首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of early embryonic development have traditionally been viewed as invariant within vertebrate taxa. It has been argued that the specific differences which are found arise during the later stages of development. These differences may be a result of allometry, heterochrony or changes in relative growth rates. To test whether early embryonic development is indeed invariant, or whether selection of adult characteristics can alter embryonic growth, we compared embryonic development in birds selected for different patterns of postnatal growth. Using quail lines selected for high and low body mass, we compared somite formation, and muscle and feather development. We obtained data that showed changes in the rate of myotome formation in the brachial somites which contribute to muscle formation in the limbs and thorax. We think these observations are connected with intraspecific changes in adult morphology, ie., breast muscle size. Our findings suggest that selection for late ontogenetic/adult stages affects early embryonic development.  相似文献   

2.
In this study, we investigate whether a tissue-level constraint can explain the general inverse relationship between growth rate and precocity of development in birds. On the whole, altricial (dependent) chicks grow three to four times faster than the less dependent, more able chicks of precocial species of similar adult mass. We suggest that an antagonism between growth and acquisition of mature function in skeletal muscle constrains postnatal growth and development in most species of birds. Altricial species, represented by European starlings in this study, hatch with skeletal muscle having low capacity for generating force but grow rapidly. Conversely, precocial species (northern bobwhite quail and Japanese quail), hatch with relatively mature skeletal muscle, especially in their legs, but grow more slowly. As development proceeds in all species, exponential growth rates decrease as muscles acquire adult levels of function. Among four variables associated with muscle function, exponential growth rate (EGR) was negatively correlated with pyruvate kinase activity (glycolysis), potassium concentration (electrical potential), and dry weight fraction (contractile proteins) in both pectoral and leg muscles but not with citrate synthase activity (aerobic metabolism) in either set of muscles. For pectoral muscle, these variables accounted for 87% of the total variation in EGR in all three species combined despite a twofold difference in growth rates between the starling and quail. EGRs of leg muscle (51% of variation accounted for) were less than predicted by the pectoral-muscle equation in quail during the early part of the postnatal period and in starlings during the late postnatal period. This result would not contradict a growth rate/maturity constraint hypothesis if EGRs were down-regulated for allometric or other considerations.  相似文献   

3.
This model of growth offers a quantitative definition for altricial and precocial newborns, makes muscular strength a benchmark for locomotor independence, and discriminates related genera as well as genera across major taxonomic divides. The model contrasts four theoretical conditions of the neonate (I, small brain, weak musculature; II, small brain, strong musculature; III, large brain, weak musculature; IV, large brain, strong musculature) with species from three orders of placental mammal. Each species exhibits a distinct mother-infant strategy from the altricial red panda cub (condition I) and the golden lion tamarin (condition III) to the precocial wildebeest calf (condition IV). The model proposes that early growth rates of brain and muscle correlate with nutrition, maternal effort during gestation and lactation, and parental care, whereas postnatal muscular growth correlates directly with adult body size and locomotor repertoire. An example of condition II (small brain, strong musculature) has not been found. This suggests that muscle does not grow in advance of the brain and that the brain acts as a pacemaker of growth. In order to increase our understanding of exotic species, noninvasive measures (body weight and length) and observations (opening of the eyes and ears, hair density, weaning, and the abilities to ther-moregulate and to move) should be supplemented with analysis of the differential tissue and organ growth. In both theoretical and practical ways analysis of deceased individuals contributes to the understanding of all species.  相似文献   

