首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
An integrated study on cell growth, enzyme activities and carbon flux redistribution was made to investigate how the central metabolism of Escherichia coli changes with the knockout of genes in the oxidative pentose phosphate pathway (PPP). Mutants deficient in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were constructed by disrupting the zwf and gnd genes and were grown in minimal media with two different carbon sources, such as glucose or pyruvate. It was shown that the knockout of either gnd or zwf gene did not affect the cell growth rate significantly, but the cellular metabolism was changed. While the specific substrate uptake rate and the specific carbon dioxide evolution rate for either mutant grown on glucose were higher than those obtained for the parent strain, these two rates were markedly decreased in mutants grown on pyruvate. The measurement of enzyme activities implied a significant change in metabolism, when alternative pathways such as the Entner–Doudoroff pathway (EDP) and the malic enzyme pathway were activated in the gnd mutant grown on glucose. As compared with the parent strain, the activities of phosphoglucose isomerase were increased in mutants grown on glucose but decreased in mutants grown on pyruvate. The metabolic flux redistribution obtained based on 13C-labeling experiments further indicated that the direction of the flux through the non-oxidative PPP was reversed in response to the gene knockout. Moreover, the knockout of genes caused an increased flux through the tricarboxlic acid cycle in mutants grown on glucose but caused a decrease in the case of using pyruvate. There was also a negative correlation between the fluxes through malic enzyme and isocitrate dehydrogenase in the mutants; and a positive correlation was found between the fluxes through malic enzyme and phosphoenolpyruvate carboxylase.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

2.
Glucose may be converted to 6-phosphogluconate by alternate pathways in Pseudomonas aeruginosa. Glucose is phosphorylated to glucose-6-phosphate, which is oxidized to 6-phosphogluconate during anaerobic growth when nitrate is used as respiratory electron acceptor. Mutant cells lacking glucose-6-phosphate dehydrogenase are unable to catabolize glucose under these conditions. The mutant cells utilize glucose as effectively as do wild-type cells in the presence of oxygen; under these conditions, glucose is utilized via direct oxidation to gluconate, which is converted to 6-phosphogluconate. The membrane-associated glucose dehydrogenase activity was not formed during anaerobic growth with glucose. Gluconate, the product of the enzyme, appeared to be the inducer of the gluconate transport system, gluconokinase, and membrane-associated gluconate dehydrogenase. 6-Phosphogluconate is probably the physiological inducer of glucokinase, glucose-6-phosphate dehydrogenase, and the dehydratase and aldolase of the Entner-Doudoroff pathway. Nitrate-linked respiration is required for the anaerobic uptake of glucose and gluconate by independently regulated transport systems in cells grown under denitrifying conditions.  相似文献   

3.
Summary The synthesis of glucose catabolizing enzymes is under inductive control inPseudomonas putida. Glucose, gluconate and 2-ketogluconate are the best nutritional inducers of these enzymes. Mutants unable to catabolize gluconate or 2-ketogluconate synthesized relatively high levels of glucose dehydrogenase and gluconate-6P dehydrase activities when grown in the presence of these substrates. This identifies both compounds as true inducers of these enzymes. KDGP aldolase is induced by its substrate, as evidenced by the inability of mutant cells unable to form KDGP to produce this enzyme at levels above the basal one. A 3-carbon compound appears to be the inducer of glyceraldehyde-3P dehydrogenase. This pattern of regulation suggests that there is a low degree of coordinate control in the synthesis of the glucolytic enzymes byP. putida. This is also supported by the lack of proportionality found in the levels of two enzymes governed by the same inducers, glucose dehydrogenase and gluconate-6P dehydrase, in cells grown on different conditions.Abbrevitions P phosphate - KDGP 2-Keto-3-deoxygluconate-6-phosphate - GDH glucose dehydrogenase - GNDH gluconate dehydrogenase - GK glucokinase - GNK gluconokinase - KGK ketogluconokinase - KGR 2-Ketogluconate-6-phosphate reductase - GPDH glucose-6-phosphate dehydrogenase - GNPD gluconate-6-phosphate dehydrase - KDGPA 2-Keto-3-deoxygluconate-6-phosphate aldolase - GAPDH glyceraldehyde-3-phosphate dehydrogenase  相似文献   

