首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within ± 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.  相似文献   

2.
A microbial sensor consisting of immobilized living whole cells of Brevibacterium lactofermentum and an oxygen electrode was prepared for continuous determination of total assimilable sugars (glucose, fructose and sucrose) in a fermentation broth for glutamic acid production. Total assimilable sugars were evaluated from oxygen consumption by the immobilized microorganisms. When a sample solution containing glucose was applied to the sensor system, increased consumption of oxygen by the microorganisms caused a decrease in the dissolved oxygen around the Teflon membrane of the oxygen electrode and the current of the electrode decreased markedly with time until steady state was reached. The response time was ≈ 10 min by the steady state method and 1 min by the pulse method. A linear relationship was found between the decrease in current and the concentration of glucose (<1 mM), fructose (<1 mM) and sucrose (<0.8 mM). The ratio of the sensitivity of the microbial sensor to glucose, fructose and sucrose was 1.00:0.80:0.92. The decrease in current was reproducible to within 2% of the relative standard deviation when a sample solution containing glucose (0.8 mM) was employed for experiments. The selectivity of the microbial sensor for assimilable sugars was satisfactory for use in the fermentation process. The additivity of the response of the microbial sensor for glucose, fructose and sucrose was examined. The difference between the observed and calculated values was within 8%. The microbial sensor was applied to a fermentation broth for glutamic acid production. Total assimilable sugars can be determined by the microbial sensor which can be used for more than 10 days and 960 assays.  相似文献   

3.
Summary Whole cells of Pseudomonas fluorescens which utilized mainly glucose were immobilized in collagen membrane. The microbial electrode consisted of a bacteria-collagen membrane and an oxygen electrode was developed for the determination of glucose. When the electrode was inserted in a sample solution containing glucose, the current of the electrode decreased markedly with time until a steady state was reached. The response time of the electrode was 10 min by the steady state method. A linear relationship was observed between the steady state current and the concentration of glucose below 20 mg l –1. The minimum concentration for determination was 2 mg of glucose per liter. The reproducibility of the current was examined using the same sample solution. The current was reproducible within ±6% of the relative error when a sample solution containing 10 mg {ie343-1} of glucose was employed. The standard deviation was 0.6 mg {ie343-2} in 20 experiments. The reusability of the glucose sensor was examined using the same sample solution (10 mg {ie343-3}). No decrease in current output was observed over a two week period and 150 assays. Glucose in molasses was determined with an average relative error of 10% by the microbial electrode sensor.  相似文献   

4.
Amperometric determination of sodium nitrite by a microbial sensor   总被引:1,自引:0,他引:1  
Summary A microbial sensor was prepared to determine sodium nitrite. This microbial sensor consisted of immobilized Nitrobacter sp. and an oxygen electrode. When a sample solution containing sodium nitrite was tested, nitrite was changed to NO2 gas in the buffer (pH 2.0) and the current of the electrode decreased with time until a steady state was reached. The steady state current was attained within 10 min and the maximum decrease in current was obtained at 30°C and pH 2.0. A linear relationship was observed between the current decrease and the sodium nitrite concentration below 0.59 mM, the minimum sodium nitrite concentration that could be determined was 0.01 mM. The current decrease was reproducible (5% relative error). The current output of the sensor was almost constant for more than 21 days and 400 assays.  相似文献   

5.
The rapid determination of waste-water quality of waste-water treatment plants in terms of pollutional strength, i.e. biochemical oxygen demand (BOD) is difficult or even impossible using the chemical determination method. The present study reports the determination of BOD within minutes using microbial BOD sensors, as compared to the 5-day determination using the conventional method. Multiple criteria establish the basis for the development of a BOD biosensor useful for rapid and reliable BOD estimation in industrial waste-waters. Of these, preparation of a suitable novel immobilized microbial membrane used in conjunction with an apt transducer is discussed. As a result, a microbial biosensor based on a formulated, synergistic, pre-tested microbial consortium has been developed for the measurement of BOD load of various industrial waste-waters. The sensor showed maximum response in terms of current difference, when a cell concentration of 2.25 x 10(10) CFU, harvested in their log phase of growth were utilized for microbial membrane construction. The sensor showed a stability of 180 days when the prepared membranes were stored at a temperature of 4 degrees C in 50 mM phosphate buffer of pH 6.8. The reusability of the immobilized membranes was up to 200 cycles without appreciable loss of their response characteristics. A linear relationship between the current change and a glucose-glutamic acid (GAA) concentration up to 60 mg l(-1) was observed (r=0.999). The lower detection limit was 1.0 mg l(-1) BOD. The sensor response was reproducible within +/-5% of the mean in a series of ten samples having 44 mg l(-1) BOD using standard a GGA solution. When used for the BOD estimation of industrial waste-waters, a relatively good agreement was found between the two methods, i.e. 5-day BOD and that measured by the developed microbial sensor.  相似文献   

