首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The number of individuals and species of zooplankton were sampled concurrently with Hydrilla biomass and water quality for one year in a small, eutrophic central Florida lake. Throughout the study, rotifer species and individuals dominated the zooplankton. The abundance of the zooplankton tended to remain high when Hydrilla biomass was at its seasonal low during late winter and early spring. When hydrilla growth increased in the late spring and summer months causing a decrease in total alkalinity, specific conductivity, water color, turbidity, orthophosphate and chlorophyll a concentrations; the abundance of the zooplankton declined. During this time, there was a shift from limnetic to littoral species, principally rotifers. Hydrilla growth did not affect the mean number of cladoceran or copepod species, but may have led to an increase in rotifer species.  相似文献   

2.
We collected quantitative data on macrophyte abundance and water quality in 319 mostly shallow, polymictic, Florida lakes to look for relationships between trophic state indicators and the biomasses of plankton algae, periphyton, and macrophytes. The lakes ranged from oligotrophic to hypereutrophic with total algal chlorophylls ranging from 1 to 241 mg m–3. There were strong positive correlations between planktonic chlorophylls and total phosphorus and total nitrogen, but there were weak inverse relationships between the densities of periphyton and the trophic state indicators total phosphorus, total nitrogen and algal chlorophyll and a positive relationship with Secchi depth. There was no predictable relationship between the abundance of emergent, floating-leaved, and submersed aquatic vegetation and the trophic state indicators. It was only at the highest levels of nutrient concentrations that submersed macrophytes were predictably absent and the lakes were algal dominated. Below these levels, macrophyte abundance could be high or low. The phosphorus–chlorophyll and phosphorus–Secchi depth relationships were not influenced by the amounts of aquatic vegetation present indicating that the role of macrophytes in clearing lakes may be primarily to reduce nutrient concentrations for a given level of loading. Rather than nutrient concentrations controlling macrophyte abundance, it seems that macrophytes acted to modify nutrient concentrations.  相似文献   

3.
《Ecological Engineering》2006,26(3):206-223
Mass loading and outflow phosphorus (P) relationships were investigated for four stormwater treatment area (STA) wetlands in south Florida. These systems, ranging in size from 350 to 2670 ha, were constructed by the South Florida Water Management District (SFWMD) for Everglades restoration, and approaches currently are being investigated for optimizing their design and management. We analyzed 2–7 years of P removal data from 10 independent STA process trains using system classifications based on dominant vegetation type, which was either emergent aquatic vegetation (EAV) or submerged aquatic vegetation (SAV), and prior land use, which was either recently farmed (RF) or historic wetland (HW). We found that a 1–2 year history of mass loading rates (MLR) at or below ∼1.3 g P/m2/year in STA process trains provided a high likelihood of achieving outflow total P (TP) concentrations less than ∼30 μg/L. Statistical analyses revealed that P removal performance of SAV and EAV-HW systems was generally superior to that of EAV-RF systems. These performance differences were corroborated with data from seven other non-STA Florida-based treatment wetlands. Furthermore, in the subset of SAV and continuously flooded EAV-HW data with P MLRs at or below ∼2 g/m2/year, outflow P concentrations were consistently between 10 and 20 μg/L, mass removal efficiencies were consistently above 85%, and the wetlands demonstrated a substantial resilience to small-to-moderate pulsed inflow P loads. Despite 16 occurrences in these full-scale STA data of annual flow-weighted mean outflow P concentrations between 10 and 20 μg/L, no significant MLR–P relationships were identified for targeting specific P concentrations in this range.  相似文献   

