首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
江豚(Neophocaena asiaeorientalis)的消化器官 Ⅰ.舌、食管、胃   总被引:2,自引:2,他引:0  
江豚是属于鼠海豚科(Phocoenidae)的一种小型齿鲸。我国沿海以及大的江河、湖泊中均有分布。1926年秉志曾报道过江豚某些消化器官的大体结构。以后Howell(1927)和Pilleri等(1972)也分别描述了其胃的构造,可是都缺少组织学的观察,对江豚的舌、肠和胰等的叙述极简短。此外,Arvy等(1972)、Yamasaki等(1976)和Komatsu等(1980)对江豚的舌进行过不同程度的研究。  相似文献   

2.
Gastric and cranial duodenal structure of the bowhead whale (Balaena mysticetus) was examined grossly and microscopically. The stomach was arranged in a series of four compartments. The first chamber, or forestomach, was a large nonglandular sac lined by a keratinized stratified squamous epithelium. It was followed by the fundic chamber, a large, somewhat globular and entirely glandular compartment. At the entrance of the fundic chamber, a narrow cardiac gland region could be defined. The remaining mucosa of the chamber contained the proper gastric glands. A narrow, tubular connecting channel, the third distinct gastric division, was lined by mucous glands and joined the fundic chamber with the final stomach compartment, or pyloric chamber. This fourth chamber was also tubular and lined by mucous glands but was of a diameter considerably larger than the connecting channel. The stomach terminated at the pyloric sphincter which consisted of a well-developed band of circular smooth-muscle bundles effecting a division between the pyloric chamber and small intestine. The small intestine began with the duodenal ampulla, a dilated sac considerably smaller than the fundic chamber of the stomach. The mucosa of this sac contained mucous glands throughout. The ampulla led without a separating sphincter into the duodenum proper which continued the intestine in a much more narrow tubular fashion. The mucosal lining of the duodenum was composed of villi and intestinal crypts. Although their occurrence varied among whales, enteroendocrine cells were identified within the mucous glands of the cardiac region, connecting channel, pyloric chamber, and cranial duodenum. The hepatopancreatic duct entered the wall of the duodenum shortly after the termination of the duodenal ampulla and continued intramurally along the intestine before finally joining the duodenal lumen.  相似文献   

3.
An anatomical study of the digestive tract of the channel catfish revealed that the oesophageal mucosa was longitudinally folded and that secondary folds were occasionally located on the primary longitudinal folds. The infoldings were more numerous near the stomach. The stratified squamous epithelium covering the folds was made up of a basal layer, large mucous cells and simple squamous cells on the surface. The epithelium on the side of the folds consisted primarily of mucous secreting cells. Taste buds were observed between mucous cells on the apical portion of the oesophageal folds and were more prevalent in the cranial part of the oesophagus. The remaining layers of the oesophagus were: a lamina propria-submucosa, tunica muscularis and adventitia or serosa.
The J-shaped stomach had two regions: a large sac-shaped region containing gastric glands and a smaller, nonglandular pyloric region. The large rugae of the stomach became gradually smaller near the pylorus. There was a well developed pyloric sphincter. The mucosa included a simple columnar epithelium, a lamina propria and adventitia or serosa.
The intestine could be differentiated into a thick ascending segment, a descending segment, a thin convoluted segment and a thicker terminal segment, the rectum. Many mucosal folds containing branched villi characterized the ascending segment of the intestine. The descending and convoluted segments contained fewer folds with shorter and less-branching villi and were smaller in diameter and thinner walled. Descending and convoluted segments were also mildly convoluted and accounted for 80% of the total length of the intestine. An intestinal valve with a sphincter marked the beginning of the rectum. There was an approximately four-fold increase in the thickness of the tunica muscularis of the terminal segment of the intestine.  相似文献   

