首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retention of the vital dyes rhodamine 123 (R-123) and hydroethidine (HET) correlates inversely with the multidrug resistant phenotypes of the adriamycin (ADM)-selected variants of a uv-induced murine fibrosarcoma cell line (UV-2237M). The differential affinity of these dyes for specific cellular organelles makes them unique compounds for studies of cellular transport. HET enters viable cells freely, is dehydrogenated to ethidium bromide (EtBr), and is subsequently accumulated in the nucleus. Viable cells are impermeable to extracellular EtBr, facilitating kinetic analysis of the efflux of intracellular EtBr. We found that the metabolite EtBr was rapidly cleared by ADM-resistant but not by ADM-sensitive cells. R-123 has a high affinity to mitochondria. Our results show that ADM-sensitive cells retain R-123 whereas the ADM-resistant cells do not. The clearance of both R-123 and EtBr from these cells was inhibited by verapamil. Therefore, R-123 and HET may be considered MDR-associated compounds useful in studying the MDR phenotype of cancer cells. Previously we reported a direct correlation between the level of activity of the calcium- and phospholipid-dependent protein kinase (protein kinases C) and ADM resistance in UV-2237M variant lines. In this report, we demonstrate a direct correlation between cellular calcium and MDR in these cells. Although chelation of extracellular calcium by EDTA did not alter the fluorescence profile of R-123 of the various cell lines, treating the ADM-resistant variants with verapamil restored cellular calcium to the same level as that of the parental cells and, at the same time, retarded the facilitated efflux of R-123 and EtBr and partially reversed cancer cell resistance to ADM.  相似文献   

2.
P-glycoproteins encoded by multidrug resistance 1 (mdr1) genes are ATP-dependent transporters located in the plasma membrane that mediate the extrusion of hydrophobic compounds from the cell. Using cultured isolated rainbow trout hepatocytes, we characterized an mdr1-like transport mechanism of the teleost liver. Immunoblots with the monoclonal antibody C219, which recognizes a conserved epitope of P-glycoproteins, revealed the presence of immunoreactive protein(s) of 165 kDa in trout liver and cultured hepatocytes. In trout liver sections, the immunohistochemistry with C219 stained bile canalicular structures. Compounds known to interfere with mdr1-dependent transport (verapamil, vinblastine, doxorubicin, cyclosporin A, and vanadate) all increased the accumulation of rhodamine 123 by hepatocytes. Verapamil, vinblastine, and cyclosporin A decreased the efflux of rhodamine 123 from hepatocytes preloaded with rhodamine 123. By contrast, the substrate of the canalicular cation transporter tetraethylammonium and the inhibitor of the multidrug resistance-associated protein MK571 had no effect on rhodamine 123 transport. The results demonstrate the presence of an mdr1-like transport system in the teleost liver and suggest its function in biliary excretion.  相似文献   

3.
With a help of stepwise increase of vincristine concentrations in culture medium several lines of mouse myeloma X63 Ag 8.863 cells resistant to low concentrations of vincristine (6-35-fold) were selected. Rhodamine 123 stained resistant cells and wild-type cells with an equal intensity. However, resistant cells differ significantly from the sensitive ones by the rate of rhodamine efflux. The rate of the efflux was in proportion to the degree of resistance. The efflux of the dye could be blocked by the addition to reserpine, the inhibitor of multidrug resistance. Thus, fluorescent dyes can be used for the detection of cells with low levels of multidrug resistance.  相似文献   

4.
Cultured hamster fibroblasts of the DM-15 cell line stained by rhodamine 123 gradually release the dye when placed in dye-free medium. Here we demonstrate that reserpine, verapamil, and trifluoperazine are capable of blocking this release. We also show that reserpine can inhibit the efflux of another dye, phosphine 3R, from DM-15 cells and the release of rhodamine 123 from mouse embryo fibroblasts, four mouse cell lines, and MDCK cells. The three substances that block the release of the dyes are potent inhibitors of the membrane transport system implicated in the phenomenon of multidrug resistance (MDR). By using this system MDR cells can pump many structurally unrelated drugs and dyes, including rhodamine 123 and phosphine 3R, from the cytoplasm to the outer medium. It appears from our results that the membrane transport system responsible for MDR operates slowly in nonresistant cells and can play a role in normal cell physiology.  相似文献   