6.
Amperometric estimation of BOD by using living immobilized yeasts   总被引:4,自引:0,他引:4  
Summary A microbial electrode consisting of immobilized living whole cells of yeasts, porous membrane and an oxygen electrode was prepared for continuous estimation of biochemical oxygen demand (BOD). Immobilized Trichosporon cutaneum was employed for the microbial electrode sensor for BOD. When a sample solution containing the equivalent amount of glucose and glutamic acid was injected into the sensor system, the current of the electrode decreased markedly with time until steady state was reached. The response time was within 18 min. A linear relationship was observed between the current decrease and the concentration below 41 mg l of glucose and 41 mg l glutamic acid (5-day BOD 60 mg l ). The current decrease was reproducible within ± 6% of the relative error when a sample solution containing 27 mg l of glucose and 27 mg l of glutamic acid (5-day BOD 40 mg l ) was employed. The microbial electrode sensor was applied to untreated waste waters from a fermentation factory. Good comparative results were obtained between BOD estimated by the microbial electrode and that determined by the conventional 5-day method (regression coefficient was 1.2). Furthermore, the effect of various compounds on BOD estimation was also examined. The current output of the microbial electrode sensor was almost constant for 17 d and 400 tests.  相似文献   

7.
A potentiometric urea-sensitive biosensor using a NH4(+)-sensitive disposable electrode in double matrix membrane (DMM) technology as transducer is described. The ion-sensitive polymer matrix membrane was formed in the presence of an additional electrochemical inert filter paper matrix to improve the reproducibility in sensor production. The electrodes were prepared from one-side silver-coated filter paper, which is encapsulated for insulation by a heat-sealing film. A defined volume of the NH4(+)-sensitive polymer matrix membrane cocktail was deposited on this filter paper. To obtain the urea-biosensor a layer of urease was cast onto the ion-sensitive membrane. Poly (carbamoylsulfonate) hydrogel, produced from a hydrophilic polyurethane prepolymer blocked with bisulfite, served as immobilisation material. The disposable urea sensitive electrode was combined with a disposable Ag/AgCl reference electrode to obtain the disposable urea biosensor. The sensor responded rapidly and in a stable manner to changes in urea concentrations between 7.2 x 10(-5) and 2.1 x 10(-2)mol/l. The detection limit was 2 x 10(-5) mol/l urea and the slope in the linear range 52 mV/decade. By taking into consideration the influence of the interfering K(+)- and Na(+)-ions the sensor can be used for the determination of urea in human blood and serum samples (diluted or undiluted). A good correlation was found with the data obtained by the spectrophotometric routine method.  相似文献   

8.
An on-line biosensor consisting of immobilized Thiobacillus ferrooxidans and an oxygen electrode was developed for automated monitoring of acute toxicity in water samples. T. ferrooxidans is an obligatory acidophilic, autotrophic bacterium and derives its energy by the oxidation of ferrous ion, elemental sulfur, and reduced sulfur compounds including metal sulfides. The assay is based on the monitoring of a current increase by addition of toxicoids, which is caused by the inhibition of bacterial respiration and decrease in oxygen consumption. Optimum cell number on the membrane was 5.0 x 10(8) cells. The steady-state current was obtained when concentration of FeSO4 was above 3.6 mM at pH 3. The sensor response of T. ferrooxidans immobilized membrane for 5.0 microM KCN was within an error of 10% for 30 membranes. A linear relationship was obtained at KCN concentration in the range of 0.5-3.0 microM in a flow-type monitoring system. Minimum detectable concentrations of KCN, Na2S, and NaN3 were 0.5, 1.2, and 0.07 microM, respectively. The monitoring system contained two biosensors and these sensors were cleaned with sulfuric acid (pH 1.5) twice a day. This treatment could remove fouling on microbial immobilized membrane by natural water and ferrous precipitation in the flow cell. This flow-type monitoring sensor was operated continuously for 5 months. Also, T. ferrooxidans immobilized membrane can be stored for one month at 4 degrees C when preserved with wet absorbent cotton under argon gas.  相似文献   