4.
The brain cooling capacity of the altricial pigeon increases during posthatching growth at a higher rate than that of the precocial duck and chicken. To determine if this difference between the altricial and the precocial modes of development can be related to growth rates of the vascular heat exchanger involved in brain cooling (the ophthalmic rete), we performed a morphometric analysis of this structure during the post-hatching maturation of the three species. The number of vascular units in the rete did not change during development but differed significantly among species. The retia continued to grow in length and diameter in an exponential relation with body mass at similar rates in all species. The surface area of the retial arteries, which reflects the area available for countercurrent heat exchange, also increased exponentially with body mass, but without significant differences among the three species. However, the effectiveness of the rete in brain cooling, as indicated by the degree of brain cooling per unit of heat-exchange area in the rete, was higher in the altricial pigeon than in the precocial chicken and duck. It is concluded that the posthatching morphometric changes in the ophthalmic rete (rete ophthalmicum) are important for the development of brain cooling capacity, but cannot solely explain differences in brain cooling between growing altricial and precocial birds. These differences are most likely related to differences in the maturation of the central thermoregulatory control system and the peripheral effector mechanisms among the two groups of birds.  相似文献   

5.
The shell of an egg contributes to successful embryogenesis in many ways, such as through protection, respiration and water exchange. The shell is also the major source of calcium for the development of high-calcium consuming organs, e.g. the skeleton, muscles and brain. Some studies show, moreover, that growth rate may play a fundamental role in the pattern of skeletal development in birds: the faster the growth the less ossified the skeleton is at hatching. We predicted, therefore, that slow (precocial) and fast (altricial) growing bird species should lay eggs encased in shells with different structures adapted to support different rates of calcium removal by developing embryos. We tested this prediction by comparing the fine structure of the inner eggshell surface (mammillary layer) from 36 bird species belonging to 18 orders ranging from Struthioniformes to Passeriformes. Using scanning electron microscopy, we compared the mammillary layer of both non-incubated eggs and eggs at the time of hatching, i.e., before and after embryonic development and the accompanying calcium removal. The results were consistent with the prediction, i.e., the number of mammillary tips per unit of surface area was associated with mode of development and growth rate. The number was higher, and calcium removal was also more extensive, in shells from precocial bird species than in shells from altricial bird species.  相似文献   

6.
Recent hypotheses that variation in brain size among birds and mammals result from differences in metabolic allocation during ontogeny are tested.
Indices of embryonic and post-embryonic brain growth are defined. Precocial birds and mammals have high embryonic brain growth indices which are compensated for by low post-embryonic indices (with the exception of Homo supiens ). In contrast, altricial birds and mammals have low embryonic and high post-embryonic indices. Altricial birds have relatively small brains at hatching and develop relatively large brains as adults, but among mammals there is no equivalent correlation between variation in adult relative brain sizes and state of neonatal development.
Compensatory brain development in both birds and mammals is associated with compensatory parental metabolic allocation. In comparison with altricial development, precocial development is characterized by higher levels of brain growth and parental metabolic allocation prior to hatching or birth and lower levels subsequently. Differences between degrees of postnatal investment by the parents in the young of precocial birds versus precocial mammals may result in the different patterns of adult brain size associated with precociality versus altriciality in the two groups.
The allometric exponent scaling brain on body size differs among taxonomic levels in birds. The exponent is higher for some parts of the brain than others, irrespective of taxonomic level. Unlike mammals, the exponents for birds do not show a general increase with taxonomic level. These pattcrns call into question recent interpretations of the allometric exponent in birds. and the reason for changes in exponent with taxonomic level.  相似文献   