5.
Hematopoietic stem cells show reduced staining with a mitochondrial fluorescent dye, rhodamine 123 (Rh-123), which was supposed to indicate decreased mitochondrial activity in these cells. Rh123 and several other fluorescent dyes are substrates for transport mediated by P-glycoprotein (P-gp), an efflux pump responsible for multidrug resistance in tumor cells. We have found that staining of human bone marrow cells with fluorescent dyes is potentiated by P-gp inhibitors and inversely correlated with P-gp expression. P-gp is expressed in practically all hematopoietic progenitor cells, including long-term culture-initiating cells. The highest levels of P-gp among the progenitors are associated with cells displaying characteristics of pluripotent stem cells. These results have implications for stem cell purification and bone marrow resistance to cancer chemotherapy.  相似文献   

6.
Multidrug-resistant (MDR) cells demonstrate the increased activity of the membrane transport system performing efflux of diverse lipophylic drugs and fluorescent dyes from the cells. In order to detect MDR cells we have developed a simple test consisting of three steps: staining of the cells with fluorescent dye rhodamine 123, incubation in the dye-free medium and, finally, detection by fluorescence microscopy of the cells that have lost accumulated dye. The experiments with B-lymphoma cell lines with different degrees of MDR have shown that the cell fluorescence after the poststaining incubation is indeed inversely proportional to the degree of resistance. Application of this testing procedure to normal human or mouse leukocytes revealed the presence of the cells rapidly losing the dye in these populations. Cell fractionation experiments have shown that there are T-lymphocytes (most T-killers/suppressors and a part of T-helpers) that demonstrate rapid efflux of rhodamine 123. This characteristic was detected also in T-killer clones and cell line and in some T-lymphomas. The inhibitors of the MDR transport system, reserpine and verapamil, blocked the efflux of the dye from these cells. Rhodamine-losing T-lymphoma contained large amounts of the mRNA coding P-glycoprotein, the MDR efflux pump, and demonstrated increased resistance to rhodamine 123, gramicidin D, colchicine, and vincristine, the drugs belonging to the cross-resistance group for the MDR cells. The role of the increased activity of the MDR membrane transport system in T-lymphocytes is discussed.  相似文献   

7.
A 170,000-Da glycoprotein (P170 multidrug transporter) becomes specifically labeled in multidrug-resistant human KB carcinoma cells by the photolabile lipophilic membrane probe 5-[125I]iodonaphthalene-1-azide ([125I]INA) when photoactivation of the probe is triggered by energy transfer from intracellular doxorubicin or rhodamine 123. In contrast, in drug-sensitive cells, drug-induced specific labeling of membrane proteins with [125I]INA was not observed. Instead, multiple membrane proteins became labeled in a nonspecific manner. This phenomenon of drug-induced specific labeling of P170 by [125I]INA is observed only in living cells, but not in purified membrane vesicles or lysed cells. It is generated by doxorubicin and rhodamine 123, drugs that are chromophores and to which the cells exhibit resistance; but it is not observed with other drugs or dyes. Verapamil, a calcium channel blocker which reverses resistance to doxorubicin, also abolishes doxorubicin-induced specific [125I]INA labeling of P170. These results reveal that a specific interaction between P170 and doxorubicin takes place in living cells and demonstrate that P170 is directly involved in the mechanism of drug resistance in vivo. They also provide a possible means to label functional domains in the multidrug transporter. The results demonstrate that photosensitized [125I]INA labeling is a technique which provides sufficient spatial and time resolution to detect specific intracellular interactions between chromophores and proteins in vivo.  相似文献   