4.
Wetlands in Uganda experience different forms of human pressure ranging from drainage for agriculture and industrial development to over harvesting of wetland products. In order to develop sustainable management tools for wetland ecosystems in Uganda and the Lake Victoria Region, water quality analyses were carried out in a rural undisturbed (pristine) wetland (Nabugabo wetland in Masaka) and two urban wetlands that are experiencing human and urban development pressure (the Nakivubo wetland in Kampala and Kirinya wetland in Jinja). The former wetland forms the main inflow into Lake Nabugabo while the other two border the northern shore of Lake Victoria, Uganda. Nabugabo wetland buffers Lake Nabugabo against surface runoff from the catchment, while Nakivubo and Kirinya wetlands provides a water treatment function for wastewater from Kampala City and Jinja town respectively, in addition to buffering Lake Victoria against surface runoff. Water quality was assessed in all the wetland sites, and in addition nutrient content and storage was investigated in the main plant species (papyrus, Phragmites, Miscanthidium and cocoyam) in Nakivubo and Kirinya wetlands. A pilot experiment was also carried out to assess the wastewater treatment potential of both the papyrus vegetation and an important agricultural crop Colocasia esculenta (cocoyam). Low electrical conductivity, ammonium–nitrogen and ortho-phosphate concentrations were recorded at the inflow into Nabugabo wetland (41.5 μS/cm; 0.91 mg/l and 0.42 mg/l respectively) compared to the Nakivubo and Kirinya wetlands (335 μS/cm; 31.68 mg/l and 2.83 mg/l and 502 μS/cm; 10 mg/l and 1.87 mg/l respectively). The papyrus vegetation had higher biomass in Nakivubo and Kirinya wetlands (6.7 kg DW m−2; 7.2 kg DW m−2 respectively), followed by Phragmites (6.5, 6.7), cocoyams (6.4, 6.6) and Miscanthidium (4.0, 4.2). The papyrus vegetation also exhibited a higher wastewater treatment potential than the agricultural crop (cocoyam) during the pilot experiment (maximum removal degree of ammonium–nitrogen being 95% and 67% for papyrus and yams). It was concluded that urbanisation pressure reduces natural wetland functioning either through the discharge of wastewater effluent or the degradation of natural wetland vegetation. It is recommended that wetland vegetation be restored to enhance wetland ecosystem functioning and for wetlands that are not yet under agricultural pressure, efforts should be made to halt any future encroachment.  相似文献   

5.
Hoyer  Mark V.  Canfield  Daniel E. 《Hydrobiologia》1994,279(1):107-119
Data from 46 Florida lakes were used to examine relationships between bird abundance (numbers and biomass) and species richness, and lake trophic status, lake morphology and aquatic macrophyte abundance. Average annual bird numbers ranged from 7 to 800 birds km–2 and bird biomass ranged from 1 to 465 kg km–2. Total species richness ranged from 1 to 30 species per lake. Annual average bird numbers and biomass were positively correlated to lake trophic status as assessed by total phosphorus (r = 0.61), total nitrogen (r = 0.60) and chlorophyll a (r = 0.56) concentrations. Species richness was positively correlated to lake area (r = 0.86) and trophic status (r = 0.64 for total phosphorus concentrations). The percentage of the total annual phosphorus load contributed to 14 Florida lakes by bird populations was low averaging 2.4%. Bird populations using Florida lakes, therefore, do not significantly impact the trophic status of the lakes under natural situations, but lake trophic status is a major factor influencing bird abundance and species richness on lakes. Bird abundance and species richness were not significantly correlated to other lake morphology or aquatic macrophyte parameters after the effects of lake area and trophic status were accounted for using stepwise multiple regression. The lack of significant relations between annual average bird abundance and species richness and macrophyte abundance seems to be related to changes in bird species composition. Bird abundance and species richness remain relatively stable as macrophyte abundance increases, but birds that use open-water habitats (e.g., double-crested cormorant, Phalacrocorax auritus) are replaced by species that use macrophyte communities (e.g., ring-necked duck, Aythya collaris).  相似文献   

6.
The abundance, community structure and nutrient content of periphyton, and the host plant taxa Chara, Hydrilla, Potamogeton, Vallisneria and Scirpus were studied in Lake Okeechobee, USA. Water levels were generally high during the study period (August 2002–January 2006), but substantial fluctuations occurred. All host plant biomass was seasonally variable but only Vallisneria biomass was spatially variable. All submerged plant beds disappeared after the passage of two hurricanes in September 2004, and a third hurricane passed over the lake in October 2005. Periphyton assemblages were statistically separated most by substrate and then by season. Prior to the hurricanes, annual maxima of periphyton biovolumes and those of summer submerged plant coverage coincided. During all study years, the diatom taxa dominated periphyton total biovolumes. Periphyton biomass was generally highest during the summer or prior to the hurricanes (in the case of epiphytes) and was spatially variable in the case of both Scirpus and Vallisneria. Epiphytic nutrient contents within each host plant group seasonally varied except for nitrogen and carbon in the Vallisneria epiphytes. Epipelic nutrient contents were spatially variable and seasonally variable for carbon. Nutrient contents in epipelon were significantly higher than that in Scirpus epiphytes and were similar but lower among all epiphytic communities. The total annual areal potential epiphytic phosphorus storage extrapolated during this study (2.0 × 10−4 metric tons ha−1 year−1) was underestimated because storage estimates for epipelon, Chara and Hydrilla-associated epiphytes were omitted. The Chara and Hydrilla-associated epiphytic nutrient storage values were omitted because of limited data, whereas the epipelic data may have not been spatially representative. For periphyton biovolume, host substrate type, water level fluctuation and hurricane impacts on host substrates appear to be more important than seasonal variation in such factors as temperature and nutrients. Epiphytic nutrient storage appears to be influenced most by water level fluctuation and hurricane-related impacts, while the host substrate type appears to be a less important factor than it is for periphyton biovolume. Maximum periphyton biomass and high nutrient storage in shallow subtropical and tropical eutrophic lakes may only occur at consistently lower water levels and during infrequent periods of disturbance, which enhance host substrate colonizable area.  相似文献   

