首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Hepatitis A virus (HAV) 3C proteinase expressed in Escherichia coli was purified to homogeneity, and its cleavage specificity towards various parts of the viral polyprotein was analyzed. Intermolecular cleavage of the P2-P3 domain of the HAV polyprotein gave rise to proteins 2A, 2B, 2C, 3ABC, and 3D, suggesting that in addition to the primary cleavage site, all secondary sites within P2 as well as the 3C/3D junction are cleaved by 3C. 3C-mediated processing of the P1-P2 precursor liberated 2A and 2BC, in addition to the structural proteins VP0, VP3, and VP1-2A and the respective intermediate products. A clear dependence on proteinase concentration was found for most cleavage sites, possibly reflecting the cleavage site preference of 3C. The most efficient cleavage occurred at the 2A/2B and 2C/3A junctions. The electrophoretic mobility of processing product 2B, as well as cleavage of the synthetic peptide KGLFSQ*AKISLFYT, suggests that the 2A/2B junction is located at amino acid position 836/837 of the HAV polyprotein. Furthermore, using suitable substrates we obtained evidence that sites VP3/VP1 and VP1/2A are alternatively processed by 3C, leading to either VP1-2A or to P1 and 2A. The results with regard to intermolecular cleavage by purified 3C were confirmed by the product pattern derived from cell-free expression and intramolecular processing of the entire polyprotein. We therefore propose that polyprotein processing of HAV relies on 3C as the single proteinase, possibly assisted by as-yet-undetermined viral or host cell factors and presumably controlled in a concentration-dependent fashion.  相似文献   

2.
Active proteinase 3C of hepatitis A virus (HAV) was expressed in bacteria either as a mature enzyme or as a protein fused to the entire polymerase 3D or to a part of it, and their identities were shown by immunoblot analysis. Intermolecular cleavage activity was demonstrated by incubating in vitro-translated and radiolabeled HAV precursor protein P1-P2 with extracts of bacteria transformed with plasmids containing recombinant HAV 3C. Identification of cleavage products P1, VP1, and VPO-VP3 by immunoprecipitation clearly demonstrates that HAV 3C can cleave between P1 and P2 as well as within P1 and thus shows an activity profile similar to that of cardiovirus 3C.  相似文献   

3.
4.
Unlike all other picornaviruses, the primary cleavage of the hepatitis A virus (HAV) polyprotein occurs at the 2A/2B junction and is carried out by the only proteinase encoded by the virus, 3C(pro). The resulting P1-2A capsid protein precursor is subsequently cleaved by 3C(pro) to generate VP0, VP3, and VP1-2A, which associate as pentamers. An unidentified cellular proteinase acting at the VP1/2A junction releases the mature capsid protein VP1 from VP1-2A later in the morphogenesis process. Although these aspects of polyprotein processing are well characterized, the function of 2A is unknown. To study its role in the viral life cycle, we assessed the infectivity of synthetic, genome-length RNAs containing 11 different in-frame deletions in the 2A region. Deletions in the N-terminal 40% of 2A abolished infectivity, whereas deletions in the C-terminal 60% resulted in viruses with a small-focus replication phenotype. C-terminal deletions in 2A had no effect on RNA replication kinetics under one-step growth conditions, nor did they have an effect on capsid protein synthesis and 3C(pro)-mediated processing. However, C-terminal deletions in 2A altered the VP1/2A cleavage, resulting in accumulation of uncleaved VP1-2A precursor in virions and possibly accounting for a delay in the appearance of infectious particles with these mutants, as well as a fourfold decrease in specific infectivity of the virus particles. When the capsid proteins were expressed from recombinant vaccinia viruses, the N-terminal part of 2A was required for efficient cleavage of the P1-2A precursor by 3C(pro) and assembly of structural precursors into pentamers. These data indicate that the N-terminal domain of 2A must be present as a C-terminal extension of P1 for folding of the capsid protein precursor to allow efficient 3C(pro)-mediated cleavages and to promote pentamer assembly, after which cleavage at the VP1/2A junction releases the mature VP1 protein, a process that appears to be necessary to produce highly infectious particles.  相似文献   