9.
Oxygen availability is a potential rate-limiting step in the bioelectrochemical process catalyzed by microbes in microbial fuel cells (MFC). Determination of oxygen availability using a minimally invasive oxygen sensor is advantageous in terms of ease of usage, maintenance and cost-effectiveness as compared to using conventional probe-type oxygen sensors. The utility of this method is substantiated by using this sensor to demonstrate the relationship between oxygen availability and current density. 10 % drop in oxygen concentration resulted in a concomitant drop in current density by about 36 %, further establishing the criticality of monitoring oxygen levels in the MFC. The detachable sensor membrane of the minimally invasive sensor confers multiple advantages. The novel method would enable real-time monitoring of oxygen in MFCs, simplify process optimization and validation and more importantly, provide an impetus for development of more efficient MFC designs.  相似文献   

10.
Microbial sensor for selective determination of sulphide   总被引:2,自引:0,他引:2  
A microbial sensor consisting of immobilized Thiobacillus thiooxidans, a gas-permeable membrane, and an O2 electrode was prepared for the determination of sulphide. When a sample solution containing sulphide was passed into the flow cell, the output of the microbial sensor decreased markedly with time until a steady state was reached. The total time required for an assay was 20–30 min by the steady-state method. In the pulse method, the total time required for an assay was about 5 min. A linear relationship was obtained between the sensor output and the concentration of sodium sulphide below 0.40 mm. The minimum detectable concentration of sodium sulphide was 0.02 mm. Selectivity of the sensor was satisfactory. The microbial sensor was applied to the determination of sulphide in spring water. A good agreement was obtained between the microbial sensor and the methylene blue method. The regression coefficient was 0.97 for five experiments. The activity of the microbial membrane was stable for more than 25 days. The response was reproducible with 2.5% of the relative standard deviation when a sample solution containing 0.2 mm sodium sulphide was employed. *** DIRECT SUPPORT *** AG903053 00005  相似文献   

11.
An amperometric biosensor was developed for determination of urea using electrodeposited rhodium on a polymer membrane and immobilized urease. The urease catalyzes the hydrolysis of urea to NH4+ and HCO3 ions and the liberated ammonia is catalytically and electrochemically oxidized by rhodium present in the rhodinized membrane on the Pt working electrode. Three types of rhodinized polymer membranes were prepared by varying the number of electrodeposition cycles: membrane 1 with 10 deposition cycles, membrane 2 with 40 cycles and membrane 3 with 60 cycles. The morphologies of the rhodinized membranes were investigated by scanning electron microscopy and the results showed that the deposition of rhodium was like flowers with cornices-like centers. The influence of the amount of electrodeposited rhodium over the electrode sensitivity to different concentrations of ammonia was examined initially based on the cyclic voltammetric curves using the three rhodium modified electrodes. The obtained results convincingly show that electrode with rhodinized membrane 1, which contain the lowest amount of electrodeposited rhodium is the most active and sensitive regarding ammonia. It was found that the anodic oxidation peak of ammonia to nitrogen occurs at 0.60 V. In order to study the performance of urease amperometric sensor for the determination of urea, experiments at constant potential (0.60 V) were performed. The current–time experiments were carried out with urease rhodinized membrane 1 (10 cycles). The amperometric response increased linearly up to 1.75 mM urea. The detection limit was 0.05 mM. The urea biosensor exhibited a high sensitivity of 1.85 μA mM−1 cm−2 with a response time 15 s. The Michaelis–Menten constant Km for the urea biosensor was calculated to be 6.5 mM, indicating that the immobilized enzyme featured a high affinity to urea. The urea sensor showed a good reproducibility and stability. Both components rhodium and urease contribute to the decreasing of the production cost of biosensor by avoiding the use of a second enzyme.  相似文献   