4.
The anatomical arrangement of the digestive tract and the length (cm) of the oesophagus and intestine of the catfish Lophiosilurus alexandri were described, and the intestinal coefficient was determined. L. alexandri oesophagus is short, in median position, and presents longitudinally folded mucosa, whilst its epithelium is stratified and non-keratinised, with mucous, claviform and epithelial cells. Stomach has “C” shape, with folded mucosa along cardiac region, disordered in the fundic region, and directed to the sphincter in the pyloric region. Its epithelium is simple prismatic, and cardiac and fundic portions have gastric glands. Cranial intestine is formed by pyloric flexure and descending loop attached to the right side of stomach. Middle intestine is winding and positioned to the right of caudal portion of stomach. Caudal intestine is linear and with a median position up to the anus. Intestinal coefficient was 1.39 ± 0.30 cm. Epithelium is simple prismatic with brush border and contains epithelial and goblet cells. Caudal region has highest concentration of goblet cells. Were detected neutral glycoproteins, carboxylated and sulphated acid glycoconjugates for mucous cells and goblet cells, and neutral glycoproteins for the apical region of gastric epithelial cells. Morphological features could be related to piscivorous species feeding habit.  相似文献   

5.
Xiong, D., Zhang, L., Yu, H., Xie, C., Kong, Y., Zeng, Y., Huo, B. and Liu, Z. 2011. A study of morphology and histology of the alimentary tract of Glyptosternum maculatum (Sisoridae, Siluriformes). —Acta Zoologica (Stockholm) 92 : 161–169. The structure of alimentary tract has been studied in a cold water fish Glyptosternum maculatum, an endemic teleost species of notable economic importance and with high potential for controlled rearing of the species in Tibet, by light and electron microscope. Glyptosternum maculatum has short oesophagus, large caecal‐type stomach and short intestine, and the digestive tract with four layers: mucosa, submucosa, muscularis and serosa. Taste buds were found in the epithelium of lips, buccopharynx and oesophagus. The stratified epithelium of buccopharynx and oesophagus was located with numerous goblet cells. The U‐shaped stomach has three parts, corresponding to mammalian cardiac, fundus and pyloric portion, lined with a single‐layered columnar epithelium, and tubular gastric glands are present in cardiac and fundic portion, but absent in pyloric portion. No pyloric caeca was detected. The intestine is separated from the stomach by a loop valve. The intestine epithelium is composed of simple columnar cells with a distinct microvillus brush border and many goblet cells. Meanwhile, the intestinal coefficient was 0.898. At the ultrastuctural level, three type cells (mucous, glandular and endocrine cell) were found in the stomach, and glandular cell with a great amount of pepsinogen granules. The enterocytes of the intestinal mucosa display abundant endoplasmic reticulum, mitochondria and well‐developed microvilli. Congxin Xie, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China. E‐mail: xiecongxin@mail.hzau.edu.cn or dreamsail_2005@yahoo.com.cn  相似文献   

6.
A study of the histology of the digestive tract of the Nile tilapia   总被引:8,自引:0,他引:8  
The digestive tract of Oreochromis niloticus is described, in order to resolve discrepancies found between previous accounts. Two types of goblet cells were found in the oesophagus, which differed in size, and in staining characteristics with periodic acid-Schiff and alcian blue. A region with tubular glands consisting of large mucous cells was continuous from the entry of the oesophagus, across the anterior part of the stomach to the pyloric valve, essentially providing a bypass circumventing the sac-like portion of the stomach. This region, which is lined with striated muscle, may be a means of disposing of unwanted material, either by regurgitating it, or by passing it rapidly along to the intestine. Large mucus cells in the tubular glands and the neck cells of the gastric glands probably protect the mucosa from the very acid contents of the stomach. An ileorectal valve was present. There is therefore a separate intestine and rectum in O. niloticus , as in most teleosts.  相似文献   