5.
6.
Hepatitis C virus proteins are produced by proteolytic processing of the viral precursor polyprotein that is encoded in the largest open reading frame of the viral genome. Processing of the nonstructural viral polyprotein requires the viral serine-type proteinase present in nonstructural protein 3 (NS3). The cleavage of the junction between NS4B and NS5A is mediated by NS3 only when NS4A is present. NS4A is thought to be a cofactor that enhances the cleavage efficiency of NS3 in hepatitis C virus protein-producing cells. Stable NS3-NS4A complex formation required the N-terminal 22 amino acid residues of NS3. This interaction contributed to stabilization of the NS3 product as well as increased the efficiency of cleavage at the NS4B/5A site. The N-terminal 22 amino acid residues fused to Escherichia coli dihydrofolate reductase also formed a stable complex with NS4A. NS3 derivatives which lacked the N-terminal 22 amino acid residues showed drastically reduced cleavage activity at the NS4B/5A site even in the presence of NS4A. These data suggested that the interaction with NS4A through the 22 amino acid residues of NS3 is primarily important for the NS4A-dependent processing of the NS4B/5A site by NS3.  相似文献   

7.
Activated Protein C (APC) inactivates factor VIIIa by cleavage at Arg(336) and Arg(562) within the A1 and A2 subunits, respectively, with reaction at the former site occurring at a rate approximately 25-fold faster than the latter. Recombinant factor VIII variants possessing mutations within the P4-P3' sequences were used to determine the contributions of these residues to the disparate cleavage rates at the two P1 sites. Specific activity values for 336(P4-P3')562, 336(P4-P2)562, and 336(P1'-P3')562 mutants, where indicated residues surrounding the Arg(336) site were replaced with those surrounding Arg(562), were similar to wild type (WT) factor VIII; whereas 562(P4-P3')336 and 562(P4-P2)336 mutants showed specific activity values <1% the WT value. Inactivation rates for the 336 site mutants were reduced approximately 6-11-fold compared with WT factor VIIIa, and approached values attributed to cleavage at Arg(562). Cleavage rates at Arg(336) were reduced approximately 100-fold for 336(P4-P3')562, and approximately 9-16-fold for 336(P4-P2)562 and 336(P1'-P3')562 mutants. Inhibition kinetics revealed similar affinities of APC for WT factor VIIIa and 336(P4-P3')562 variant. Alternatively, the 562(P4-P3')336 variant showed a modest increase in cleavage rate ( approximately 4-fold) at Arg(562) compared with WT, whereas these rates were increased by approximately 27- and 6-fold for 562(P4-P3')336 and 562(P4-P2)336, respectively, using the factor VIII procofactor form as substrate. Thus the P4-P3' residues surrounding Arg(336) and Arg(562) make significant contributions to proteolysis rates at each site, apparently independent of binding affinity. Efficient cleavage at Arg(336) by APC is attributed to favorable P4-P3' residues at this site, whereas cleavage at Arg(562) can be accelerated following replacement with more optimal P4-P3' residues.  相似文献   

