首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accepting evolution   总被引:2,自引:0,他引:2  
Poor public perceptions and understanding of evolution are not unique to the developed and more industrialized nations of the world. International resistance to the science of evolutionary biology appears to be driven by both proponents of intelligent design and perceived incompatibilities between evolution and a diversity of religious faiths. We assessed the success of a first-year evolution course at the University of Cape Town and discovered no statistically significant change in the views of students before the evolution course and thereafter, for questions that challenged religious ideologies about creation, biodiversity, and intelligent design. Given that students only appreciably changed their views when presented with "facts," we suggest that teaching approaches that focus on providing examples of experimental evolutionary studies, and a strong emphasis on the scientific method of inquiry, are likely to achieve greater success. This study also reiterates the importance of engaging with students' prior conceptions, and makes suggestions for improving an understanding and appreciation of evolutionary biology in countries such as South Africa with an inadequate secondary science education system, and a dire lack of public engagement with issues in science.  相似文献   

2.
Brian Alters 《Evolution》2010,3(2):231-235
Instructors’ apprehensions and the decisions instructors make about pedagogy are often linked when it comes to teaching evolution. Whether it is the reticence of K-12 teachers that their instruction may affect their students’ religious beliefs detrimentally or that they may become caught up in some administrative, media, parental, or school political turmoil or whether it is the apprehension of college students who perceive that their religious beliefs are being explicitly challenged, such fears can be reduced by understanding their roots and by honing pedagogy in ways that reduce perceived threats. This article describes why it is prudent to address these often secretly held apprehensions and how to help instructors feel free to employ their best pedagogical methods to teach evolution without lingering fear. Some suggestions are given for pre-college and college instructors interested in combining effective pedagogy with as little perceived threat as possible. Methods are offered that allow instructors to focus on underlying scientific misconceptions even if those misconceptions are ultimately facilitated by non-scientific sources, while giving creationist or creationist-leaning students a chance to learn the appropriate scientific conceptions without their religious beliefs being explicitly threatened in a science course.  相似文献   

3.
The strength of the evidence supporting evolution has increased markedly since the discovery of DNA but, paradoxically, public resistance to accepting evolution seems to have become stronger. A key dilemma is that science faculty have often continued to teach evolution ineffectively, even as the evidence that traditional ways of teaching are inferior has become stronger and stronger. Three pedagogical strategies that together can make a large difference in students' understanding and acceptance of evolution are extensive use of interactive engagement, a focus on critical thinking in science (especially on comparisons and explicit criteria) and using both of these in helping the students actively compare their initial conceptions (and publicly popular misconceptions) with more fully scientific conceptions. The conclusion that students' misconceptions must be dealt with systematically can be difficult for faculty who are teaching evolution since much of the students' resistance is framed in religious terms and one might be reluctant to address religious ideas in class. Applications to teaching evolution are illustrated with examples that address criteria and critical thinking, standard geology versus flood geology, evolutionary developmental biology versus organs of extreme perfection, and the importance of using humans as a central example. It is also helpful to bridge the false dichotomy, seen by many students, between atheistic evolution versus religious creationism. These applications are developed in detail and are intended to be sufficient to allow others to use these approaches in their teaching. Students and other faculty were quite supportive of these approaches as implemented in my classes.  相似文献   

4.
Issues regarding understanding of evolution and resistance to evolution education in the United States are of key importance to biology educators at all levels. While research has measured student views toward evolution at single points in time, few studies have been published investigating whether views of college seniors are any different than first-year students in the same degree program. Additionally, students choosing to major in biological sciences have largely been overlooked, as if their acceptance of evolution is assumed. This study investigated the understanding of evolution and attitude toward evolution held by students majoring in biological science during their first and fourth years in a public research university. Participants included students in a first-year introductory biology course intended for biological science majors and graduating seniors earning degrees in either biology or genetics. The portion of the survey reported here consisted of quantitative measures of students’ understanding of core concepts of evolution and their attitude toward evolution. The results indicate that students’ understanding of particular evolutionary concepts is significantly higher among seniors, but their attitude toward evolution is only slightly improved compared to their first-year student peers. When comparing first-year students and seniors, students’ theistic position was not significantly different.  相似文献   

5.
In this article, I provide an analysis of my work (1985–present) with non-major biology students and science teacher candidates in developing strategies for teaching and enhancing learning with respect to evolutionary science. This first-person account describes changes in evolution instruction over the course of a career based on personal experiences, research-informed practices, and a critical collaboration with colleague Mike U. Smith. I assert four insights concerning the influence and efficacy of teaching nature of science (NOS) prior to the introduction of evolution within college courses for science non-majors and science teacher candidates. These insights are: (a) teach explicit NOS principles first; (b) integrate evolution as a theme throughout a course in introductory biology (but after NOS principles have been introduced); (c) use active learning pedagogies; and (d) use non-threatening alternative assessments to enhance student learning and acceptance of evolutionary science. Together, these insights establish a pedagogy that I (and my colleagues) have found to be efficacious for supporting novice students as they engage in the study of evolutionary science.  相似文献   