12.
Two different types of biochemical oxygen demand (BOD) sensors using microbial electrodes were prepared. First, a microbial electrode using the bacteria–collagen membrane and oxygen electrode was used for the determination of BOD. When the electrode was inserted in a sample solution containing glucose and glutamic acid (model waste water), the current of the electrode decreased markedly with time until a steady state was reached. A linear relationship was observed between the steady state current and the concentration of the standard solution containing glucose–glutamic acid or the BOD of the solution. The BOD of industrial waste waters can be estimated within 15 min by using the microbial electrode. No decrease in current output was observed over a ten day period. The reproducibility was determined using the same sample (10% of the standard solution) and was found to be 26.2 ± 2.0 μA (7.5% of the relative standard deviation). Next, a biofuel cell utilizing microbial electrode (immobilized Clostridium butyricum–platinum electrode) was applied to the estimation of the BOD of waste waters. The current of the biofuel cell was decreased markedly with time until a steady state was reached. The steady state current was in all cases attained within 30–40 min at 37°C. A linear relationship was obtained between the steady state current and BOD. The BOD of industrial waste waters can be estimated by using the biofuel cell. Relative error of the BOD estimation was within ±10%. The current output of the biofuel cell was almost constant for 30 days.  相似文献   

13.
The microorganisms Trichosporon cutaneum and Bacillus licheniformis were used to develop a microbial biochemical oxygen demand (BOD) sensor. It was found that T. cutaneum gave a greater response to glucose, whereas B. licheniformis gave a better response to glutamic acid. Hence, co-immobilized T. cutaneum and B. licheniformis were used to construct a glucose and glutamic acid sensor with improved sensitivity and dynamic range. A membrane loading of T. cutaneum at 1.1x10(8 )cells ml(-1) cm(-2) and B. licheniformis at 2.2x10(8) cells ml(-1) cm(-2) gave the optimum result: a linear range up to 40 mg BOD l(-1) with a sensitivity of 5.84 nA mg(-1) BOD l. The optimized BOD sensor showed operation stability for 58 intermittent batch measurements, with a standard deviation of 0.0362 and a variance of 0.131 nA. The response time of the co-immobilized microbial BOD sensor was within 5-10 min by steady-state measurement and the detection limit was 0.5 mg BOD l(-1). The BOD sensor was insensitive to pH in the range of pH 6.8-7.2.  相似文献   

14.
The current study was made to develop a biosensor based on a single-chamber microbial fuel cell in which anaerobes were retained in the anode compartment separated from the cathode compartment by a proton exchange membrane. In the sensor a replaceable anaerobic consortium was used for analyzing biodegradable organic matter. The anaerobes acted as biocatalysts in oxidizing organic matter and transferring electrons to the anode. The biocatalysts were renewed for each sample analysis by replacing the old anaerobic consortium with an equal amount of fresh one. A glucose standard solution was used as the target substrate. To obtain the maximum sensor output, the MFC-based sensor system was optimized using an 800 Ω resistor as the load to the external electric circuit and 25 mM phosphate buffer with 50 mM NaCl as catholyte in the aerobic compartment. The temperature of anaerobic compartment was maintained at optimal 37 °C. The cell potential across the electrodes increased with increasing loading of glucose. The sensor response was linear against concentration of glucose up to 25 g l−1. The detection limit was found as 0.025 g l−1. The microbial fuel cell with replaceable anaerobic consortium could be used as a biosensor for on-line monitoring of organic matter.  相似文献   