8.
Picornavirus replication is critically dependent on the correct processing of a polyprotein precursor by 3C protease(s) (3Cpro) at multiple specific sites with related but non-identical sequences. To investigate the structural basis of its cleavage specificity, we performed the first crystallographic structural analysis of non-covalent complexes of a picornavirus 3Cpro with peptide substrates. The X-ray crystal structure of the foot-and-mouth disease virus 3Cpro, mutated to replace the catalytic Cys by Ala and bound to a peptide (APAKQ|LLNFD) corresponding to the P5-P5′ region of the VP1-2A cleavage junction in the viral polyprotein, was determined up to 2.5 Å resolution. Comparison with free enzyme reveals significant conformational changes in 3Cpro on substrate binding that lead to the formation of an extended interface of contact primarily involving the P4-P2′ positions of the peptide. Strikingly, the deep S1′ specificity pocket needed to accommodate P1′-Leu only forms when the peptide binds. Substrate specificity was investigated using peptide cleavage assays to show the impact of amino acid substitutions within the P5-P4′ region of synthetic substrates. The structure of the enzyme-peptide complex explains the marked substrate preferences for particular P4, P2 and P1 residue types, as well as the relative promiscuity at P3 and on the P′ side of the scissile bond. Furthermore, crystallographic analysis of the complex with a modified VP1-2A peptide (APAKE|LLNFD) containing a Gln-to-Glu substitution reveals an identical mode of peptide binding and explains the ability of foot-and-mouth disease virus 3Cpro to cleave sequences containing either P1-Gln or P1-Glu. Structure-based mutagenesis was used to probe interactions within the S1′ specificity pocket and to provide direct evidence of the important contribution made by Asp84 of the Cys-His-Asp catalytic triad to proteolytic activity. Our results provide a new level of detail in our understanding of the structural basis of polyprotein cleavage by 3Cpro.  相似文献   

9.
Hepatitis A virus (HAV) differs from other members of the family Picornaviridae in that the cleavage of the polyprotein at the 2A/2B junction, commonly considered to be the primary polyprotein cleavage by analogy with other picornaviruses, is mediated by 3C(pro), the only proteinase encoded by the virus. However, it has never been formally demonstrated that the 2A/2B junction is the site of primary cleavage, and the actual function of the 2A sequence, which lacks homology with sequence of other picornaviruses, remains unknown. To determine whether 2A functions in cis as a precursor with the nonstructural proteins, we constructed dicistronic HAV genomes in which a heterologous picornaviral internal ribosome entry site was inserted at the 2A/2B junction. Transfection of permissive FRhK-4 cells with these dicistronic RNAs failed to result in the rescue of infectious virus, indicating a possible cis replication function spanning the 2A/2B junction. However, infectious virus was recovered from recombinant HAV genomes containing exogenous protein-coding sequences inserted in-frame at the 2A/2B junction and flanked by consensus 3C(pro) cleavage sites. The replication of these recombinants was less efficient than that of the parent virus but was variable and not dependent upon the length of the inserted sequence. An HAV recombinant containing a 420-nt insertion encoding the bleomycin resistance protein Zeo was stable for up to five passages in cell culture. Inserted sequences were deleted from replicating viruses, but this did not result from homologous recombination at the flanking 3C(pro) cleavage sites, since the 5' and 3' segments of the inserted sequence were retained in the deletion mutants. These results indicate that the HAV polyprotein can tolerate an insertion at the 2A/2B junction and that the 2A polypeptide does not function in cis as a 2AB precursor. Recombinant HAV genomes containing foreign protein-coding sequences inserted at the 2A/2B junction are novel and potentially useful protein expression vectors.  相似文献   

10.
The protease domain of the hepatitis C virus (HCV) protein NS3 was expressed in Escherichia coli, purified to homogeneity, and shown to be active on peptides derived from the sequence of the NS4A-NS4B junction. Experiments were carried out to optimize protease activity. Buffer requirements included the presence of detergent, glycerol, and dithiothreitol, pH between 7.5 and 8.5, and low ionic strength. C- and N-terminal deletion experiments defined a peptide spanning from the P6 to the P4' residue as a suitable substrate. Cleavage kinetics were subsequently measured by using decamer P6-P4' peptides corresponding to all intermolecular cleavage sites of the HCV polyprotein. The following order of cleavage efficiency, in terms of kcat/Km, was determined: NS5A-NS5B > NS4A-NS4B >> NS4B-NS5A. A 14-mer peptide containing residues 21 to 34 of the protease cofactor NS4A (Pep4A 21-34), when added in stoichiometric amounts, was shown to increase cleavage rates of all peptides, the largest effect (100-fold) being observed on the hydrolysis of the NS4B-NS5A decamer. From the kinetic analysis of cleavage data, we conclude that (i) primary structure is an important determinant of the efficiency with which each site is cleaved during polyprotein processing, (ii) slow cleavage of the NS4B-NS5A site in the absence of NS4A is due to low binding affinity of the enzyme for this site, and (iii) formation of a 1:1 complex between the protease and Pep4A 21-34 is sufficient and required for maximum activation.  相似文献   

