissue, after stimulation with 0.5 microM cAMP. The cGMP-dependent protein kinase activity was 5-10% of the cAMP-dependent protein kinase activity, and no concentration-dependent stimulation with cGMP was seen. The cGMP-dependent protein kinase activity in the presence of 0.5 microM cGMP was 2.4 +/- 1.3 and 1.8 +/- 0.6 pmol 32P/mg prot. X min in tumors and normal mucosa, respectively. Casein kinase II activity was determined only in the cytosolic fraction and was found to be 3-fold higher in tumors as compared to normal mucosa (31.8 +/- 5.2 and 8.6 +/- 3.5 pmol 32P/mg prot X min, respectively). This study shows a general increase in histone phosphorylation and casein kinase activity in neoplastic squamous epithelia compared to normal epithelia. No evidence for an increase in cyclic nucleotide dependent protein kinase activities in neoplastic squamous epithelia was found. This study thus supports the idea that phosphorylation/dephosphorylation reactions may play an important role in the control of cell growth, differentiation and proliferation.  相似文献   

13.
Previous reports have described both increased and decreased cyclic nucleotide phosphodiesterase (PDE) activity in dystrophic muscle. Total PDE activity was measured in hind leg muscle from a mouse model of Duchenne muscular dystrophy (mdx) and a genetic control strain at 5, 8, 10, and 15 weeks of age. Total PDE activity declined in fractions isolated from mdx muscle over this time period, but was stable in fractions from control mice. Compared with age-matched controls, younger mdx muscle had higher cAMP and cGMP PDE activity. However, at 15 weeks, fractions from both strains had similar cGMP PDE activity and mdx fractions had lower cAMP PDE activity than controls. Particulate fractions from mdx muscle showed an age-related decline in sensitivity to the PDE4 inhibitor RO 20-1724. A similar loss of sensitivity to the PDE2 inhibitor erythro-9-(2-hydroxyl-3-nonyl)-adenine (EHNA) was seen in a particulate fraction from mdx muscle and to a lesser degree in control muscle. These results suggest that the earlier disagreement regarding altered cyclic nucleotide metabolism in dystrophic muscle may be due to changes with age in PDE activity of dystrophic tissue. The age-related decline in particulate PDE activity seen in dystrophic muscle appears to be isozyme-specific and not due to a generalized decrease in total PDE activity.  相似文献   

14.
Scott SP  Shea PW  Dryer SE 《Biochemistry》2007,46(33):9417-9431
Hyperpolarization activated cyclic nucleotide modulated (HCN) ion channel currents are activated by hyperpolarization and modulated in response to changes in cytosolic adenosine 3',5'-cyclic monophosphate (cAMP) concentrations. A cDNA chimera combining the rat HCN2 cyclic nucleotide binding domain and the DNA binding domain of the cAMP receptor protein (CRP) from E. coli and the histidine tag (HCN2/CRP) was expressed and purified. The construct is capable of forming only non-ligand dependent dimers because the C-linker region of the channel is not present in this construct. The construct binds 8-[[2-[(fluoresceinylthioureido) amino] ethyl] thio] adenosine-3',5'-cyclic monophosphate (8-fluo cAMP) with a Kd of 0.299 microM as determined with a monomer binding model. The Ki values of 20 ligands related to cAMP were measured in order to determine the properties necessary for a ligand to bind to the HCN2 binding domain. This is the first report of cAMP and gunaosine 3',5'-cyclic monophosphate (cGMP) affinities to the HCN2 binding domain being equivalent, even though they modulate the channel with a 10-fold difference in K0.5. Furthermore, the array of ligands measured allows the preference rank order for each purine ring position to be determined: position 1, H > NH2 > O; position 2, NH2 > Cl > H > O; position 6, NH2 > Cl > H > O; and position 8, NH2 > Cl > H > O. Finally, the ability of HCN2/CRP to bind cyclic nucleotide pyrimidine rings at concentrations approximately 1.33 times greater than cAMP suggests that ribofuranose is key for binding.  相似文献   