15.
Manometric biosensor for on-line measurement of milk urea   总被引:2,自引:0,他引:2  
Performance of a prototype sensor for on-line measurement of urea in milk during milking was evaluated. The sensor was based on a manometric assay of the carbon dioxide generated by the enzymatic hydrolysis of urea. Temperature compensation of the sensor was described briefly, and was shown to be effective. The calibration of the sensor was described and resulted in a standard calibration error of about 0.15 mM of urea. The standard error of the sensor in milk was shown to be about 0.25 mM (given a physiological range of about 2-7 mM in cow milk). The sensor was simple, inexpensive, suffered from no interferences in raw milk, and completed a measurement cycle in about 5 min (less than the time to milk a typical cow). A custom made sampling device, whereby milk was passively collected from the milk line under vacuum, was shown to collect an ample volume within 10 s to run a test with the sensor. No measurable bubbles or foam were introduced from the sampling mechanism so that the milk sampled was not diminished in density compared to samples taken by other methods.  相似文献   

16.
A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm‐colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm‐colonized anode showed linear relationship with BOD content, to up to 250 mg/L (~233 ± 1 mA/m2), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine‐triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m2) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol‐ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers. Biotechnol. Bioeng. 2011;108: 2339–2347. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
A new electrochemical enzymatic sensor based on the ion selective field effect transistors (ISFETs) and photocurable membrane was developed for the determination of urea. For the immobilization of urease on the gate surface of the ISFET a simple method, involving the use of liquid photocurable compositions on the basis of vinylpirollidone, oligouretanemetacrylate and oligocarbonatemetacrylate, was applied. The linearange of the response of the developed electrochemical sensor lies in the range 0.05-20 mM. The latter corresponds to the claims of the medical practice. The overall time of the analysis is 5-10 min. The effects of the buffer concentration and its pH as well as temperature and presence of ammonia ions in the measuring medium on the amplitude of the sensor response were estimated. The duration of sensor work is as shortest 40 days. The proposed sensor on the basis of the ISFET is promising for the express analysis of the level urea in blood, while the developed method of membrane preparation with entrapped enzyme can be combined with the integral technology of producing of the biosensors semiconductor transducers.  相似文献   

18.
A biosensor consisting of immobilized nitrite oxidizing bacteria and an oxygen electrode has been developed for the amperometric determination of NO(2) (nitrogen dioxide) gas. The response time for the determination of NO(2) was within 3 min. A linear relationship was observed between the current decrease and the NO(2) concentration below 255 ppm. The minimum concentration for the determination of NO(2) was 0.51 ppm. The current decrease was reproducible within +/-4% of the relative error. The selectivity of the microbial sensor for NO(2) was satisfactory. The current output of the sensor was almost constant for more than 24 days and 400 assays.  相似文献   

19.
An enzyme immunosensor was constructed for the determination of human chorionic gonadotropin (HCG), which is a hormone and an important diagnostic measure of pregnancy. An antibody to HCG was immobilized to a membrane. The antibody-bound membrane was placed onto an oxygen probe so as to react with HCG either specifically or selectively. Catalase, which catalyzes the decomposition of H2O2 into H2O and O2, was used to label HCG. Nonlabeled HCG to be assayed and catalase-labeled HCG were competitively reacted with the membrane-bound antibody of the sensor to form an antigen-antibody complex on the membrane surface. After the removal of nonspecifically adsorbed HCG, the sensor was contacted with a H2O2 solution. The membrane-adsorbed catalase enzymatically generated oxygen with a resulting increase in cathodic current of the sensor. The HCG concentration was determined from the initial rate of the current increase. The enzyme immunosensor was applied to the determination of HCG in the concentration range of 2 × 10?2 to 102 IU/ml.  相似文献   

20.
A novel urea biosensor based on immobilised recombinant urease as sensitive element and ion sensitive field effect transistor as transducer was developed. Recombinant urease from E. coli with an increased Km was photoimmobilised in PVA/SbQ (poly(vinyl alcohol) containing styrylpyridinium) membrane and has demonstrated quite good performance as biosensitive element. Enzymatic field effect transistors based on such a bioselective element were studied in model buffer solutions. This biosensor demonstrated an extended dynamic range up to 80 mM, a quite good reproducibility (standard deviation of the sensor responses was approximately 2.5%, n= 20 for urea concentration 10 mM) and a high stability. Such characteristics fit with the analytical requirements needed for urea control in plasma and liquids used during renal dialysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号