11.
12.
In the ribozyme of hepatitis delta virus antigenomic RNA, two short duplexes, P2 and P2a, stabilize the active self-cleaving structure. However, P2a also promotes kinetic trapping of non-native structures. A bulged adenosine (A14) separates P2a and P2; this bulged A is conserved in clinical isolates of HDV but is unlikely to be physically close to the cleavage site phosphate in the ribozyme structure. Removing the bulge did not significantly slow the rate of cleavage but slowed the conversion of inactive to active conformations. In the absence of the bulged A, inactive conformations required higher urea concentrations or higher temperatures to be activated. Thus, the bulged-nucleotide in the P2-P2a duplex did not provide an essential kink or hinge between P2 and P2a that was required for cleavage activity but, rather, increased the rate of refolding from an inactive to an active ribozyme structure. These data also suggest a model in which P2 and P2a form a coaxial stacked helix of 9 bp, the most likely arrangement being one in which P2-P2a is roughly parallel to P1.  相似文献   

13.
14.
In the generation of flavivirus particles, an internal cleavage of the envelope glycoprotein prM by furin is required for the acquisition of infectivity. Unlike cleavage of the prM of other flaviviruses, cleavage of dengue virus prM is incomplete in many cell lines; the partial cleavage reflects the influence of residues at furin nonconsensus positions of the pr-M junction, as flaviviruses share basic residues at positions P1, P2, and P4, recognized by furin. In this study, viruses harboring the alanine-scanning and other multiple-point mutations of the pr-M junction were generated, employing a dengue virus background that exhibited 60 to 70% prM cleavage and a preponderance of virion-sized extracellular particles. Analysis of prM and its cleavage products in viable mutants revealed a cleavage-suppressive effect at the conserved P3 Glu residue, as well as the cleavage-augmenting effects at the P5 Arg and P6 His residues, indicating an interplay between opposing modulatory influences mediated by these residues on the cleavage of the pr-M junction. Changes in the prM cleavage level were associated with altered proportions of extracellular virions and subviral particles; mutants with reduced cleavage were enriched with subviral particles and prM-containing virions, whereas the mutant with enhanced cleavage was deprived of these particles. Alterations of virus multiplication were detected in mutants with reduced prM cleavage and were correlated with their low specific infectivities. These findings define the functional roles of charged residues located adjacent to the furin consensus sequence in the cleavage of dengue virus prM and provide plausible mechanisms by which the reduction in the pr-M junction cleavability may affect virus replication.  相似文献   

15.
Gardner AF  Guan C  Jack WE 《PloS one》2011,6(8):e23668
Sulfolobus islandicus rod shaped virus 2 (SIRV2) infects the archaeon Sulfolobus islandicus at extreme temperature (70°C-80°C) and acidity (pH 3). SIRV2 encodes a Holliday junction resolving enzyme (SIRV2 Hjr) that has been proposed as a key enzyme in SIRV2 genome replication. The molecular mechanism for SIRV2 Hjr four-way junction cleavage bias, minimal requirements for four-way junction cleavage, and substrate specificity were determined. SIRV2 Hjr cleaves four-way DNA junctions with a preference for cleavage of exchange strand pairs, in contrast to host-derived resolving enzymes, suggesting fundamental differences in substrate recognition and cleavage among closely related Sulfolobus resolving enzymes. Unlike other viral resolving enzymes, such as T4 endonuclease VII or T7 endonuclease I, that cleave branched DNA replication intermediates, SIRV2 Hjr cleavage is specific to four-way DNA junctions and inactive on other branched DNA molecules. In addition, a specific interaction was detected between SIRV2 Hjr and the SIRV2 virion body coat protein (SIRV2gp26). Based on this observation, a model is proposed linking SIRV2 Hjr genome resolution to viral particle assembly.  相似文献   