7.
Diatom assemblages were analysed in the surface sediments of 44 alkaline lakes in south-western Ontario, Canada, and combined with a pre-existing 58 south-eastern Ontario lake set: (1) to determine if shallow, polymictic Ontario lakes contain different diatom assemblages from deeper, dimictic lakes, and if so, which environmental variables most influence assemblages; (2) to improve the existing transfer functions; (3) to construct and compare transfer functions separately for dimictic, deep lakes and for polymictic, shallow lakes. Polymictic and dimictic lakes covered a similar nutrient range (spring total phosphorus (TP)=4–54 g/l, spring total nitrogen (TN)=200–927 g/l; n=101) and spring pH levels (7.6–9; n=101). However, polymictic lakes were shallower (median mean depth = 2.9 m vs. 7.3 m in dimictic lakes). Benthic diatoms (average 60% relative abundance) dominated the polymictic lakes, whereas planktonic diatoms (average 60%) dominated dimictic lakes. A Canonical Correspondence Analyses with forward selection (p < 0.05, 999 Monte Carlo permutations) identified TP, alkalinity, watershed to volume ratios and lake depth as the most important measured environmental variables influencing diatom distribution in both polymictic and dimictic lakes. Additionally, pH was identified as an important variable in polymictic lakes, whereas TN was also forward selected in the dimictic lakes. Adding more lakes to the original southern Ontario calibration set improved the TN transfer function (r2 jack=0.42, root mean squared error of prediction (RMSEP)jack=0.11 [log g TN/l]), although there was a high systematic error in the revised model (r2 residual = 0.48). However, the strongest TP model was derived from the polymictic lakes (r2 boot =0.44, RMSEPboot=0.20 [log g TP/l]), which was the smallest lake set (n=30) with the lowest number of diatom species. The stronger TP model from the polymictic lakes may be partly due to the relatively low macrophyte cover in our polymictic lakes, which may lead to stronger benthic–pelagic coupling than in lakes with large macrophyte populations. Additionally, our study suggests that the Chrysophyceae cyst:diatom frustule ratio may be useful for indicating trends in TP levels of 35 g/l in alkaline lakes that are dimictic, but is not necessarily indicative of trophic state changes in shallow, polymictic lakes. Our study demonstrates that it may be important to construct separate diatom-based nutrient transfer functions for polymictic and dimictic lakes.  相似文献   

8.
Zooplankton are a functionally important but poorly studied component of western boreal forest (WBF) wetland ecosystems. To characterize patterns in zooplankton abundance and composition an exploratory study of 24 shallow-water wetlands in northern Alberta, Canada was carried out over the summers of 2001 and 2002. Results suggest zooplankton communities in WBF wetlands tend to exist as: (1) small-cladoceran dominated communities, (2) larger sized cladoceran (e.g. Daphnia) dominated communities, or (3) communities composed primarily of rotifers and/or other crustacean zooplankton. The presence/absence of brook stickleback (Culea inconstans) was the factor most strongly linked to zooplankton structure with small cladocerans tending to dominate in wetlands with stickleback. In fishless wetlands, communities dominated by medium-large sized cladocerans tended to correspond with low-chlorophyll/high-submerged aquatic vegetation (SAV) conditions. Conversely, communities composed of rotifers and other crustaceans were associated with high-chlorophyll/low-SAV states. Macro-invertebrate predator abundance was not strongly linked to patterns in zooplankton composition suggesting macro-invertebrate predation is not a significant factor influencing zooplankton structure in fishless wetlands. Results suggest activities that spread stickleback (e.g. ditching) or inhibit development of macrophyte-dominated/clear-water conditions (e.g. nutrient loading) may seriously alter the zooplankton community structure, and thereby the functional ecology, of these valuable wetland ecosystems.  相似文献   