7.
The organization of the oesophagus in the budding styelid ascidian, Polyandrocarpa misakiensis, is described. The oesophagus consists of external and internal epithelium, and there are loose connective tissue, blood sinuses, and a muscular layer between them. The internal epithelium is simple columnar, except for the bottom of three folds. The external epithelium is simple squamous. The internal epithelium contains four cell types, i.e., ciliated mucous cells, band cells, endocrine cells, and undifferentiated cells. The ciliated mucous cells have apical cilia and microvilli, and two types of mucous vesicle. The band cells also have apical cilia and electron-dense granules in the apical cytoplasm. The endocrine cells are bottle-shaped, and have electron-dense granules both above and below the nucleus. The undifferentiated cells form pseudostratified epithelium at the bottom of each fold, and they have nuclei with prominent nucleoli. One type of coelomic cell, which has retractile cytoplasm, often migrates in the internal epithelium. Near the stomach, there are many darkly stained round cells clustered around the posterior end of the oesophagus. These two types of coelomic cells may be involved in the defense mechanism against the invasion of foreign organisms. The basic organization of the oesophagus of P. misakiensis is similar to those of other ascidians. However, the presence of three folds is a characteristic of a solitary species, rather than of a colonial species. Although ascidians are chordate invertebrates, the organization of their oesophagus is not very complex, which might reflect their life style.  相似文献   

8.
采用常规石蜡组织切片的方法对野生和养殖黄鳍鲷(Sparus latus)消化道的形态组织结构进行了比较观察。结果表明,野生和养殖黄鳍鲷的消化道存在一定差异。(1)形态学研究表明,食道粗而短,胃呈V形,分为贲门部、胃体部和幽门部,胃与肠的连接处有4条幽门盲囊,肠道在体腔内迂回两个回折。野生黄鳍鲷牙齿更为坚硬锋利,体腔中脂肪较少,消化道更为粗短。野生和养殖黄鳍鲷的肠道系数分别为0.71±0.03和0.94±0.12。(2)组织学研究表明,食道黏膜上皮由扁平细胞层和杯状细胞层组成,杯状细胞发达。胃黏膜由单层柱状上皮组成,无杯状细胞,贲门部和胃体部胃腺发达。幽门盲囊组织学特征与肠相似,上皮为柱状上皮,其中的杯状细胞少于肠。肠中,前肠杯状细胞最多,中肠次之,后肠最少。直肠杯状细胞多于肠。野生与养殖黄鳍鲷组织学的区别在于,消化道相同部位养殖鱼的杯状细胞多于野生鱼,野生鱼的肌层厚度大于养殖鱼。黄鳍鲷消化道的形态组织结构与其生活环境和食物是相关的。  相似文献   

9.
Micale  V.  Garaffo  M.  Genovese  L.  Spedicato  M. T.  & Muglia  U. 《Journal of fish biology》2004,65(S1):332-333
The ontogenesis of the alimentary tract and its associated structures (liver, pancreas, gall bladder) was studied in common pandora Pagellus eythrinus L., a promising species for diversification in Mediterranean aquaculture. Mass production of pandora has been limited so far by high larval and juvenile mortalities, which appear to be related to nutritional deficiencies. The development of the larval digestive system was studied histologically from hatching (0 DAH) until day 50 (50 DAH) in reared specimens, obtained by natural spawning from a broodstock adapted to captivity. At first feeding (3–4 DAH) both the mouth and anus had opened and the digestive tract was differentiated in four portions: buccopharynx, oesophagus, incipient stomach and intestine. The pancreas, liver and gall bladder were also differentiated at this stage. Soon after the commencement of exogenous feeding (5–6 DAH), the anterior intestinal epithelium showed large vacuoles indicating the capacity for absorption of lipids, whereas acidophilic supranuclear inclusions indicating protein absorption were observed in the posterior intestinal epithelium. Both the bile and main pancreatic ducts had opened in the anterior intestine, just after the pyloric sphincter, at this stage. Intestinal coiling was apparent since 4 DAH, while mucosal folding began at 10 DAH. Scattered mucous cells occurred in the oral cavity and the intestine, while they were largely diffused in the oesophagus. Gastric glands and pyloric caeca were firstly observed at 28 DAH and appeared well developed by 41 DAH, indicating the transition from larval to juvenile stage and the acquisition of an adult mode of digestion.  相似文献   