7.
A distinct daily rhythm of melatonin production was found in the pineal gland of both precocial Japanese quail (Coturnix coturnix japonica) and altricial European starling (Sturnus vulgaris) during the first day of postembryonic life. Rhythmic melatonin production was reflected in a rhythmic profile in the general circulation. Significant day-night differences in melatonin content were also observed in the eyes of Japanese quail.The amplitude of the rhythm in the quail pineal gland increased steadily during the first two weeks of postem-bryonic life. A transient increase in maximum melatonin concentration was observed at the end of the first week of life in the plasma but not in the pineal gland of quail suggesting that a metabolizing pathway or a changed ocular contribution may influence the melatonin profile in the circulation and its availability to other tissues. There was no delay in the postembryonic development of melatonin rhythmicity in the altricial starling in comparison with the precocial quail. The amplitude of the plasma melatonin rhythm did not increase over the first week of life in starlings as it did in quail and the only significant increase was found between 6- and 17-day old starlings.In general, the development of the rhythm resulted from an increase of dark-time values. The day-time concentrations were low in all age groups of both species. A one-hour light pulse suppressed the high dark-time melatonin concentrations in 1-, 7- and 14-day old Japanese quail as well as in 7- and 14-day old European starlings. The manner in which the rhythm develops suggests that the circadian pacemaker(s) as well as the mechanisms of photoreception and entrainment are developed in hatchlings of both species in spite of their otherwise different developmental strategies.  相似文献   

8.
The high correlation between growth rate and adult body weight has been much more thoroughly documented for altricial birds than for precocial species. This paper gathers data from the literature for precocial Galliformes and also reports new growth data on six galliform species for analysis. The onset of homeothermic ability is investigated in Galliformes over a range of body size. The results confirm that (1) large species' chicks grow at a slower rate than those of smaller species, and (2) larger species' chicks can thermoregulate earlier than smaller species' chicks under cold stress situations. Published embryonic body weights are also analysed to determine when growth rate differences appear in the development of precocial species. No interspecific differences appeared in the relative growth rates of embryos, and therefore species body size does not appear to influence growth rate before hatching.  相似文献   

9.
We investigated the possibilities that the proportion of docosahexaenoic acid (DHA) in phospholipids of brain and skeletal muscle at hatch, and the ontogenetic timing of the DHA accretion spurt in these tissues, might serve as indices of neonatal functional maturity that discriminate between precocial and altricial avian developmental modes. Comparison of the fatty acid profiles of the initial and residual yolks of two free-living altricial species, the swallow (Hirundo rustica) and the sparrow (Passer domesticus), reveals that, in contrast to precocial birds, there is no preferential uptake of DHA from the yolk during embryonic development. At hatch, the proportions of DHA in brain phospholipid (wt.% of fatty acids) of the swallow and sparrow, at 8.1% and 5.0%, respectively, are far lower than the values (16.9-19.6%) reported for non-altricial species. This reflects a marked difference in the timing of the brain DHA accretion spurt, which occurs during the first half of the embryonic period of precocial birds, but is largely delayed until after hatching in the altricial species. By the time of fledging, the proportion of DHA in the swallow brain phospholipid has increased to 14.3%. For non-altricial birds, the brain DHA concentration at hatch shows little interspecies variation, despite major differences in yolk DHA content. The proportions of DHA in leg muscle phospholipid of the newly hatched swallow and sparrow, at 2.9% and 2.5%, respectively, are far lower than the value (6.7%) for the precocial chicken. Again, this relates to differences in developmental timing, with muscle DHA accretion occurring in the first half of the chicken's embryonic period, whereas, in the swallow, this increase is delayed until after hatching. By the time of fledging in the swallow, DHA forms 9.3% of muscle phospholipid fatty acids, equivalent to the level attained in chicken muscle at the mid-embryo stage. The results indicate a clear distinction between altricial and non-altricial avian species in the timing of tissue DHA accretion during development, presumably reflecting differences in neonatal functional maturity.  相似文献   