9.
We conducted a field study to examine the influence of hydroperiod and concomitant changes in abiotic (wetland size, pH, conductivity, dissolved oxygen and water temperature) and biotic (predatory fish presence) characteristics on macroinvertebrate communities in isolated wetlands in southern New Hampshire. Invertebrates were sampled using dipnet sweeps in 42 wetlands with short (<4 months), intermediate (4–11 months) or long (permanent) hydroperiods in 1998 and 1999. We found that invertebrate genera richness, and to a lesser degree abundance, increased linearly along the hydrological gradient, and in response to temperature and dissolved oxygen. Relative abundance of genera also differed markedly with respect to hydroperiod. Most notably, invertebrate communities changed from Acilius-dominated communities to Notonecta-dominated communities. Invertebrate relative abundances in permanent wetlands also differed with respect to the occurrence of predatory fish. Some genera (e.g., Libellula, and Dytiscus) were more likely to occur in permanent wetlands without fish, whereas other genera (e.g., Buena, and Basiaeshna) were more likely to occur in wetlands with predatory fish. Because aquatic invertebrate communities differed markedly with respect to wetland hydroperiod, and in relation to the occurrence of predatory fish, it is essential to retain a diversity of wetlands in the landscape to ensure the long-term persistence of aquatic invertebrate biodiversity.  相似文献   

10.
A limnological survey of 15 lakes and 6 streams was carried out on Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) during austral summer 2001–2002. Most of the surface waters had low conductivities (20–105 μS cm−1) and nutrients (total phosphorus 0.01–0.24 μM), but some coastal lakes were enriched by nutrient inputs from seal colonies and marine inputs. Plankton communities in the lakes contained picocyanobacteria (102–104 cells ml−1), diatoms, chrysophytes and chlorophytes, and a large fraction of the total biomass was bacterioplankton. Zooplankton communities were dominated by Boeckella poppei and Branchinecta gainii; the benthic cladoceran Macrothrix ciliata was also recorded, for the first time in Antarctica. The chironomids Belgica antarctica and Parochlus steinenii, and the oligochaete Lumbricillus sp., occurred in stream and lake benthos. The phytobenthos included cyanobacterial mats, epilithic diatoms and the aquatic moss Drepanocladus longifolius. These observations underscore the limnological richness of this seasonally ice-free region in maritime Antarctica and its value as a long-term reference site for monitoring environmental change.  相似文献   

11.
The aquatic macroinvertebrates in two freshwater biotopes,viz. aNymphoides peltata-dominated site and a macrophyte-free site, were studied quantitatively in a shallow alkaline oxbow lake of the river Waal, the main branch of the river Rhine in The Netherlands. The research comprised the analysis of water, sediment and macrophyte samples.In the macrophyte-free site Oligochaeta and Nematocera, particularly of the collector gatherer functional feeding group, dominated the prevailing benthic community. The total macroinvertebrate biomass ranged here from 0.3 to 0.9 g ash-free dry weight per m2 of biotope.Species richness, densities, and biomass of macroinvertebrates were considerably higher in the biotope dominated byNymphoides peltata. Many taxa were found associated with the aboveground macrophyte. The sediment compartment, however, contributed most to the total density and biomass of macroinvertebrates. Nematocera and Oligochaeta were the most abundant fauna groups, whereas the largest share in total biomass was provided by clams (Mollusca). The biomass of the total macroinvertebrate community in theNymphoides-dominated site ranged from 6.2 to 7.5 g ash-free dry weight per m2 of biotope. The biomass of the aboveground phytophilous fauna ranged from 0.1 to 0.6 g ash-free dry weight per m2 of biotope. In September, when theNymphoides peltata vegetation was in its senescent phase, the largest numbers and the highest biomass of phytophilous macroinvertebrates were observed. The contribution of the shredder functional feeding group was high in this period. This, and the overall high abundance of fauna with a detritivorous mode of life, indicates the importance of macrophyte detritus as input to food chains.  相似文献   