10.
The histology of the digestive tract of the amberjack ( Seriola dumerili , Risso) was studied using light and scanning electron microscopy. The anterior oesophagus mucosa displays primary and secondary folds lined with a stratified squamous epithelium with fingerprint-like microridges which is substituted, on the top of the oesogaster folds, by a simple columnar epithelium with short microvilli. Only primary folds are present in the stomach. The anterior portion is rich in simple tubular glands, whereas the oesogaster and the pyloric region are devoid of them. Pyloric caeca and anterior and middle intestine mucosa display the same pattern of folding. The dominant cell type is the enterocyte, which exhibits larger and thinner microvilli in the caeca than in the intestine. The columnar epithelium of the rectum is replaced, in the anal sphincter, by a stratified flattened epithelium. Goblet cells are numerous throughout the whole length of the tract with the exception of the initial part of the oesophagus, the oesogaster, the stomach and the anal sphincter. Mucosubstances have been shown to vary in the different regions of the gut: acid mucines are found in the oesophagus, pyloric stomach, caeca, intestine and rectum, whereas neutral mucosubstances dominate in the anterior portion of the stomach. The muscularis is well developed throughout the length of the tract: two layers of striated muscle at the oesophageal level; two layers of smooth muscle in the stomach wall and three at the intestinal level.  相似文献   

11.
米志平  杨智 《四川动物》2001,20(4):214-216
小熊猫的胃属单室腺型胃,它以角切迹为界,可分为胃底部和幽门部两部分。胃壁由粘膜、粘膜下层、肌层和浆膜四层组成。四上皮为单层柱状上皮,具有分泌粘液的功能。胃腺有贲门腺、胃底腺、幽门腺三种,但贲门腺不发达。主细胞、壁细胞和粘液细胞的数量与分布呈现规律性变化。肌层发达,特别是内环行肌发达。并与大熊猫胃的结构作了比较。  相似文献   

12.
The cardiac and pyloric glands in the gastric mucosa of the South African hedgehog, Atelerix frontalis, are described. The cardiac area of the stomach contains proper cardiac glands and lacks undifferentiated fundic glands. The cardiac glands are simple tubular, coiled, and lined with columnar cells ultrastructurally similar to those of the gastric surface epithelium. Secretory granules with varying electron densities fill the apical cytoplasm of these cells. In contrast to other mammals, these glands lack mucous neck cells. The neck of the pyloric glands contains only a single cell type, whereas the basal regions of these glands contain “light” and “dark” cells. The secretory granules in the “dark” cells and the pyloric neck cells have a moderate electron density and often contain an electron dense core. An electron-lucent cytoplasm with numerous polysomes is characteristic of the “light” cells. Some “light” cells contain electron-dense granules in the apical cytoplasm. The presence of only neutral mucins in the cardiac gland cells denotes the absence of mucous neck cells. The acidic mucins within the pyloric neck cells seem to indicate that these cells are mucous neck cells, whereas the neutral mucins within the basally located pyloric gland cells show at least a partial functional difference from the pyloric neck cells. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Acanthopagrus schlegelii is an autochthonous teleost species concerning the remarkable economic importance and prevalent fish cultivated in China as well as in different nations of South-East Asia. Little is known about the digestive tract (DT) morphology of A. schlegelii. Therefore, anatomical and histomorphological aspects of A. schlegelii DT were examined by light and scanning electron microscope (SEM). Anatomically, DT of A. schlegelii was mainly formed of oesophagus, well-developed stomach and fingers like pyloric caeca (four in number), intestinal regions and rectum. Histomorphologically, oesophagus occurred as a shorter tube-like organ presenting a longitudinal folded mucosa that connects oropharynx cavity to stomach. Stomach was a muscular thick-wall organ that included three regions, thickly longitudinal folds were observed in the first (cardiac) and last (pyloric) regions, whereas the second (fundic) region showed folds in different directions. Long villi were observed within pyloric caeca and anterior intestine. Tunica muscularis appeared narrow in the anterior intestine, whereas thicker in the posterior part of the intestine. Collectively, anatomical and histomorphological aspects of A. schlegelii DT are consistent with the carnivorous habit of this species. These data could be a potential source to modify better methods of nutrition and identify the DT pathogenic conditions in farming of this fish.  相似文献   