16.
The hepatitis C virus genome encodes a polyprotein precursor that is co- and post-translationally processed by cellular and viral proteases to yield 10 mature protein products (C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B). Although most cleavages in hepatitis C virus polyprotein precursor proceed to completion during or immediately after translation, the cleavages mediated by a host cell signal peptidase are partial at the E2/p7 and p7/NS2 sites, leading to the production of an E2p7NS2 precursor. The sequences located immediately N-terminally of E2/p7 and p7/NS2 cleavage sites can function as signal peptides. When fused to a reporter protein, the signal peptides of p7 and NS2 were efficiently cleaved. However, when full-length p7 was fused to the reporter protein, partial cleavage was observed, indicating that a sequence located N-terminally of the signal peptide reduces the efficiency of p7/NS2 cleavage. Sequence analyses and mutagenesis studies have also identified structural determinants responsible for the partial cleavage at both the E2/p7 and p7/NS2 sites. Finally, the short distance between the cleavage site of E2/p7 or p7/NS2 and the predicted transmembrane alpha-helix within the P' region might impose additional structural constraints to the cleavage sites. The insertion of a linker polypeptide sequence between P-3' and P-4' of the cleavage site released these constraints and led to improved cleavage efficiency. Such constraints in the processing of a polyprotein precursor are likely essential for hepatitis C virus to post-translationally regulate the kinetics and/or the level of expression of p7 as well as NS2 and E2 mature proteins.  相似文献   

17.
Previous studies have described poliovirus genomes in which the internal ribosome entry (IRES) for encephalomyocarditis virus (EMCV) is positioned between the P1 and P2-P3 open reading frames of the poliovirus genome. Although these dicistronic poliovirus genomes were replication competent, most exhibited evidence of genetic instability, and the EMCV IRES was deleted upon serial passage. One possible reason for instability of the genome is that the dicistronic genome was at least 108% larger than the wild-type poliovirus genome, which could reduce the efficiency of encapsidation. To address this possibility, we have constructed dicistronic poliovirus replicons by substituting the EMCV IRES and the gene encoding luciferase in place of the poliovirus P1 region; the resulting dicistronic replicons are smaller than the wild-type poliovirus genome. One dicistronic genome was constructed in which the poliovirus 5' nontranslated region was fused to the gene encoding luciferase, followed by the complete EMCV IRES fused to the P2-P3 region of the poliovirus genome (PV-Luc-EMCV). A second dicistronic genome, EMCV-Luc-PV, was constructed with the first 108 nucleotides of the poliovirus genome fused to the EMCV IRES, followed by the gene encoding luciferase and the poliovirus IRES fused to the remaining P2-P3 region of the poliovirus genome. Both dicistronic replicons expressed abundant luciferase following transfection of in vitro-transcribed RNA into HeLa cells at 30, 33, or 37 degrees C. The luciferase activity detected from PV-Luc-EMCV increased rapidly during the first 4 h following transfection and then plateaued, peaking after approximately 24 h. In contrast, the luciferase activity detected from EMCV-Luc-PV increased for approximately 12 h following transfection; by 24 h posttransfection, the overall levels of luciferase activity were similar to that of PV-Luc-EMCV. To analyze encapsidation of the dicistronic replicons, we used a system in which the capsid protein (P1) is provided in trans from a recombinant vaccinia virus (VV-P1). The PV-Luc-EMCV replicon was unstable upon serial passage in the presence of VV-P1, with deletions of the EMCV IRES region detected even during the initial transfection at 37 degrees C. Following serial passage in the presence of VV-P1 at 33 or 30 degrees C, we detected deleted genomes in which the luciferase gene was fused with the P2-P3 genes of the poliovirus genome so as to maintain the translational reading frame. In contrast, the EMCV-Luc-PV replicon was genetically stable during passage with VV-P1 at 33 or 30 degrees C. The encapsidation of EMCV-Luc-PV was compared to that of monocistronic replicons encoding luciferase with either a poliovirus or EMCV IRES. Analysis of the encapsidated replicons after four serial passages with VV-P1 revealed that the dicistronic replicon was encapsidated more efficiently than the monocistronic replicon with the EMCV IRES but less efficiently than the monicistronic replicon with the poliovirus IRES. The results of this study suggest a genetic predisposition for picornavirus genomes to contain a single IRES region and are discussed with respect to a role of the IRES in encapsidation.  相似文献   