12.
Riparian forest communities dominated by Populus balsamifera ssp. trichocarpa L. (Torr. and Gray ex Hook.) Brayshaw are important contributors to biodiversity in terrestrial and aquatic ecosystems of the Western United States. Species composition along a successional gradient from stand initiation to late-succession of P. balsamifera-dominated riparian forests was investigated along 145 km of the Willamette River, Oregon. There were 151 total species encountered across 28 stands and a mean species richness of 33.3 species per stand. Young stands were dominated by P. balsamifera and Salix tree spp. and opportunistic herbaceous species. Understory trees, shrubs, and herbaceous species as well as late-successional tree species established 12–15 years after stand initiation. Fraxinus latifolia Benth. was the dominant late-successional tree species. Vertical structural diversity, P. balsamifera mean diameter at breast height, large tree biomass, and stand age were strongly correlated with understory species presence and abundance based on non-metric multidimensional scaling (NMS) ordination. There were no young stands on mid and high terraces and this was reflected in geomorphic position being strongly correlated with the stand age gradient. Abundance of Phalaris arundinacea L. an invasive grass species, was also significantly correlated with plant species composition and abundance. This study indicates that Willamette River riparian forests are diverse and therefore important to the biodiversity of the Willamette River valley and that their presence as a mosaic of communities of different successional stages may be threatened by human interventions, including influences exerted by introduced plant species.  相似文献   

13.
Carbon dioxide supersaturation in Florida lakes   总被引:1,自引:0,他引:1  
We examined data on CO2 and related limnological and geographic information from a sample of 948 Florida freshwater lakes. The objectives for this study were (1) to determine the partial pressures of carbon dioxide (ρCO2) in the surface waters of a large sample of Florida lakes, (2) to determine if several limnological or geographic factors are related to levels of ρCO2 in Florida lakes, and (3) to estimate the net annual rate of loss of CO2 to the atmosphere from the freshwater lakes of Florida. The calculated ρCO2 for the lakes in our sample range from 0 to 81,000 μatm, with a mean of 3,550 μatm, a median of 1,030 μatm, and a geometric mean of 1,270 μatm. About 87% of the Florida lakes were supersaturated with CO2. There were statistically significant correlations between values for ρCO2 and several water chemistry variables; however, the R 2 values were small and accounted for only a small portion of the variance. In general the ρCO2 values were higher in the lakes with low alkalinities and low contents of dissolved salts. The best predictor of ρCO2 is pH, with an R 2 of 0.82 for a polynomial relationship. The ρCO2 values tend to decrease from northwest to southeast across the state of Florida, which corresponds to the gradients we found for pH, alkalinity, and specific conductance. The average areal rate of carbon emission from the Florida lakes was 328 g C m−2 y−1, and the total carbon loss for the lakes and ponds of Florida was 2.0 Tg y−1. This amounts to about 2% of the total carbon emissions from all the lakes of the world as estimated by previous studies. Handling editors: Darren Bade  相似文献   

14.
A dramatic increase in the breeding population of geese has occurred over the past few decades at Svalbard. This may strongly impact the fragile ecosystems of the Arctic tundra because many of the ultra-oligotrophic freshwater systems experience enrichment from goose feces. We surveyed 21 shallow tundra ponds along a gradient of nutrient enrichment based on exposure to geese. Concentrations of total phosphorus (P) and dissolved inorganic nitrogen (DIN) in the tundra ponds ranged from 2–76 to 2–23 μg l−1 respectively, yet there was no significant increase in phytoplankton biomass (measured as chlorophyll a; range: 0.6–7.3 μg l−1) along the nutrient gradient. This lack of response may be the result of the trophic structure of these ecosystems, which consists of only a two-trophic level food chain with high biomasses of the efficient zooplankton grazer Daphnia in the absence of fish and scarcity of invertebrate predators. Our results indicate that this may cause a highly efficient grazing control of phytoplankton in all ponds, supported by the fact that large fractions of the nutrient pools were bound in zooplankton biomass. The median percentage of Daphnia–N and Daphnia–P content to particulate (sestonic) N and P was 338 and 3009%, respectively, which is extremely high compared to temperate lakes. Our data suggest that Daphnia in shallow arctic ponds is heavily subsidized by major inputs of energy from other food sources (bacteria, benthic biofilm), which may be crucial to the persistence of strong top–down control of pelagic algae by Daphnia.  相似文献   