4.
The effect of poxB gene knockout on metabolism in Escherichia coli was investigated in the present paper based on the growth characteristics and the activities of the enzymes involved in the central metabolic pathways. The absence of pyruvate oxidase reduced the glucose uptake rate and cell growth rate, and increased O2 consumption and CO2 evolution. The enzyme assay results showed that although glucokinase activity increased, the flux through glycolysis was reduced due to the down-regulation of the other glycolytic enzymes such as 6-phosphofructosekinase and fructose bisphosphate aldolase in the poxB mutant. TCA cycle enzymes such as citrate synthase and malate dehydrogenase were repressed in the poxB mutant when the cells were cultivated in LB medium. The pyruvate oxidase mutation also resulted in the activation of glucose-6-phosphate dehydrogenase and acetyl-CoA synthetase. All these results suggest that pyruvate oxidase is not only a stationary-phase enzyme as previously known, and that the removal of the poxB gene affects the central metabolism at the enzyme level in E. coli.  相似文献   

5.
A single gene mutant lacking phosphoglucose isomerase (pgi) was selected after ethyl methane sulfonate mutagenesis of Escherichia coli strain K-10. Enzyme assays revealed no pgi activity in the mutant, whereas levels of glucokinase, glucose-6-phosphate dehydrogenase, and gluconate-6-phosphate dehydrogenase were similar in parent and mutant. The amount of glucose released by acid hydrolysis of the mutant cells after growth on gluconate was less than 2% that released from parent cells; when grown in the presence of glucose, mutant and parent cells contained the same amount of glucose residues. The mutant grew on glucose one-third as fast as the parent; it also grew much slower than the parent on galactose, maltose, and lactose. On fructose, gluconate, and other carbon sources, growth was almost normal. In both parent and mutant, gluconokinase and gluconate-6-phosphate dehydrase were present during growth on gluconate but not during growth on glucose. Assay and degradation of alanine from protein hydrolysates after growth on glucose-1-(14)C and gluconate-1-(14)C showed that in the parent strain glucose was metabolized by the glycolytic path and the hexose monophosphate shunt. Gluconate was metabolized by the Entner-Doudoroff path and the hexose monophosphate shunt. The mutant used glucose chiefly by the shunt, but may also have used the Entner-Doudoroff path to a limited extent.  相似文献   

6.
Mutant strain ME544, which is able to grow on glycerol slowly, was derived from glycerol-negative mutant strain G011, which is a derivative strain of Cellulomonas sp. NT3060 and is defective in both the enzyme activities of glycerol kinase and glycerol 3-phosphate dehydrogenase. The mutant strain still lacked both the enzyme activities involved in the dissimilation of glycerol and had the same level of glycerol dehydrogenase activity as the parent strain. Dihydroxyacetone kinase activity in mutant strain ME544 was inducibly formed, reaching 4-fold the level in mutant strain G011 in glycerol medium. Thus, the mutant strain seemed to dissimilate glycerol by means of glycerol dehydrogenase followed by an increase in dihydroxyacetone kinase. Subsequently, a mutant strain, GP1807, which was resistant to the inhibition of growth on glycerol by 1,2-propanediol, was derived from mutant strain ME544. Glycerol dehydrogenase activity of the mutant strain was amplified about 6-fold compared to that of the wild type strain.  相似文献   

7.
The effect of sugars on the production of d-arabitol and on the glucose catabolic pathways was investigated in the osmotrophic yeast Saccharomyces rouxii. The activity of d-arabitol dehydrogenase, which served as a measure of total d-arabitol production, increased when cells were grown in the presence of increasing glucose concentrations. Growth in sucrose had no effect on the enzyme activity. A high intracellular concentration of d-arabitol could be demonstrated when the cells were grown in a 60% glucose medium and could be eliminated by anaerobic growth or growth in the presence of 4 mg of chloramphenicol per ml. A mutant was isolated that would not grow in 60% glucose; although the regulation of d-arabitol dehydrogenase was altered in this strain, the production of d-arabitol was not eliminated. The activity of d-arabitol dehydrogenase followed the growth phases of the parent strain when the cells were preadapted to 30% glucose. If the cells were adapting from 1 to 30% glucose, a large increase in enzyme activity was detected before growth occurred. Protein synthesis was found to be involved in this increase in activity. There was an increased participation of the pentose phosphate pathway when the cells were grown in the presence of increasing glucose concentrations. The mutant strain had only an 11% pentose phosphate pathway participation compared with 20% for the parent strain in glucose. The results suggest that the active pentose phosphate pathway is involved in glucose tolerance by providing a plentiful supply of reduced nicotinamide adenine dinucleotide phosphate which is necessary for cell survival.  相似文献   