14.
The stomach of Oreochromis niloticus has three regions   总被引:6,自引:0,他引:6  
The stomach of Oreochromis niloticus was divided into three distinct regions: initial, middle and terminal, corresponding roughly to the cardiac, fundic, and pyloric portions of the mammalian stomach. Grossly, the organ showed initial and terminal portions, the former connected to the distal part of the oesophagus and the latter to the proximal portion of the intestine. There was also a middle region, forming a large blind diverticulum communicating with the first two at their point of junction. The initial or cardiac region was shorter than the middle region but longer than the terminal one, and had a smooth surface devoid of gastric pits. The epithelium in this region was simple columnar devoid of goblet cells, with glandular regions in the lamina propria. The mucosa of the middle or fundic region had gastric pits lined by columnar epithelium, and simple tubular glands filled most of the lamina propria. The terminal or pyloric part of the stomach was very short and its mucosa was slightly folded and devoid of both gastric pits and mucous glandular cells. The lining epithelium of this portion of the stomach was simple columnar and a few goblet cells were seen at its junction with the first part of the intestine. The tunica muscularis of the stomach contained skeletal muscle in the initial and terminal regions, usually intermingled with smooth muscle fibres. Skeletal muscle fibres were also observed in the first portion of the small intestine, near the junction with the stomach.  相似文献   

15.
Suíçmez M  Ulus E 《Folia biologica》2005,53(1-2):95-100
The anatomy, histology and ultrastructure of the digestive tract of Orthrias angorae (Steindachner, 1897) were investigated using light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The histological structure consists of four layers: mucosa, submucosa, muscularis and serosa. The esophageal mucosa consists of undifferentiated basal epithelial cells, mucous cells and surface epithelial cells. It was observed that the J-shaped stomach had a meshwork of folds in the cardiac region, and longitudinal folds in the fundic and pyloric regions. A single layer of columnar cells, PAS positive only in their apical portions, forms the epithelium. The convoluted tube-shape intestine is lined by simple columnar epithelial cells, which have microvilli at the apical surface. The wall of the esophagus and stomach are thicker than that of the intestine because of the thick muscle layer. There were numerous goblet cells in the intestine. There were numerous gastric glands in the submucosa layer ofthe cardiac stomach, but none were present in the pyloric region of the stomach. There were no pyloric caeca between the stomach and intestine. The enterocytes with microvilli contained rough endoplasmic reticulum, ribosomes and rounded bodies, and the gastric cells contained a well-developed Golgi apparatus.  相似文献   

16.
鳜鱼消化道黏液细胞和6种酶的组织化学定位   总被引:1,自引:0,他引:1  
采用阿利新蓝-过碘酸雪夫氏(AB-PAS)染色和酶组织化学方法对鳜鱼消化道各部位黏液细胞和6种酶的分布与定位进行了研究。结果显示,黏液细胞可为分为4种类型,食道黏液细胞多数为Ⅲ型和Ⅳ型,未见Ⅰ型和Ⅱ型;胃贲门和胃幽门黏膜上皮仅有Ⅰ型黏液细胞;胃体黏膜上皮则以Ⅲ型细胞为主;幽门盲囊中主要为Ⅱ型细胞;前肠和中肠中Ⅳ型黏液细胞最多,Ⅰ型最少;后肠黏液细胞则以Ⅳ型和Ⅱ型为主。酸性磷酸酶(ACP)主要分布于幽门盲囊和前肠的黏膜上皮;碱性磷酸酶(ALP)主要分布于食道、幽门盲囊和整个肠道黏膜上皮;非特异性酯酶(NSE)主要分布于胃幽门、中肠和后肠黏膜上皮;过氧化物酶(POX)在胃幽门黏膜上皮中活性较高;琥珀酸脱氢酶(SDH)主要分布于胃腺中;腺苷三磷酸酶(ATPase)在消化道各部位均有较多分布。鳜鱼消化道黏液细胞和酶的分布型与其它动物有相似之处,也有其一定的特异性,与消化道不同部位的消化吸收机能相适应。  相似文献   