18.
The genome of a recently identified virus, hepatitis G virus (HGV), shows considerable homology to hepatitis C virus (HCV). Two HGV proteases similar to nonstructural proteins NS2 and NS3 of HCV were identified, and their cleavage site specificity was investigated. Amino acids essential for the protease activities were determined by mutation analysis. NS4A of HGV was demonstrated to be a cofactor for NS3-mediated proteolysis, with a region critical for activity residing between Leu1561 and Ala1598.  相似文献   

19.
To determine the P3 region protein-processing sites cleaved by the hepatitis A virus 3C protease, a nested set of constructs containing a portion of 3A (3A* [the asterisk denotes an incomplete protein]), 3B and 3C and various amounts of 3D, fused in frame to Escherichia coli TrpE-coding sequences under control of the tryptophan promoter, was made. Additional plasmids that encoded a portion of 2C (2C*) and the P3 proteins, including complete or incomplete 3D sequences, were constructed. After induction, E. coli containing these recombinant plasmids produced high levels of fusion proteins as insoluble aggregates. 3C-mediated cleavage products were identified by comparison of expression with a matching set of plasmids, containing an engineered mutation in 3C. Cleavage products were detected by immunoblot analyses by using antisera against the TrpE protein, against 3D*, and against 3CD*. Scissile bonds were determined by N-terminal amino acid sequencing of the proteins formed by cleavage. The results showed that when a portion of 2C was present, the primary cleavage by the 3C protease was between 2C and 3A, and the cleavage site was QG, as predicted by J. I. Cohen, J. R. Ticehurst, R. H. Purcell, A. Buckler-White, and B. M. Baroudy, J. Virol. 61:50-59, 1987. Very little further cleavage of the released P3 protein was detected. When the fusion protein contained no 2C and included only 3A*-to-3D sequences, efficient cleavage occurred between 3B and 3C, at the QS pair, also as predicted by Cohen et al. (J. Virol. 61:50-59, 1987). The latter proteins were also cleaved between 3C and 3D, but less efficiently than between 3B and 3C. Extracts of bacteria expressing proteins from 3A* to 3D also cleaved a radiolabelled hepatitis A virus substrate containing VP1*2ABC* sequences in trans.  相似文献   

20.
The structure and replication of the single-stranded circular RNA genome of hepatitis delta virus (HDV) are unique relative to those of known animal viruses, and yet there are real similarities between HDV and certain infectious RNAs of plants. Therefore, since some of the latter RNAs have been shown to undergo in vitro site-specific cleavage and even ligation, we tested the hypothesis that similar events might also occur for HDV RNA. In partial confirmation of this hypothesis, we found that in vitro the RNA complementary to the HDV genome, the antigenomic RNA, could undergo a self-cleavage that was not only more than 90% efficient but also occurred only at a single location. This cleavage was found to produce junction fragments consistent with a 5'-hydroxyl and a cyclic 2',3'-monophosphate. Since the observed cleavage was both site-specific and occurred only once per genome length, we propose that the site may be relevant to the normal intracellular replication of the HDV genome. Because the site is located almost adjacent to the 3' end of the delta antigen-coding region, the only known functional open reading frame of HDV, we suggest that the cleavage may have a role not only in genome replication but also in RNA processing, helping to produce a functional mRNA for the translation of delta antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号