8.
Summary In Saccharomyces cerevisiae, a small proportion of the glucose-6-P dehydrogenase activity is firmly associated with the mitochondrial fraction and is not removed by repeated washing or density-gradient centrifugation. However, the enzyme is released by sonic disruption. Mitochondrial glucose-6-P dehydrogenase that is released by sonication and partially purified has been found to be similar to cytosol glucose-6-P dehydrogenase with respect to electrophoretic mobility, isoelectric point, pH optimum, molecular size, and apparent K m 's for NADP+ and glucose-6-P. These results indicate that a single species of glucose-6-P dehydrogenase is synthesized in S. cerevisiae and that the enzyme has more than one intracellular location. Mitochondrial glucose-6-P dehydrogenase may be a source of intramitochondrial NADPH and may function with hexokinase and transhydrogenase to provide a pathway for glucose oxidation that is coupled to the synthesis of mitochondrial ATP. A constant proportion of total glucose-6-P dehydrogenase activity remains compartmented in the mitochondrial fraction throughout the growth cycle.  相似文献   

9.
The role of Asp-177 in the His-Asp catalytic dyad of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides has been investigated by a structural and functional characterization of the D177N mutant enzyme. Its three-dimensional structure has been determined by X-ray cryocrystallography in the presence of NAD(+) and in the presence of glucose 6-phosphate plus NADPH. The structure of a glucose 6-phosphate complex of a mutant (Q365C) with normal enzyme activity has also been determined and substrate binding compared. To understand the effect of Asp-177 on the ionization properties of the catalytic base His-240, the pH dependence of kinetic parameters has been determined for the D177N mutant and compared to that of the wild-type enzyme. The structures give details of glucose 6-phosphate binding and show that replacement of the Asp-177 of the catalytic dyad with asparagine does not affect the overall structure of glucose 6-phosphate dehydrogenase. Additionally, the evidence suggests that the productive tautomer of His-240 in the D177N mutant enzyme is stabilized by a hydrogen bond with Asn-177; hence, the mutation does not affect tautomer stabilization. We conclude, therefore, that the absence of a negatively charged aspartate at 177 accounts for the decrease in catalytic activity at pH 7.8. Structural analysis suggests that the pH dependence of the kinetic parameters of D177N glucose 6-phosphate dehydrogenase results from an ionized water molecule replacing the missing negative charge of the mutated Asp-177 at high pH. Glucose 6-phosphate binding orders and orients His-178 in the D177N-glucose 6-phosphate-NADPH ternary complex and appears to be necessary to form this water-binding site.  相似文献   

10.
Cyanobacteria have a tremendous activity to adapt to environmental changes of their growth conditions. In this study, Synechocystis sp. PCC 6803 was used as a model organism to focus on the alternatives of cyanobacterial energy metabolism. Glucose oxidation in Synechocystis sp. PCC6803 was studied by inactivation of slr1843, encoding glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the oxidative pentose phosphate pathway (OPPP). The resulting zwf strain was not capable of glucose supported heterotrophic growth. Growth under autotrophy and under mixotrophy was similar to that of the wild-type strain, even though oxygen evolution and uptake rates of the mutant were decreased in the presence of glucose. The organic acids citrate and succinate supported photoheterotrophic growth of both WT and zwf. Proteome analysis of soluble and membrane fractions allowed identification of four growth condition-dependent proteins, pentose-5-phosphate 3-epimerase (slr1622), inorganic pyrophosphatase (sll0807), hypothetical protein (slr2032) and ammonium/methylammonium permease (sll0108) revealing details of maintenance of the cellular carbon/nitrogen/phosphate balance under different modes of growth.  相似文献   

11.
In this study, the glucose 6-phosphate dehydrogenase gene (XOO2314) was inactivated in order to modulate the intracellular glucose 6-phosphate, and its effects on xanthan production in a wild-type strain of Xanthomonas oryzae were evaluated. The intracellular glucose 6-phosphate was increased from 17.6 to 99.4 μmol g−1 (dry cell weight) in the gene-disrupted mutant strain. The concomitant increase in the glucose 6-phosphate was accompanied by an increase in xanthan production of up to 2.23 g l−1 (culture medium). However, in defined medium supplemented with 0.4% glucose, the growth rate of the mutant strain was reduced to 52.9% of the wild-type level. Subsequently, when a family B ATP-dependent phosphofructokinase from Escherichia coli was overexpressed in the mutant strain, the growth rate was increased to 142.9%, whereas the yields of xanthan per mole of glucose remained approximately the same.  相似文献   