15.
Mercury biomagnifies in aquatic foodwebs in freshwater lakes, and common loons (Gavia immer) breeding in eastern Canada can be exposed to reproductively toxic concentrations of mercury in their fish prey. We assessed the bioaccumulation and biomagnification of mercury in juvenile and adult common loons, and their preferred prey: yellow perch (Perca flavescens) in Kejimkujik National Park (KNP), Nova Scotia by measuring mercury levels and stable isotope ratios in tissues. Total mercury levels and stable-carbon (δ13C) and nitrogen isotope ratios (δ15N) were determined in composite whole-fish samples from lakes in KNP and blood samples from juvenile and adult loons captured on lakes in KNP and southern New Brunswick. Geometric mean mercury concentrations were 0.15 and 0.38 μg/g (wet wt.) in small (9-cm fork length) and large (17-cm fork length) yellow perch, and were 0.43 and 2.7 μg/g (wet wt.) in blood of juvenile and adult common loons, respectively. Mercury concentrations in perch and loons were positively associated with body mass and δ15N values. Juvenile loons and large yellow perch had similar mercury levels and δ15N values, indicating similar trophic status despite their 22-fold difference in body mass. Mercury concentrations were higher in yellow perch and common loons in acidic lakes. Our findings highlight the importance of both chemical and ecological factors in understanding mercury biomagnification in lakes and associated risks to fish-eating wildlife. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

16.
In tropical lakes relatively little is known about the general relationship between nutrient concentration and phytoplankton biomass. Using data from 192 lakes from tropical and subtropical regions we examine the relationship between total P (TP) and chlorophyll (Chl). The lakes are all located between 30° S to 31° N include systems in Asia, Africa, and North and South America but are dominated by Brazilian (n=79) and subtropical N. American (n=67) systems. The systems vary in morphometry (mean depth and lake area), trophic state as well total N (TN) to␣total P (TP) ratios and light extinction. Despite a nearly 500-fold range in TP concentrations (2–970 μg P l−1), there was a poorer relationship between log TP and log Chl (r 2=0.42) than is generally observed for temperate systems from either narrow or broad geographic regions. N limitation is not a likely explanation for the relatively weak TP–Chl relationship in the tropical–subtropical systems. Systems had high average TN:TP ratios and neither a multiple regression with log TP and log TN nor separating systems with high TN:TP (>17 by weight) improved the predictive power of the log TP–log Chl relationship.  相似文献   

17.
Treatment wetlands can remove nutrients from inflow sources through biogeochemical processes. Plant composition and temperature play important roles in the nutrient removal efficiency of these wetlands, but the interactions between these variables are not well understood. We investigated the seasonal efficiency of wetland macrophytes to reduce soil leachate concentrations of total nitrogen and total phosphorus in experimental microcosms. Each microcosm contained one of six vegetation treatments: unplanted, planted with one of four species (Carex lacustris, Scirpus validus, Phalaris arundinacea and Typha latifolid) in monoculture or planted with an equal abundance of all four species. Microcosms were also subjected to two temperature treatments: insulated microcosms and microcosms exposed to environmental conditions. A constant nutrient solution containing 56 mg/l N and 31 mg/l P was added to all microcosms three times a week. Water samples were analyzed monthly for total dissolved nitrogen and total dissolved phosphorous. Microcosms exhibited a typical pattern of seasonal nutrient removal with higher removal rates in the growing season and lower rates in the winter months. In general, planted microcosms outperformed unplanted microcosms. Among the plant treatments, Carex lacustris was the least efficient. The four remaining plant treatments removed an equivalent amount of nutrients. Insulated microcosms were more efficient in the winter and early spring months. Although a seasonal pattern of nutrient removal was observed, this variation can be minimized through planting and insulation of wetlands.  相似文献   