6.
In North America, public understanding and acceptance of evolution is alarmingly low. Moreover, acceptance rates are declining, and studies suggest that even students who have taken courses in evolution have the same misunderstandings as the general public. These data signal deficiencies in our educational system and provide a “call to arms” to improve how evolution is taught. Many studies show that student education can be improved by replacing lecture-based pedagogy with active learning approaches—where the role of students changes from passive note taking to active problem solving. Here, we describe changes made to a second-year undergraduate evolution course to facilitate a shift to active learning and improve student understanding of evolution. First, lectures were used only sparingly and were largely replaced by problem-solving activities. Second, standard textbooks were replaced by “popular” books applying evolutionary thinking to topics students encounter on a daily basis. Lastly, predefined laboratory exercises were replaced by student-designed and implemented research projects. These changes led to increased student engagement and enjoyment, improved understanding of evolution and ability to apply evolutionary thinking to biological problems, and increased student recognition that evolutionary thinking is important not only in the classroom but also in their daily lives.  相似文献   

7.

Background

Acceptance and understanding of evolutionary ideas remains low in the United States despite renewed science education standards, nearly unanimous acceptance among scientists, and decades of research on the teaching and learning of evolution. Early exposure to evolutionary concepts may be one way to reduce resistance to learning and accepting evolution. While there is emerging evidence that elementary students can learn and retain evolutionary ideas, there is also emerging evidence that elementary teachers may be unprepared to teach evolution. It may not be possible to train elementary teachers like their secondary counterparts who receive specialized training in science. This exploratory study was designed to determine if the 147 surveyed preservice elementary teachers (PETs) who are most willing to specialize in science maintain a greater understanding and acceptance of evolution. Such a relationship could have implications for teacher training and science instruction at elementary schools.

Results

As willingness to specialize in science increases so too does acceptance of evolution. For both measures, there was a monotonic increase with increasing willingness to specialize in science. There was a significant correlation (p?=?.047) between willingness to specialize in science and acceptance of evolution as measured by the MATE. There was not a significant correlation between willingness to specialize in science and understanding of evolution as measured by the CINS (p?=?.21). The thirty-two PETs who are enthusiastically willing to specialize in science had the highest understanding and acceptance of evolution.

Conclusions

It may be possible to identify prospective elementary teachers that could assume roles as specialists simply by identifying PETs’ willingness to specialize. Such students appear to enter elementary teacher preparation programs with the science background and enthusiasm for science required to be specialists without the need for much additional training. Thus, science teacher educators could help local elementary school principals identify graduating, and recently graduated, elementary teachers who are willing to specialize in science. Identified teachers could serve as specialists to work with their building and district colleagues to develop, among other topics, evolution related curricular materials and facilitate the implementation of those materials through co-teaching and peer coaching.
  相似文献   

8.
Many students reject evolutionary theory, whether or not they adequately understand basic evolutionary concepts. We explore the hypothesis that accepting evolution is related to understanding the nature of science. In particular, students may be more likely to accept evolution if they understand that a scientific theory is provisional but reliable, that scientists employ diverse methods for testing scientific claims, and that relating data to theory can require inference and interpretation. In a study with university undergraduates, we find that accepting evolution is significantly correlated with understanding the nature of science, even when controlling for the effects of general interest in science and past science education. These results highlight the importance of understanding the nature of science for accepting evolution. We conclude with a discussion of key characteristics of science that challenge a simple portrayal of the scientific method and that we believe should be emphasized in classrooms.  相似文献   

9.
The purpose of this study was to explore science content used during college students’ negotiation of biology-based socioscientific issues (SSI) and examine how it related to students’ conceptual understanding and acceptance of biological evolution. The Socioscientific Issues Questionnaire (SSI-Q) was developed to measure depth of evolutionary science content use during SSI negotiation. Fifty-two upper level undergraduate biology and non-biology majors completed the SSI-Q and also the Conceptual Inventory of Natural Selection to assess evolution understanding and the Measure of Acceptance of the Theory of Evolution to appraise evolution acceptance. A multiple regression analysis tested for interaction effects between the predictor variables, evolution understanding and evolution acceptance. Results indicate that college students primarily use science concepts related to evolution to negotiate biology-based SSI including variation in a population, inheritance of traits, differential success, and change through time. The hypothesis that the extent of one’s acceptance of evolution is a mitigating factor in how science content related to evolution is evoked during SSI negotiation was supported by the data, in that such content was consistently evoked by participants for each of the three SSI scenarios used in this study.  相似文献   