8.
Rhodamine 123 is a lipophilic cationic fluorescent dye that localizes in mitochondria. We found that 17 beta-estradiol changes the ability of GH4C1 cells, clonal rat pituitary tumor cells, to retain rhodamine 123. Cells incubated with 10 micrograms/ml rhodamine 123 for 30 min at 37 C took up about equal amounts of rhodamine 123, as determined by fluorescence microscopy, regardless of whether they had been treated with estradiol. After three 5-min washes at 37 C, cells treated with 1 nM estradiol for 7 days before incubation with rhodamine 123 had lost more fluorescence than untreated cells. We further characterized the effect by flow cytometry. The difference in fluorescence between control and treated cells ranged from 50- to 500-fold. The effect of estradiol was maximal at 10(-10) M and took a week to develop fully. The effect is specific for estradiol, because estradiol and diethylstilbestrol reduced retention of rhodamine 123 fluorescence at 10(-10) M, but the same concentrations of dihydrotestosterone, progesterone, dexamethasone, and cholesterol did not. To test if the effect on rhodamine 123 fluorescence was caused by activation of the multidrug resistance transport system, we examined the effect of estradiol on the retention of daunomycin, a known substrate of the transport system. Estradiol treatment caused a 3-fold decrease in daunomycin fluorescence. We isolated clones resistant to estradiol-induced loss of rhodamine 123 fluorescence by flow cytometry and found that two clones still showed an estradiol-induced decrease in daunomycin fluorescence equivalent to that of the parent line.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Rhodamine 123, a laser dye, has been demonstrated to inhibit import of the precursor to pyridine dinucleotide transhydrogenase into mitochondria in rat liver cells. When rat hepatocytes were labeled with 35[S] methionine in the presence of 0.4 mM rhodamine 123, the precursor to transhydrogenase was found to have a half-life in the cytoplasm of 15 minutes as opposed to a half-life of 1-2 minutes when cells were radiolabeled in the absence of the dye. To clarify the mechanism of import inhibition, studies were initiated to assess the effect of rhodamine 123 on mitochondrial respiration. Upon addition of the dye to a mitochondrial suspension, respiration was initially enhanced, then inhibited. The inability of FCCP, a classical uncoupler, to enhance respiration during the inhibitory phase suggests that rhodamine 123 is primarily inhibiting respiration through the electron transport system rather than through the ATPase. These results suggest that rhodamine 123 may inhibit import of the transhydrogenase precursor into mitochondria by disrupting components in the mitochondrial membrane necessary for efficient import.  相似文献   

10.
The effects of anisotonic and anisoionic media on the drug-pumping function of P-glycoprotein (Pgp) were studied in epithelial and nonepithelial cells. We used HT-29 colon cells (HT-29/Pgp?) induced to express Pgp and MDR phenotype (HT-29/Pgp+) and NIH3T3 (3T3/Pgp?) cells which were stably transfected with human MDR1 DNA (3T3/Pgp+). Intracellular concentrations of rhodamine 123 (R-123) preloaded into cells were monitored as a function of time by fluorescence imaging microscopy, while cells were superfused with media of different tonicity and/or ionic strength. Efflux was analyzed by a single exponential decay function. In all media tested efflux was considerably higher in Pgp+ than Pgp? cells. In both HT-29 and 3T3 cells loaded with dye in isotonic conditions, dye efflux was not significantly different whether it was measured in isoionic-isotonic (130 mM NaCI, 300 mOsm), hypoionic-isotonic (87 mM NaCI), or hypoionic-hypotonic (200, 150, or 100 mOsm) media throughout the entire experiment or whether the media were changed during the experiment. Similar results were obtained when cells were preincubated and preloaded with dye under hypotonic conditions. Under extreme hypotonic and hypoionic challenge (changing from 130 mM NaCI-300 mOsm to 43 mM NaCI-100 mOsm medium), 3T3 cells, but not HT-29 cells, underwent marked shape and size changes which reduced R-123 cell-associated fluorescence. The changes were most conspicuous in Pgp+ cells, possibly reflecting a Pgp effect on the osmotic or osmoregulatory properties of the cells. However, drug-pumping activity remained essentially unimpaired even under the most extreme hypotonic/hypoionic conditions. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The P-glycoprotein efflux system located on the apical membrane of brain capillary endothelial cells functions as part of the blood-brain barrier. In this study, primary cultures of bovine brain microvessel endothelial cells (BMECs) were investigated for the presence of a P-glycoprotein system and its contribution in regulating ivermectin distribution across the blood-brain barrier. Results of rhodamine 123 uptake studies with cyclosporin A and verapamil as substrates indicated that a functional efflux system was present on BMECs. Immunoblot analysis with the C219 monoclonal antibody to the product of the multidrug resistant member 1(MDR1) gene also confirmed the expression of MDR1 in the BMECs. Unbound ivermectin was shown to significantly increase the uptake of rhodamine 123 in BMECs, however, the drug only modestly enhanced the transcellular passage of rhodamine. The results of these studies affirmed that unbound ivermectin is an inhibitor of the MDR1 efflux system in BMECs.  相似文献   