10.
Cytofluorimetric study of ploidy levels in ventricular cardiomyocytes was carried out on 36 adult bird species belonging to 10 orders as well as on the quail Coturnix coturnix, of different ages. It was shown that polyploidization of quail cardiomyocytes occurs during the first 40 days after hatching and ends by the time growth is completed. In adult birds, the cardiomyocyte ploidy hardly changed at all. Interspecies comparison revealed that in the adult bird myocardium 2cx2 myocytes are predominant, accounting for at least 50% of the cell population. Multinuclear cells with three to eight diploid nuclei were widespread. The percentage of such cells was five to six times higher in precocial species than in altricial birds of the same weight. Myocytes with polyploid nuclei were rare. A significant interspecies variability of cardiomyocyte ploidy levels was observed. The most prominent differences were found between the precocial and the altricial birds. The mean number of genomes in cells correlated both with the body mass and with the growth rate of the birds. The differences between the precocial and altricial birds disappeared when a statistical method was used to eliminate the effect of the growth rate, but did not when the effect of body mass was eliminated. Among the altricial birds, which are generally immobile during growth, the cardiomyocyte ploidy levels also correlated more closely with growth rate than with body mass. The opposite was observed in the precocial birds, which are highly mobile from the first minutes of life. We conclude that the interspecies variability of bird cardiomyocyte ploidy levels is a result of changes in the balance between the cardiac functional load and the growth rate; this is manifested at the cellular level as a competition between the proliferation and differentiation of cardiomyocytes. J. Exp. Zool. 289:48-58, 2001.  相似文献   

11.
Patterns of Metabolism and Growth in Avian Embryos   总被引:1,自引:0,他引:1  
Metabolic rates of embryos of precocial birds increase rapidlyuntil about 80% through incubation, then increase slowly remainconstant or even decline. In altricial species, embryo metabolicrates increase continuously and at an accelerating rate throughout incubation. Total energy cost of development is higher inprecocial than in altricial species. Growth patterns of altricialand precocial embryos differ in the same way as does metabolicrate. Embryo growth rates decline late in incubation in precocialspecies, but increase continuously in altricial species. Embryometabolic rate in cal/hr (P) is related to embryo mass in grams(M) and growth rate in grams/day (GR) by the equation P = 12.17GR+ 1.66M + 1.81. The energy cost of growth in avian embryos is292 cal/g. The energy cost of maintenance is 1.66 cal/g hr andappeals to be independent of embryo mass. Differences in growthpatterns account for the observed differences in metabolic ratesand total energy costs of development. High energy costs ofmaintenance account for high total developmental costs in piecocialspecies and in species that have unusually long incubation periods.  相似文献   

12.
The effects of early environmental conditions can profoundly affect individual development and adult phenotype. In birds, limiting resources can affect growth as nestlings, but also fitness and survival as adults. Following periods of food restriction, individuals may accelerate development, undergoing a period of rapid “catch-up” growth, in an attempt to reach the appropriate size at adulthood. Previous studies of altricial birds have shown that catch-up growth can have negative consequences in adulthood, although this has not been explored in species with different developmental strategies. Here, we investigated the effects of resource limitation and the subsequent period of catch-up growth, on the morphological and metabolic phenotype of adult Japanese quail (Coturnix japonica), a species with a precocial developmental strategy. Because males and females differ in adult body size, we also test whether food restriction had sex-specific effects. Birds that underwent food restriction early in development had muscles of similar size and functional maturity, but lower adult body mass than controls. There was no evidence of sex-specific sensitivity of food restriction on adult body mass; however, there was evidence for body size. Females fed ad lib were larger than males fed ad lib, while females subjected to food restriction were of similar size to males. Adults that had previously experienced food restriction did not have an elevated metabolic rate, suggesting that in contrast to altricial nestlings, there was no metabolic carry-over effect of catch-up growth into adulthood. While Japanese quail can undergo accelerated growth after re-feeding, timing of food restriction may be important to adult size, particularly in females. However, greater developmental flexibility compared to altricial birds may contribute to the lack of metabolic carryover effects at adulthood.  相似文献   