15.
We have measured microsomal steroid aromatase activity in the fetal component of ovine placental cotyledons collected from pregnant ewes between 124 days and 127 days of gestation. Aromatase activity was determined by quantifying the [3H]water by-product when [1 beta-3H(N)] androstenedione was used as substrate. The mean microsomal aromatase activity (+/- SD) was 5.7 +/- 2.2 pmol.min-1.mg protein-1 (n = 12) and was 9% of the aromatase activity of human placental microsomes [mean (+/- SD) of 66.1 +/- 25.0 pmol.min-1.mg protein-1 (n = 7)]. The apparent Km for ovine placental aromatase for androstenedione, at pH 7.4 and 37 degrees C, was 50 nM while the Vmax was 20.6 pmol.min-1.mg protein-1. The respective concentrations effecting 50% inhibition of ovine placental aromatase activity (the I50) for econazole, 4-hydroxyandrostenedione, imazalil, miconazole, ketoconazole and aminoglutethimide were 0.03, 0.05, 0.15, 0.50, 5.0 and 5.5 microM. The order of relative potencies were similar to those obtained for human placental aromatase. Ketoconazole and aminoglutethimide were approx 10 times more potent inhibitors of the sheep enzyme relative to the human. Aromatase activity was not confined to the microsomal fraction of ovine placental tissue but was distributed throughout all the particulate subcellular fractions. The proportionally high activity of the tissue homogenate (1.75 pmol.min-1.mg protein-1) is suggestive that in the last third of pregnancy, aromatase is not rate limiting with regard to placental estrogen production. It would appear, therefore, that the major factor regulating placental estrogen synthesis in ovine pregnancy is the availability of substrate.  相似文献   

16.
We previously showed that 8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic monophosphate inactivates cAMP phosphodiesterase (PDE3A); however, millimolar concentrations were needed to inactivate PDE3A because of ongoing hydrolysis. We have now synthesized a nonhydrolyzable reactive cAMP analogue, (S(p))-8-[(4-bromo-2,3-dioxobutyl)thio]adenosine 3',5'-cyclic S-(methyl)monophosphorothioate (S(p)-8-BDB-TcAMPSMe). S(p)-8-BDB-TcAMPSMe inactivates PDE3A in a time-dependent, irreversible manner, exhibiting saturation kinetics with a k(max) of (19.5 +/- 0.3) x 10(-3) min(-1) and a K(I) of 3.5 +/- 0.3 muM. To ascertain whether S(p)-8-BDB-TcAMPSMe reacts in the active site, nonhydrolyzable analogues of the substrate cAMP, or the competitive inhibitor cGMP, were included to protect against the inactivation of PDE3A. The order of effectiveness of protectants in decreasing the rate of inactivation (with K(d) values in micromolar) is as follows: S(p)-cAMPS (18) > R(p)-cGMPS (560) and S(p)-cGMPS (1260) > 5'-AMP (17 660), R(p)-cAMPS (30 110), and 5'-GMP (42 170). We docked S(p)-8-BDB-TcAMPSMe into PDE3A, based on the structural model of PDE3A-cAMP and the kinetic data from site-directed mutants. The S(p)-8-BDB-TcAMPSMe fits into the active site in the model. These results suggest that inactivation of PDE3A by the affinity reagent is a consequence of reaction at the overlap between cAMP and cGMP binding regions in the active site. S(p)-8-BDB-TcAMPSMe has proven to be an effective active site-directed irreversible cAMP affinity label for platelet PDE3A and can be used to identify amino acids in the active site of PDE3A as well as in other cAMP phosphodiesterases.  相似文献   

17.
Endogenous cyclic adenosine and guanosine monophosphate (cAMP, cGMP) levels were studied in human peripheral blood lymphocytes during mixed leukocyte reactions (MLR). cAMP level was consistently elevated in one-way MLR, with good correlation to 3H-thymidine uptake in these reactions. In contrast, cGMP level was practically unchanged. Irradiation of reacting cell populations resulted in inhibition of cyclic nucleotide phosphodiesterase (PDE) activity. These results suggest that metabolic alterations in cAMP may be associated with immune reactions of cellular recognition.  相似文献   