12.
We have investigated the kinetics of interaction of cationic fluorescent lipophiles (dyes) rhodamine 123, rhodamine 6G, tetramethyl rhodamine ethyl ester, safranine O, 1,1'-diethyloxacarbocyanine, 1,1'-diethyloxadicarbocyanine, and 1,1'-diethylthiadicarbocyanine iodide with isolated respiring rat-liver mitochondria (RLM). Dye flux across the RLM inner membrane was measured by following the kinetics of fluorescence signal change after mixing of dye and RLM. The time course of fluorescence was analysed in terms of a kinetic model of the binding and transport processes involved. The rate constants of dye influx and efflux were extracted from the observed effect on the apparent time constant of fluorescence change to equilibrium intensity upon mixing dye with increasing concentrations of RLM. From the influx rate constants obtained, the apparent permeability constants for dye influx (at zero potential) across the membrane were calculated and ranged from 3 to 140 x 10(-4) cm/s. The influx rate constant was found to be linearly related to relative dye lipophilicity, as predicted by the model. As another test of the model, from the ratio of the influx and efflux rate constants, the apparent trans-membrane potential, psi, was calculated and found generally to agree with reported values, but to depend on the lipophilicity of the dye used. Not predicted by the simple model was a dissymmtry observed in the influx and efflux time constants for fluorescence change to equilibrium intensity. Inferences are made relating to the utility of these dyes as probes of psi.  相似文献   

13.
The effects of dietary plant sterols on human drug efflux transporters P-glycoprotein (P-gp, ABCB1) and multidrug resistance protein 1 (MRP1, ABCC1) were investigated using P-gp-overexpressing human carcinoma KB-C2 cells and human MRP1 gene-transfected KB/MRP cells. The effects of natural phytosterols found in foods, herbs, and dietary supplements such as β-sitosterol, campesterol, stigmasterol, fucosterol, and z-guggulsterone were investigated. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-gp, increased in the presence of guggulsterone in KB-C2 cells. The efflux of rhodamine 123 from KB-C2 cells was inhibited by guggulsterone. Guggulsterone also increased the accumulation of calcein, a fluorescent substrate of MRP1, in KB/MRP cells. The ATPase activities of P-gp and MRP1 were stimulated by guggulsterone. These results suggest that guggulsterone, a natural dietary hypolipidemic agent have dual inhibitory effects on P-gp and MRP1 and the potencies to cause food-drug interactions.  相似文献   

14.
Pdr5p is one of the major multidrug efflux pumps whose overexpression confers multidrug resistance (MDR) in Saccharomyces cerevisiae. By using our original assay system, a fungal strain producing inhibitors for Pdr5p was obtained and classified as Fusarium sp. Y-53. The purified inhibitors were identified as ionophore antibiotics, enniatin B, B1, and D, respectively. A non-toxic concentration of each enniatin (5 microg/ml, approximately 7.8 microM) strongly inhibited a Pdr5p-mediated efflux of cycloheximide or cerulenin in Pdr5p-overexpressing cells. The enniatins accumulated a fluorescent dye rhodamine 123, a substrate of Pdr5p, into yeast cells. The mode of Pdr5p inhibition of enniatin was competitive against FK506, and its inhibitory activity was more potent with less toxicity than that of FK506. The enniatins showed similar inhibitory profile as FK506 against S1360 mutants (S1360A and S1360F) of Pdr5p. The enniatins did not inhibit the function of Snq2p, a homologue of Pdr5p. Thus, it was found that enniatins are potent and specific inhibitors for Pdr5p, with less toxicities than that of FK506.  相似文献   