13.
Some altricial and some precocial species of birds have evolved enlarged telencephalons compared with other birds. Previous work has shown that finches and parakeets, two species that hatch in an immature (i.e. altricial) state, enlarged their telencephalon by delaying telencephalic neurogenesis. To determine whether species that hatch in a relatively mature (i.e. precocial) state also enlarged their telencephalon by delaying telencephalic neurogenesis, we examined brain development in geese, ducks, turkeys and chickens, which are all precocial. Whereas the telencephalon occupies less than 55 per cent of the brain in chickens and turkeys, it occupies more than 65 per cent in ducks and geese. To determine how these species differences in adult brain region proportions arise during development, we examined brain maturation (i.e. neurogenesis timing) and estimated telencephalon, tectum and medulla volumes from serial Nissl-stained sections in the four species. We found that incubation time predicts the timing of neurogenesis in all major brain regions and that the telencephalon is proportionally larger in ducks and geese before telencephalic neurogenesis begins. These findings demonstrate that the expansion of the telencephalon in ducks and geese is achieved by altering development prior to neurogenesis onset. Thus, precocial and altricial species evolved different developmental strategies to expand their telencephalon.  相似文献   

14.
We partitioned the metabolizable energy intake (MEI) into energy for maintenance (MEm) and for growth (MEg) in sucking precocial and altricial rodent pups. Each of the two components includes energy loss due to the heat increment of feeding. MEm of precocial pups expressed as average daily energy costs or as a proportion of MEI was greater than in altricial pups of similar size and, therefore, less energy was available for growth. Consequently, the overall energy cost (via total MEI) per unit postnatal growth of precocial pups was greater than for altricial pups of similar size. We used the proportion of calculated MEm to that predicted by body mass as an index of precociality in rodent pups. The proportion of MEg to MEI in precocial pups was lower than in altricial pups and was inversely related to the index of precociality.  相似文献   

15.
The chicken brain is more than twice as big as the bobwhite quail brain in adulthood. To determine how this species difference in brain size emerges during development, we examined whether differences in neurogenesis timing or cell cycle rates account for the disparity in brain size between chickens and quail. Specifically, we examined the timing of neural events (e.g. neurogenesis onset) from Nissl-stained sections of chicken and quail embryos. We estimated brain cell cycle rates using cumulative bromodeoxyuridine labelling in chickens and quail at embryonic day (ED) 2 and at ED5. We report that the timing of neural events is highly conserved between chickens and quail, once time is expressed as a percentage of overall incubation period. In absolute time, neurogenesis begins earlier in chickens than in quail. Therefore, neural event timing cannot account for the expansion of the chicken brain relative to the quail brain. Cell cycle rates are also similar between the two species at ED5. However, at ED2, before neurogenesis onset, brain cells cycle faster in chickens than in quail. These data indicate that chickens have a larger brain than bobwhite quail mainly because of species differences in cell cycle rates during early stages of embryonic development.  相似文献   

16.
During the evolution of therian mammals, the two-segmented, sprawled tetrapod limbs were transformed into three-segmented limbs in parasagittal zig-zag configuration (three-segment limb hypothesis). As a consequence, the functional correspondence of limb segments has changed (now: scapula to thigh, upper arm to shank, fore arm plus hand to foot). Therefore, the scapula was taken into account in the current study of the postnatal growth of the postcranial skeleton in two small mammalian species (Tupaia glis, Galea musteloides). Comparisons were made between the functionally equivalent elements and not in the traditional way between serially homologous segments. This study presents a test of the three-segment limb hypothesis which predicts a greater ontogenetic congruence in the functionally equivalent elements in fore and hind limbs than in the serially homologous elements. A growth sequence, with decreasing regression coefficients from proximal to distal, was observed in both species under study. This proximo-distal growth sequence is assumed to be ancestral in the ontogeny of eutherian mammals. Different reproductive modes have evolved within eutherian mammals. To test the influence of different life histories on ontogenetic scaling during postnatal growth, one species with altricial juveniles (Tupaia glis) assumed to be the ancestral mode of development for eutherians and one species with derived, precocial young (Galea musteloides) were selected. The growth series covered postnatal development from the first successive steps with a lifted belly to the adult locomotory pattern; thus, functionally equivalent developmental stages were compared. The higher number of allometrically positive or isometrically growing segments in the altricial mammalian species was interpreted as a remnant of the fast growth period in the nest without great locomotor demands, and the clearly negative allometry in nearly all segments in the precocial young was interpreted as a response to the demand on early locomotor activity. Different life histories seem to have a strong influence on postnatal ontogenetic scaling; the effects of the developmental differences are still observable when comparing adults of the two species.  相似文献   