12.
Control of pyrimidine formation was examined in Pseudomonas fulva ATCC 31418. Pyrimidine supplementation lowered pyrimidine biosynthetic pathway enzyme activities in cells grown on glucose or succinate as a carbon source indicating possible repression of enzyme synthesis. Pyrimidine limitation experiments were conducted using an orotidine 5′-monophosphate decarboxylase mutant strain isolated in this study. Compared to uracil-supplemented, glucose-grown mutant cells, pyrimidine limitation of this strain caused aspartate transcarbamoylase, dihydroorotase, dihydroorotate dehydrogenase and orotate phosphoribosyltransferase activities to increase about 6-, 13-, 3-, 15-fold, respectively, which confirmed regulation of enzyme synthesis by pyrimidines. At the level of enzyme activity, transcarbamoylase activity in Ps. fulva was strongly inhibited by pyrophosphate, CTP, GTP and GDP under saturating substrate concentrations.  相似文献   

13.
Wild-type Escherichia coli utilizes glycerol aerobically through an inducible pathway mediated by an ATP-dependent kinase and a glycerol 3-phosphate dehydrogenase which is a flavoprotein. A mutant, strain ECL424, employing a novel pathway for glycerol utilization was isolated. The novel pathway is mediated by an NAD-linked dehydrogenase and a dihydroxyacetone specific enzyme II of the phosphoenolpyruvate phosphotransferase system. This study describes the selection from strain ECL424, a derivative which grows more rapidly on glycerol. The derivative, strain ECL428, produces twice the parental levels of both the dehydrogenase and the enzyme II during growth on glycerol. The function of the dehydrogenase in wild-type cells is unknown, although hydroxyacetone (acetol), 3-hydroxy-2-butanone (acetoin), and 1-amino-2-propanone are gratuitous inducers. The induction can be prevented by glucose whose effect can be cancelled by external cyclic AMP. The effects of hydroxyacetone, glucose, and cyclic AMP are attenuated in the two mutants in which the dehydrogenase is produced at high basal levels. The dihydroxyacetone specific enzyme II is inducible by the substrate in both wild-type and mutant strains and serves for growth on the triose.  相似文献   

14.
A mutant of Escherichia coli lacking pyridine nucleotide transhydrogenase (EC 1.6.1.1) was isolated by assaying activity in clones of cells mutagenized with N-methyl-N′-nitro-N-nitrosoguanidine. The mutant is missing both energy-independent and energy-dependent transhydrogenase, but has normal NADH dehydrogenase and ATPase activities. Compared to the parental strain, the mutant has normal growth rates with glucose, glycerol, or succinate aerobically and with glucose or glycerol plus fumarate anaerobically. The aerobic growth yield with limiting glucose concentrations is also normal. These growth properties indicate that the enzyme is not an essential source of NADPH or ATP in vivo.  相似文献   

15.
16.
The metabolism of trimethylamine (TMA) and dimethylamine (DMA) in Arthrobacter P1 involved the enzymes TMA monooxygenase and trimethylamine-N-oxide (TMA-NO) demethylase, and DMA monooxygenase, respectively. The methylamine and formaldehyde produced were further metabolized via a primary amine oxidase and the ribulose monophosphate (RuMP) cycle. The amine oxidase showed activity with various aliphatic primary amines and benzylamine. The organism was able to use methylamine, ethylamine and propylamine as carbon-and nitrogen sources for growth. Butylamine and benzylamine only functioned as nitrogen sources. Growth on glucose with ethylamine, propylamine, butylamine and benzylamine resulted in accumulation of the respective aldehydes. In case of ethylamine and propylamine this was due to repression by glucose of the synthesis of the aldehyde dehydrogenase(s) required for their further metabolism. Growth on glucose/methylamine did not result in repression of the RuMP cycle enzyme hexulose-6-phosphate synthase (HPS). High levels of this enzyme were present in the cells and as a result formaldehyde did not accumulate. Ammonia assimilation in Arthrobacter P1 involved NADP-dependent glutamate dehydrogenase (GDH), NAD-dependent alanine dehydrogenase (ADH) and glutamine synthetase (GS) as key enzymes. In batch cultures both GDH and GS displayed highest levels during growth on acetate with methylamine as the nitrogen source. A further increase in the levels of GS, but not GDH, was observed under ammonia-limited growth conditions in continuous cultures with acetate or glucose as carbon sources.Abbreviations HPS hexulose-6-phosphate synthase - RuMP ribulose monophosphate - DMA dimethylamine - TMA trimethylamine - TMA-NO trimethylamine-N-oxide - ICL isocitrate lyase - GS glutamine synthetase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOGAT glutamate synthase  相似文献   