17.
A small number of epithelial cells which combine features of two cell types were observed in the descending colon and pyloric stomach of the mouse. In the descending colon, where the base of the crypts is mainly composed of poorly differentiated "vacuolated" cells, a few of these cells contain, besides the characteristic "vacuoles," mucous globules identical to those in mucous cells or, less frequently, dense granules such as are found in entero-endocrine cells. Because there is evidence that the poorly differentiated vacuolated cells give rise to the other cells of the epithelium, those which also contain mucous globules or dense granules are likely to be differentiating into mucous cells or entero-endocrine cells respectively. In the pyloric stomach, where the glands are mainly composed of mucous cells, some of which are poorly differentiated, a few of the latter exhibit, besides the mucous globules, entero-endocrine type granules or features of caveolated cells. It is likely that the poorly differentiated mucous cells give rise to the other gland cells; and, therefore, those mucous-containing cells which also display dense granules or caveolated cell features are taken to be differentiating into entero-endocrine or caveolated cells respectively. Most of the cells containing two kinds of secretory materials are believed to be stem cells which initially contain a few vacuoles (colon) or mucous globules (pylorus) but are differentiating into a cell containing a different type of secretion. Rare observations of two kinds of secretory materials in a mature cell suggest that the transitional period may be prolonged, perhaps indefinitely.  相似文献   

18.
The organization of the stomach in the compound styelid ascidian, Polyandrocarpa misakiensis, is described, and the morphology and cell types of the stomach is discussed from the phylogenetic viewpoint. The stomach is a sac-like organ whose wall is formed into longitudinal folds. The stomach consists of external and internal epithelium. The internal epithelium is simple columnar, except for the bottom of the folds. There are five cell types: absorptive cells, zymogenic cells, endocrine cells, ciliated mucous cells, and undifferentiated cells. The absorptive cells have numerous microvilli. The apical region of these cells is occupied by coated vesicles. The zymogenic cells have a conical outline and a few microvilli on their apical surfaces. There are secretory granules in the apical region of zymogenic cells. The endocrine cells have low cell height and electron-dense granules around the nucleus. Endocrine cells have one or two cilia and a few microvilli on the apical surfaces. The basolateral part of these cells often bulges into the adjoining cells. Immunoelectron microscopy revealed that some endocrine cells have serotonin-like immunoreactivity. The ciliated mucous cells are restricted to a single ventral groove. They have numerous microvilli and a few cilia on their apical surfaces. Moderately electron-dense granules are accumulated in the apical part of the ciliated mucous cells. Undifferentiated cells, filled with free ribosomes, form a pseudostratified epithelium in the base of each fold. The nucleus of undifferentiated cells has a prominent nucleolus. The pseudostratified epithelium of the pyloric caecum consists of electron-dense and electron-light cells.  相似文献   

19.
The morphological and histological characteristics of the foregut of the crab Portunus sanguinolentus (Herbst) are described, with special reference to the lining and glands of the oesophagus. The oesophagus is lined throughout with an outer keratin and an inner collagen layer. Glands secreting mucopolysaccharides are to be found embedded in the connective tissue of the oesophagus. Details of the armature of the pyloric stomach are given.  相似文献   

20.
香鱼消化道及肝脏的形态结构特征   总被引:2,自引:0,他引:2  
采用解剖及石蜡切片显微技术观察了香鱼消化道及肝脏的组织学结构。香鱼消化道由口咽腔、食道、胃及肠构成。口咽腔大且狭长,其底壁前部有一对粘膜褶,两颌边缘着生宽扁梳状齿,腭骨及舌骨具齿,犁骨无齿;舌由基舌骨突出部分覆盖粘膜构成,舌粘膜上皮为复层扁平上皮,含有较多的杯状细胞和味蕾。食道、胃及肠均由粘膜层、粘膜下层、肌层及外膜构成。食道粘膜层上皮为复层扁平上皮,杯状细胞发达。胃呈V形,由贲门部、胃体部及幽门部组成,胃壁粘膜上皮为单层柱状上皮,贲门部与胃体部的固有层中有胃腺。肠较短,由前、中、后肠构成,肠壁粘膜上皮为单层柱状上皮,其游离面具微绒毛;上皮细胞间有杯状细胞。幽门盲囊有350~400条,其组织学结构与肠相同。肝脏单叶,外被浆膜;肝细胞形态不规则,肝小叶界限不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号