17.
SYNOPSIS. Development is not a gradual but a saltatory process.A combination of qualitative changes in form and function—thresholds—createsboundaries between a succession of quantitative intervals—steps.Thresholds can be modified by an altered time of appearanceof structures and functions (heterochrony), especially duringearly ontogeny, to form an operational basis for the prolongationof juvenile characters and adaptability into later ontogeny.Whereas such prolongation enables juvenilization in phylogeny,analogous principles may operate on a much shorter time scaleto produce the r-selection-like altricial and the K-selection-likeprecocial trends in ontogeny. The inherited capacity to adjustconstantly to the environment (heterochrony) selects for structural,biochemical and behavioral improvements. The tendency is towardthe precocial but the way back to altricial forms is left open.The heterochronous adaptations in early ontogeny can "reverse"the vulnerable specialization, should the environment becomeless stable and/or the community less competitive. Juvenilization,capable of turning gerontomorphosis into paedomorphosis in evolution,and heterochronous shifts of character anlagen, capable of turninga precocial trend into an altricial trend in ontogeny are bothpart of the same biological process which operates during earlyontogeny.  相似文献   

18.
In the absence of processes regulating morphogenesis and growth, phenotypic variance of a population experiencing no selective mortality should increase throughout ontogeny. To determine whether it does, we measure variance of skull shape using geometric morphometrics and examine its ontogenetic dynamics in the precocial cotton rat (Sigmodon fulviventer) and the altricial house mouse (Mus musculus domesticus). In both species, variance of shape halves between the two youngest samples measured (between 1 and 10 days postnatal and 10 and 15 days postnatal, respectively) and thereafter is nearly constant. The reduction in variance did not appear to result from a general regulation of skull size or developmental timing, although skull size may also be regulated and developmental timing is an important component of the variation in skull shape of young house mice. The ontogenetic dynamics of variance suggest two possible scenarios. First, variation generated during fetal or early postnatal growth is not immediately compensated and therefore accumulates, whereas later in growth, variation is continually generated and rapidly compensated. Second, variation generated during fetal and early postnatal growth is rapidly compensated, after which no new variance is produced. Based on a general model for bone growth, we hypothesize that variance is generated when bone grows under the direction of disorganized muscular movements and decreases with increasing neuromuscular control. Additionally, increasing coherence of signals transmitted by the growing brain and sensory organs, which exert tensile forces on bone, may also canalize skull shape.  相似文献   

19.
Summary The early appearance of catecholaminergic neurons, as revealed by fluorescence histochemistry, has been determined in the central nervous system of quail, pheasant, and pigeon embryos. The first neuronal assemblies displaying specific fluorescence are the locus coeruleus and the nucleus subcoeruleus ventralis. Taking into account the differences in the length of the prehatching period of these three avian species, the first catecholamine-containing neurons appear earlier in the precocial quail and pheasant than in the altricial pigeon.Investigation supported by grants from the Italian National Research Council (CNR) No 83.02058.04 (R.G.) and No 83.00492.04 (G.C.P.).  相似文献   

20.
A scanning electron microscope study of the morphological changes which occur in shells of hen and quail eggs during incubation is described. The results are compared with observations on the shells of hatched eggs taken from a range of species. It was found that less change occurred in the shells of altricial species than precocial ones, the difference being associated presumably with a smaller calcium requirement for developing altricial embryos. The cores rather than the sides of mammillae appeared to be the major sites of erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号