15.
Rhodamine 123 accumulates in the mitochondria of living cells and exhibits selective anticarcinoma activity. The biochemical basis of toxicity was investigated by testing the effect of the dye on isolated rat liver mitochondria. Much lower concentrations of rhodamine 123 were required to inhibit ADP-stimulated respiration and ATP synthesis in well-coupled energized mitochondria than were required to inhibit uncoupled respiration and uncoupler-stimulated ATP hydrolysis. The amount of rhodamine 123 associated with the mitochondria was several-fold greater under energized as compared to non-energized conditions, which may explain why coupled functions appeared to be more sensitive than uncoupled functions to inhibition at low concentrations of rhodamine 123. It was concluded that the site of rhodamine 123 inhibition is most likely the F0F1 ATPase complex and possibly electron transfer reactions as well.  相似文献   

16.
The toxicity of cationic fluorescent dye, rhodamine 123, towards a number of independently established cell lines from three different species, namely human, mouse, and Chinese hamster, has been examined. All of the cell lines from any one species that were examined were found to exhibit similar sensitivities towards rhodamine 123 and no appreciable differences were observed between the normal and transformed cell types. However, in comparison to the cells of human origin, mouse and Chinese hamster cell lines exhibited about 10-fold and 70-fold higher resistance, respectively, and these differences appeared to be species related. In contrast to rhodamine 123, no differences in relative toxicities for these cell lines were observed for the structurally related neutral dye, rhodamine B. Fluorescence studies with rhodamine 123 show that in comparison to mouse and Chinese hamster cells, the more sensitive human cells show much higher uptake/binding of the drug, and a good correlation was seen in these studies between the extent of dye uptake/binding and the relative sensitivities of cell lines to rhodamine 123. These results provide evidence that the observed species-related differences in cellular toxicities are due to differences in the cellular uptake/binding of the dye.  相似文献   

17.
170-180-kDa membrane glycoprotein (P-glycoprotein) associated with multidrug resistance is involved in drug transport mechanisms across the plasma membrane of resistant cells. From sequence analysis of cDNAs of the P-glycoprotein gene, it is postulated that the active drug-efflux pump function may be attributable to the protein. However, purification of the P-glycoprotein while preserving its enzymatic activity has not been reported. In this study, we have purified the P-glycoprotein from the human myelogenous leukemia K562 cell line resistant to adriamycin (K562/ADM) by means of one-step immunoaffinity chromatography using a monoclonal antibody against P-glycoprotein. The procedure was simple and efficiently yielded an electrophoretically homogeneous P-glycoprotein sample. By solubilization with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, the purified P-glycoprotein was found to have ATPase activity. This ATP hydrolysis may be coupled with the active efflux of anticancer drugs across the plasma membrane of multidrug-resistant cells.  相似文献   

18.
Human P-glycoprotein (Pgp) is a 170-kDa plasma membrane protein that confers multidrug resistance to otherwise sensitive cells. A mutation in Pgp, G185-->V, originally identified as a spontaneous mutation, was shown previously to alter the drug resistance profiles in cell lines that are stably transfected with the mutant MDR1 cDNA and selected with cytotoxic agents. To understand the mechanism by which the V185 mutation leads to an altered drug resistance profile, we used a transient expression system that eliminates the need for drug selection to attain high expression levels and allows for the rapid characterization of many aspects of Pgp function and biosynthesis. The mutant and wild-type proteins were expressed at similar levels after 24-48 h in human osteosarcoma (HOS) cells by infection with a recombinant vaccinia virus encoding T7 RNA polymerase and simultaneous transfection with a plasmid containing MDR1 cDNA controlled by the T7 promoter. For both mutant and wild-type proteins, photolabeling with [3H]azidopine and [125I]iodoarylazidoprazosin, drug-stimulated ATPase activity, efflux of rhodamine 123, and accumulation of radiolabeled vinblastine and colchicine were evaluated. In crude membrane preparations from HOS cells, a higher level of basal Pgp-ATPase activity was observed for the V185 variant than for the wild-type, suggesting partial uncoupling of drug-dependent ATP hydrolysis by the mutant. Several compounds, including verapamil, nicardipine, tetraphenylphosphonium, and prazosin, stimulated ATPase activities of both the wild-type and mutant similarly, whereas cyclosporin A inhibited the ATPase activity of the mutant more efficiently than that of the wild-type. This latter observation explains the enhanced potency of cyclosporin A as an inhibitor of the mutant Pgp. No differences were seen in verapamil-inhibited rhodamine 123 efflux, but the rate of accumulation was slower for colchicine and faster for vinblastine in cells expressing the mutant protein, as compared with those expressing wild-type Pgp. We conclude that the G185-->V mutation confers pleiotropic alterations on Pgp, including an altered basal ATPase activity and altered interaction with substrates and the inhibitor cyclosporin A.  相似文献   