18.
A set of three relatively pristine seasonally inundated limesink wetlands and one riparian wetland was studied over a 4–6 month long inundation period in 2001. Patterns in organic matter properties and oxygen consumption in the water column followed a previously documented ecological gradient based on soil composition, vegetation type, and canopy cover. The full canopy, cypress-gum swamp had the highest mean concentrations of dissolved organic carbon (DOC; 26.2 mg/l) and dissolved lignin (sum 6; 299 μg/l) with lower concentrations observed in the partial canopy, cypress savanna (22.0 mg/l DOC; 252 μg/l sum 6) and the open marsh savanna (20.6 mg/l DOC; 135 μg/l sum 6), respectively. During the inundation period, DOC increased in concentration, dissolved lignin decreased, and δ13C shifted to more positive values which collectively indicate a large reduction in the percentage of aromatic carbon during the inundation period. All wetlands had very high concentrations of organic matter, yet microbial oxygen consumption was almost always stimulated by the addition of glucose rather than inorganic nutrients. Stimulation by glucose suggests that there were very small pools of highly bioavailable forms of DOC in the wetlands. A larger pool of moderately bioavailable organic matter had the capacity to sustain microbial oxygen consumption rates under dark conditions for at least 15 d. During the inundation period, the cypress-gum swamp had the lowest average rates of whole water oxygen consumption (1.0 μM/h) with increasing rates observed in the cypress savanna (1.3 μM/h), marsh savanna (1.6 μM/h), and riparian wetland (1.9 μM/h), respectively. The lignin compositional fingerprint varied across the gradient of limesink wetlands, and was useful for identifying different sources of vascular plant-derived DOM. Vascular plant production, algal production, microbial respiration, and UV degradation are all important drivers of DOM cycling, and the consistencies observed in this initial assessment of seasonally inundated limesink wetlands suggest they vary in predictable ways across the ecological gradient.  相似文献   

19.
Numerous studies have demonstrated alternative regimes in shallow lake ecosystems around the world, with one state dominated by submerged macrophytes and the other by phytoplankton. However, the stability of each regime, and thresholds at which lakes shift to the alternative regime, are poorly known. We used a cross-sectional analysis of 72 shallow lakes located in prairie and parkland areas of Minnesota, USA, during 2005 and 2006 to assess the occurrence of alternative regimes and shifts between them. Cluster analysis revealed two distinct groups of lakes characterized not only by different macrophyte abundance and chlorophyll a levels but also by different total phosphorus–chlorophyll a relationships. Thirty-nine lakes were macrophyte- and 23 lakes phytoplankton-dominated in both years, whereas 10 sites shifted sharply between those regimes. We failed to detect a universal shifting threshold in terms of chlorophyll a or total phosphorus. However, 95% of the lakes with chlorophyll a concentrations less than 22 μg l−1 were in a clear-water regime, whereas 95% of the lakes with chlorophyll a higher than 31 μg l−1 were in a turbid regime. Total phosphorus less than 62 μg l−1 was an accurate predictor of lakes in a stable clear-water regime, whereas a large change in biomass of planktivores and benthivores between years was the only variable weakly related to regime shifts. Our results support the theoretical prediction that regime thresholds vary among lakes. We recommend that lake managers focus on improving resilience of clear regimes in shallow lakes by reducing nutrient loading, rather than attempting to identify and manage complex triggers of regime shifts. Author contributions KDZ, MAH, BRH, and MLK all contributed to the design of the study, performed the research, analyzed data, and helped write the article.  相似文献   

20.
Aims: Free-surface flow-constructed wetland is a powerful means forthe reduction of contaminants from agricultural runoff. Wetlandsdominated by submerged aquatic vegetations (SAVs) may take upnutrients, particularly phosphorus (P), from surface flow withhigh efficiency. The objective of this study was to assess Premoval performance by the SAV community under high and lowP concentrations. Methods: Weekly or biweekly inflow and outflow water samples were collectedfrom four small constructed wetlands (test cells) planted withSAV in South Florida, USA, between September 1999 and September2001. These test cells were divided into two groups, with thenorth test cells receiving a higher inflow total phosphorus(TP) concentration (average = 75 µg l–1) than thesouth test cells receiving a lower TP concentration (average= 23 µg l–1). Limerock (LR) berms were installedin two of these test cells to allow an evaluation of the efficiencyof this physical barrier to enhance wetland performance. Important findings: North test cells displayed high TP removal of 60% while theremoval efficiency of the south test cells was only 20%. Solublereactive phosphorus concentrations in both north and south testcells were sequestered down to near-detection limit. High removalefficiencies for particulate phosphorus were also observed inthe north test cells. The LR berms at the two test cells werefound to be associated with decreases of an average TP removalof 2 µg l–1. Outflow TP concentration did not increasewith inflow TP concentration, but increased with nominal hydraulicloading rates. Findings from this study demonstrated high Premoval from inflow water containing high TP concentration bythe SAV wetland and the importance of hydraulic regime to wetlandperformance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号