10.
The ability to understand and reason with tree-of-life diagrams (i.e., cladograms), referred to as tree thinking, is an essential skill for biology students. Yet, recent findings indicate that cladograms are cognitively opaque to many college students, leading them to misinterpret the information depicted. The current studies address the impact of prior biological background and instruction in phylogenetics on students?? competence at two foundational tree-thinking skills. In Study 1, college students with stronger (N?=?52) and weaker (N?=?60) backgrounds in biology were asked to (a) identify all the nested clades in two cladograms and (b) evaluate evolutionary relatedness among taxa positioned at different hierarchical levels (two questions) and included in a polytomy (two questions). Stronger-background students were more successful than weaker-background students. In Study 2, a subset of the stronger-background students (N?=?41) who were enrolled in an evolution class subsequently received two days of instruction on phylogenetics. As expected, these students?? tree-thinking skills generally improved with instruction. However, although these students did very well at marking the nested clades, fundamental misinterpretations of relative evolutionary relatedness remained. The latter was especially, although not exclusively, the case for taxa included in a polytomy. These results highlight the importance of teaching cladistics, as well as the need to tailor such instruction to the difficulties students have learning key macroevolutionary concepts.  相似文献   

11.
Barbara Bajd 《Evolution》2012,5(3):405-411
This article discusses the importance and benefits of providing lower secondary school students with some knowledge of human evolution and its educational context. The author surveyed science teaching in secondary and upper secondary schools in Slovenia and concluded that evolution in general, and human evolution in particular, do not feature prominently in the curriculum and so are not represented by many teaching contact hours. Neither are popular, well-designed, and up-to-date books on the subject--whether by Slovene authors or in translation--readily available to interested students. And yet, paleoanthropology??the study of human evolution in its wider context??is a rapidly developing, high-profile branch of science with major popular appeal. Recent discoveries??many of them spectacular??have provided a much more detailed picture of human evolutionary history, significantly modifying earlier ideas about our ancestry. The subject not only attracts much public interest but also has major educational benefits: human evolution exemplifies many general evolutionary principles, illustrates the synergy of focused multidisciplinary approaches in the life sciences, and reinforces teaching of environmental conservation, human relations, and social responsibility. Because of the subject??s importance, the author provides some suggestions on how the teaching of human evolution might be incorporated into the school curriculum and considers some of the educational resources available to support its teaching.  相似文献   

12.
Evolution is a complex subject that requires knowledge of basic biological concepts and the ability to connect them across multiple scales of time, space, and biological organization. Avida-ED is a digital evolution educational software environment designed for teaching and learning about evolution and the nature of science in undergraduate biology courses. This study describes our backward design approach to developing an instructional activity using Avida-ED for teaching and learning about evolution in a large-enrollment introductory biology course. Using multiple assessment instruments, we measured student knowledge and understanding of key principles of natural selection before and after instruction on evolution (including the Avida-ED activity). Assessment analysis revealed significant post-instruction learning gains, although certain evolutionary principles (most notably those including genetics concepts, such as the genetic origin of variation) remained particularly difficult for students, even after instruction. Students, however, demonstrated a good grasp of the genetic component of the evolutionary process in the context of a problem on Avida-ED. We propose that: (a) deep understanding of evolution requires complex systems thinking skills, such as connecting concepts across multiple levels of biological organization, and (b) well designed use of Avida-ED holds the potential to help learners build a meaningful and transferable understanding of the evolutionary process. An erratum to this article can be found at  相似文献   

13.
Kevin Padian 《Evolution》2010,3(2):206-214
If the American public understood what is actually known about the major evolutionary transitions in the history of life and how we know about them, uncertainty about evolution would drop precipitously, creationist arguments would fall on deaf ears, and public education in biology would make much more sense than it now does. Macroevolution must take a much more prominent place in K-12 science teaching. To do so, a curriculum must be redeveloped at both K-12 and college levels, so that preparation in macroevolution is a required part of K-12 biology preparation.  相似文献   

14.
Teaching college students about the nature of science should not be a controversial exercise. College students are expected to distinguish between astronomy and astrology, chemistry and alchemy, evolution and creationism. In practice, however, the conflict between creationism and the nature of science may create controversy in the classroom, even walkouts, when the subject of evolution is raised. The authors have grappled with the meaning of such behaviors. They surveyed 538 students in a public, liberal arts college. Pre/post course surveys were analyzed to track changes in student responses to questions that were either consistent or inconsistent with the Theory of Evolution after a semester of instruction in a college biology or zoology course in which evolution was taught. Many students who were initially undecided about issues regarding evolution had shifted in their viewpoints by the end of the course. It was found that more education about the evidence for and the mechanics of evolutionary processes did not necessarily move students toward a scientific viewpoint. The authors also discovered a "wedge" effect among students who were undecided about questions pertaining to human ancestry at the beginning of the course. About half of these students shifted to a scientific viewpoint at the end of the course; the other half shifted toward agreement with statements consistent with creationism.  相似文献   