19.
Although a variable proportion of multiple myeloma patients can achieve response with conventional chemotherapy, residual tumor cells, which are refractory, finally reemerge leading to disease progression. The expression of the multidrug resistance protein (MDR1) has been one of the most extensively explored mechanisms of drug resistance and has been related to a poor response to chemotherapy in several human tumors. Nevertheless, a careful analysis of the literature on MDR1 expression in multiple myeloma (MM) shows the existence of disturbing discrepancies as regards both the incidence of MDR1 over-expression and its clinical value. A prerequisite for the assessment of MDR1 in tumor cells should be the identification of the neoplastic cells present in the sample. This is particularly important in MM, where the percentage of tumor cells in bone marrow (BM) is relatively low. In the present study we have analyzed the functional expression of MDR1 in BM plasma cells (PC), from a group of 40 untreated MM patients. For that purpose, the rhodamine 123 efflux assay was used in combination with specific staining for plasma cells (CD38 strong+). The mean fluorescence channel (MFC) of rhodamine 123 in myelomatous PC from MM patients was 311 and 110 after incubating cells with this fluorochrome for 15 and 60 min, respectively. The median percentage of rhodamine 123 elimination by BM PC was of 61% (range: 0.29 to 88%). Upon analyzing the relationship between the ability of myelomatous PC to eliminate rhodamine 123 and other clinical and biological disease characteristics we found that, within the group of patients displaying high MDR1 expression (>61% rhodamine efflux), there was a higher incidence of cases with bone disease (P = 0.014) and advanced clinical stages (P = 0.031), greater calcium (P = 0.007) and creatinine serum levels (P = 0.061), and lower levels of albumin in serum (P = 0.015). All these parameters are usually associated with a poor prognosis. When we analyzed the possible relationship between the ability of BM PC to eliminate rhodamine 123 and the presence of numerical chromosome abnormalities we observed that a low MDR1 expression was related to a higher incidence of trisomies of chromosomes 6 and 17, although these differences did not reach statistical significance (P = 0.06). In spite of these associations, from the prognostic point of view, MDR1 expression did not correlate with other relevant prognostic factors, response to treatment (P = 0.38) or overall survival (P = 0.12).  相似文献   

20.
Summary Human livers were removed at immediate autopsy (IA) from brain death patients within 1 h after cessation of cardiac function. Viable hepatocytes were isolated successfully from these IA livers by perfusion of an intack lobe with collagenase or by digestion of a small tissue wedge with collagenase-dispase. The yields of hepatocytes ranged from 1 to 3 × 106 cells/g liver in the five cases studied. Approximately 70 to 90% of the cells excluded trypan blue dye. In the isolated hepatocytes, 632 pmol/mg protein of cytochromep 450 and 536. pmol/mg protein cytochromeb 5 were measured. The cells attached to the dishes in 4 h and produced monolayer cultures with a high success rate. The cells maintained in primary cultures for several days and developed ultrastructural features characteristic of human hepatocytes in vivo. The cultured hepatocytes can hydroxylate benzo[a]pyrene, conjugate the metabolites, and have a benzo[a]pyrene hydroxylase activity of 48.7 pmol/mg DNA per h, which is comparable to that of rat hepatocytes. The liver cells repaired DNA damage caused by exposures to aminofluorene and acetylaminofluorene in culture. This work was supported by EPA Grants R-809835-01-1, R-809599010 and DOE Contract DE-A505-83ER60158. Cobtribution no. 1762 from the Cellular Pathobiology Laboratory, University of Maryland School of Medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号