18.
It has been reported that nitric oxide (NO) is involved in the relaxation mechanism of ginsenoside saponin in various smooth muscle in experimental animals. Although ginsenoside Rg(3) showed both endothelium-dependent and -independent component relaxation in vascular smooth muscle, the action mechanism of the relaxation of corporal muscle is not clear. We, thus, investigated the relaxation mechanism of ginsenoside Rg(3) using isolated canine corpus cavernosum. Ginsenoside Rg(3) concentration-dependently relaxed the canine corpus cavernosum that had been contracted by phenylephrine (PE), in which IC(50) was 1.68 x 10(-5) g/ml. Ginsenoside Rg(3) significantly (P < 0.05) potentiated acetylcholine (ACh)-induced relaxation in endothelium intact corpus cavernosum. Methylene blue (MB) but not N(omega)-nitro-L-arginine methylester (L-NAME) or ODQ (1H-[1,2,4]oxadiazol-[4,3-]quinoxsalin-1-one) modified the dose-response curve of ginsenoside Rg(3). Ginsenoside Rg(3) also significantly potentiated relaxation response to UV light in the presence of streptozotocin (STZ), which was almost completely (P < 0.01) blocked by ODQ. Ginsenoside Rg(3) concentration-dependently inhibited corporal phosphodiesterases (PDE), which resulted in increase of cyclic adenosine monophosphate (cAMP) as well as cyclic guanosine monophosphate (cGMP) contents in corporal smooth muscles. MB inhibited the accumulation of cGMP but not cAMP by ginsenoside Rg(3). These results indicate that mechanism responsible for the relaxation by ginsenoside Rg(3) is not by stimulating endothelial nitric oxide synthase (eNOS) of the canine corporal smooth muscle but by increasing cyclic nucleotide levels through PDE inhibition.  相似文献   

19.
Full-length cDNAs of human cyclic nucleotide phosphodiesterase 8B (PDE8B) were isolated. Enzymatic characteristics of a dominant variant encoding a protein of 885 residues (PDE8B1) were compared with those of PDE8A1. The recombinant PDE8A1 and PDE8B1 proteins of an entire form were produced in both cytosolic and membrane fractions of the transfected COS cells. The human PDE8B1 was a high-affinity cAMP-PDE with K(m) value of 101+/-12 nM for cAMP, which is greater than that of PDE8A1 (40+/-1 nM). Relative V(max) value of PDE8A1 was 57+/-8% compared with that of PDE8B1 (100+/-12%). Although PDE8A1 was moderately inhibited by dipyridamole with IC(50) value of 8+/-2 microM, the compound antagonized the PDE8B1 activity at three-fold higher concentration (IC(50)=23+/-2 microM). The human PDE8B gene was composed of 22 exons, spanning over 217 kb. Although overall sequence identity between PDE8A1 and PDE8B1 was 68%, positions of junctions of each exon between the PDE8A1 and PDE8B1 sequences were well matched, indicating evolutionary relatedness of both genes.  相似文献   

20.
Deficits in brain function that are associated with aging and age-related diseases benefit very little from currently available therapies, suggesting a better understanding of the underlying molecular mechanisms is needed to develop improved drugs. Here, we review the literature to test the hypothesis that a break down in cyclic nucleotide signaling at the level of synthesis, execution, and/or degradation may contribute to these deficits. A number of findings have been reported in both the human and animal model literature that point to brain region-specific changes in Galphas (a.k.a. Gαs or Gsα), adenylyl cyclase, 3′,5′-adenosine monophosphate (cAMP) levels, protein kinase A (PKA), cAMP response element binding protein (CREB), exchange protein activated by cAMP (Epac), hyperpolarization-activated cyclic nucleotide-gated ion channels (HCNs), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), soluble and particulate guanylyl cyclase, 3′,5′-guanosine monophosphate (cGMP), protein kinase G (PKG) and phosphodiesterases (PDEs). Among the most reproducible findings are 1) elevated circulating ANP and BNP levels being associated with cognitive dysfunction or dementia independent of cardiovascular effects, 2) reduced basal and/or NMDA-stimulated cGMP levels in brain with aging or Alzheimer's disease (AD), 3) reduced adenylyl cyclase activity in hippocampus and specific cortical regions with aging or AD, 4) reduced expression/activity of PKA in temporal cortex and hippocampus with AD, 5) reduced phosphorylation of CREB in hippocampus with aging or AD, 6) reduced expression/activity of the PDE4 family in brain with aging, 7) reduced expression of PDE10A in the striatum with Huntington's disease (HD) or Parkinson's disease, and 8) beneficial effects of select PDE inhibitors, particularly PDE10 inhibitors in HD models and PDE4 and PDE5 inhibitors in aging and AD models. Although these findings generally point to a reduction in cyclic nucleotide signaling being associated with aging and age-related diseases, there are exceptions. In particular, there is evidence for increased cAMP signaling specifically in aged prefrontal cortex, AD cerebral vessels, and PD hippocampus. Thus, if cyclic nucleotide signaling is going to be targeted effectively for therapeutic gain, it will have to be manipulated in a brain region-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号