15.
A great number of research papers in the English literature of science education present difficulties pupils have in understanding natural selection. Studies show that children have essentialist and teleological intuitive ideas when dealing with organisms and that these biases hinder their ability to understand the theory of evolution by natural selection. Consequently, it is interesting to ascertain if and how the school education offered today deals with the problem, i.e., helps the children confront these biases. To that purpose, this study answered the two following research questions: (a) How is biological evolution presented—from the past to the present day—in the official documentation of primary school education, namely the science curricula and the textbooks of Greece? and (b) what are the conceptions held by Greek primary school teachers of the concepts of evolutionary theory and relevant issues that they have to teach? Our research found that not only are the intuitive ideas not “confronted” but they are also “affirmed” in Greek primary education. This phenomenon, as some other international studies have shown, must not be only a Greek one. A drastic change in the content and structure of primary school curricula and the training of educators is necessary in order to improve and facilitate the teaching of biological evolution.  相似文献   

16.
The theory of evolution by natural selection has begun to revolutionize our understanding of perception, cognition, language, social behavior, and cultural practices. Despite the centrality of evolutionary theory to the social sciences, many students, teachers, and even scientists struggle to understand how natural selection works. Our goal is to provide a field guide for social scientists on teaching evolution, based on research in cognitive psychology, developmental psychology, and education. We synthesize what is known about the psychological obstacles to understanding evolution, methods for assessing evolution understanding, and pedagogical strategies for improving evolution understanding. We review what is known about teaching evolution about nonhuman species and then explore implications of these findings for the teaching of evolution about humans. By leveraging our knowledge of how to teach evolution in general, we hope to motivate and equip social scientists to begin teaching evolution in the context of their own field.  相似文献   

17.
Abstract

The purpose of this exploratory qualitative study was to investigate elementary student teachers’ conceptions of teaching life science outdoors. The study involved 99 student teachers who were enrolled in an elementary science methods course at a large public university in the United States of America. The study utilised drawings, and narratives to investigate the nature of these teachers’ conceptions. Data analysis revealed that three conceptions of teaching life science were common among the participants: (1) teaching life science is predominantly conceptualised as being situated in the schoolyard, (2) teaching life science outdoors is teacher-directed, and (3) teaching life science outdoors is disconnected from in-class science instruction. Implications include the need for (1) teacher education programmes to provide reflective supports that explicate student teachers’ conceptualisation of teaching life science and thus exposing prior frameworks; and (2) teacher educators to examine student teachers’ prior frameworks for teaching life science outdoors and provide knowledgeable theory and practice platforms that will serve as frameworks for student teachers to adopt, connect and routinize outdoor life science teaching with in-school teaching of life science.  相似文献   

18.
By simulating evolution through performance, students become physically, as well as mentally, engaged in thinking about evolutionary concepts. This instructional strategy redirects tension around the subject toward metacognitive reflection. Non-verbal performances like those presented here also avoid the pitfalls of relying on difficult-to-use language. This paper describes a teachable unit including the learning goals and outcomes as well as rubrics to aid assessment. Through two performance-based activities, the unit introduces the fundamental evolutionary concepts that evolution lacks forethought and that natural selection is a sorting process. By reflecting on the performances, students learn other sophisticated evolutionary concepts like hitchhiking, the effects of environmental change, and the extinction of traits. They also become aware of the scientific process, articulating hypotheses about the outcome of the simulations, collecting data, and revising their hypotheses. Discussions and homework about the performances reveal how learning progresses, and detailed rubrics help both instructors and students assess conceptual learning. This unit concludes with the opportunity for students to transfer what they have learned to new concepts: they design new performances to simulate other mechanisms of evolution, such as genetic drift, mutation, and migration.  相似文献   

19.
Medical students have much to gain by understanding how evolutionary principles affect human health and disease. Many theoretical and experimental studies have applied lessons from evolutionary biology to issues of critical importance to medical science. A firm grasp of evolution and natural selection is required to understand why the human body remains vulnerable to many diseases. Although we often integrate evolutionary concepts when we teach medical students and residents, the vast majority of medical students never receive any instruction on evolution. As a result, many trainees lack the tools to understand key advances and miss valuable opportunities for education and research. Here, we outline some of the evolutionary principles that we wished we had learned during our medical training.  相似文献   

20.
The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号