17.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

18.
We showed that in the yeast Schizosaccharomyces pombe, fructose-bisphosphatase is not subject to catabolite inactivation as it was observed in Saccharomyces cerevisiae. However, this enzyme activity is sensitive to catabolite repression in both yeasts. Two mutants lacking completely fructose-bisphosphatase activity were found. They were unable to grow on glycerol medium. They were still respiratory competent and exhibited the ability to derepress partially malate dehydrogenase activity. In glucose exponential phase culture, the parental strain lacks completely the fructosebisphosphatase activity due to catabolite repression. In these conditions, the growth is slowed down only in the mutants eventhough both mutants and their parental strain lack this enzyme activity. Normal sporulation and poor spore germination were observed for one mutant whereas, only in the presence of glucose, normal sporulation and normal spore germination were observed for the second mutant. Mendelian segregation of glycerol growth was found for the well germinating mutant. It is of nuclear heredity. The two mutations appeared to be closely linked.Abbreviations FBPase Fructose-1,6-bisphosphatase - fbp - genetic symbol for FBPase deficiency - glr - symbol for inability to grow on glycerol A. M. Colson is Research Associate au Fonds National de la Recherche Scientifique  相似文献   

19.
A dihydropyrimidine dehydrogenase mutant of Pseudomonas chlororaphis ATCC 17414 was isolated and characterized in this study. Initially, reductive catabolism of uracil was confirmed to be active in ATCC 17414 cells. Following chemical mutagenesis and d-cycloserine counterselection, a mutant strain unable to utilize uracil as a nitrogen source was identified. It was also unable to utilize thymine as a nitrogen source but could use either dihydrouracil or dihydrothymine as a sole source of nitrogen. Subsequently, it was determined that the mutant strain was deficient for the initial enzyme in the reductive pathway dihydropyrimidine dehydrogenase. The lack of dehydrogenase activity did not seem to have an adverse effect upon the activity of the second reductive pathway enzyme dihydropyrimidinase activity. It was shown that both dihydropyrimidine dehydrogenase and dihydropyrimidinase levels were affected by the nitrogen source present in the growth medium. Dihydropyrimidine dehydrogenase and dihydropyrimidinase activities were elevated after growth on uracil, thymine, dihydrouracil or dihydrothymine as a source of nitrogen.  相似文献   

20.
The lipoamide dehydrogenase (LPD) encoded by lpdA gene is a component of the pyruvate dehydrogenase complex (PDHc), alpha-ketoglutarate dehydrogenase (AKGDH) and the glycine cleavage multi-enzyme (GCV) systems. In the present study, cell growth characteristics, enzyme activities and intracellular metabolite concentrations were compared between the parent strain Escherichia coli BW25113 and its lpdA knockout mutant in batch and continuous cultures. The lpdA knockout mutant produced significantly more pyruvate and L-glutamate under aerobiosis. Some D-lactate and succinate also accumulated in the culture broth. Based on the investigation of enzyme activities and intracellular metabolite concentrations, acetyl-CoA was considered to be formed by the combined reactions through pyruvate oxidase (PoxB), acetyl-CoA synthetase (Acs) and acetate kinase (Ack)-phosphoacetyltransferase (Pta) in the lpdA mutant. The effect of the lpdA gene knockout on the intracellular metabolic flux distributions was investigated based on 1H-13C NMR spectra and GC-MS signals obtained from 13C-labeling experiment using the mixture of [U-13C] glucose, [1-13C] glucose, and naturally labeled glucose. Flux analysis of the lpdA mutant indicated that the Entner-Doudoroff (ED) pathway and the glyoxylate shunt were activated. The fluxes through glycolysis and oxidative pentose phosphate (PP) pathway (except for the flux through glucose-6-phosphate dehydrogenase) were slightly downregulated. The TCA cycle was also downregulated in the mutant strain. On the other hand, the fluxes through the anaplerotic reactions of PEP carboxylase, PEP carboxykinase and malic enzyme were upregulated, which were consistent with the results of enzyme activities. Furthermore, the influence of the poxB gene knockout on the growth of E. coli was also studied because of its similar function to PDHc which connects the glycolysis to the TCA cycle. Under aerobiosis, a comparison of lpdA mutant and poxB mutant indicated that PDHc is the main enzyme which catalyzes the reaction from pyruvate to acetyl-CoA in the parent strain, while PoxB plays a very important role in the PDHc-deficient strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号