首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is substantial evidence found in the literature that supports the fact that the presence of oxidative stress may play an important role in the pathophysiology of schizophrenia. The glutathione S-transferases (GSTs) forms one of the major detoxifying groups of enzymes responsible for eliminating products of oxidative stress. Interindividual differences observed in the metabolism of xenobiotics have been attributed to the genetic polymorphism of genes coding for enzymes involved in detoxification. Thus, in this study we investigated the association of glutathione S-transferase Mu-1 (GSTM1) and glutathione S-transferase theta-1 (GSTT1) gene deletion polymorphisms and schizophrenia in a Tunisian population. A case–control study including 138 schizophrenic patients and 123 healthy controls was enrolled. The GSTM1 and GSTT1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). No association was found between the GSTM1 genotype and schizophrenia, whereas the prevalence of the GSTT1 active genotype was significantly higher in the schizophrenic patients (57.2%) than in the controls (45.5%) with (OR = 0.6, IC 0.37–0.99, p = 0.039). Thus, we noted a significant association between schizophrenia and GSTT1 active genotype. Furthermore, the combination of the GSTM1 and GSTT1 null genotypes showed a non-significant trend to an increased risk of schizophrenia. The present finding indicated that GSTT1 seems to be a candidate gene for susceptibility to schizophrenia in at least Tunisian population.  相似文献   

2.
Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P < 0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P < 0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P < 0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects.  相似文献   

3.
Oxidative stress and xenobiotic metabolizing enzymes are suspected to be related to carcinogenesis by different cellular mechanisms. Hence, our study aimed at identifying potential relationships between antioxidant defense parameters measured in blood and glutathione S-transferase (GST) genetic polymorphisms of four GST izoenzymes in lung cancer patients and reference individuals. The case-control study included 404 lung cancer patients and 410 non-cancer subjects as controls, matched by age, gender and place of living (central Poland). In control subjects with GSTM3*A/*A, GSTT1 null, GSTM1 null + GSTT1 null, GSTM3*A/*A + GSTT1 null genotype, glutathione peroxidase activity was significantly higher (P?0.05) than in controls possessing respective potential protective GST genotypes. Controls with GSTM3*A/*A + GSTP1*B genotype presented significantly higher ceruloplasmin activity (P?0.05) than GSTM3*B + GSTP1*A/*A carriers. Zinc level was significantly higher (P?0.05) in controls and cases with GSTP1*B + GSTT1 null genotype and in cases with GSTM1 null + GSTP1*B genotype, when compared with respective potential protective GST genotypes. This case-control study indicates that particular defective GST genotypes may enhance the defense against oxidative stress. The potential relationship between the investigated antioxidative enzymes and microelements, and common functional genetic polymorphism of GST was observed mostly in control subjects.  相似文献   

4.
The influence of the genetic deletion polymorphism of glutathione S-transferase micro 1 (GSTM1 *0/*0) on levels of anti (+/-)-r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE-DNA) adduct in the peripheral blood lymphocyte plus monocyte fraction (LMF) of coke-oven workers was investigated. A total of 95 male Polish coke-oven workers (60% current smokers) from two different plants comprised the sample population. Polycyclic aromatic hydrocarbons (PAH) exposure was assessed by means of the individual post-shift urinary excretion of 1-pyrenol (mean +/- S.D.: 6.93 +/- 7.20 micromol/mol creatinine; 70% of the subjects exceeded the proposed biological exposure index (BEI) 2.28 micromol/mol creatinine). Anti-BPDE-DNA adduct levels were detected by high performance liquid chromatography (HPLC)/fluorescence analysis of the anti-BPDE tetrol I-1 released after acid hydrolysis of DNA samples. Genotypes were determined by polymerase chain reaction (PCR) on the genomic DNA of each subject. Coke-oven workers without active GSTM1 (GSTM1 *0/*0, 33%) had significantly higher adduct levels than those with active GSTM1 (GSTM1*1/*1 and *1/*0) (5.90 +/- 5.59 versus 3.25 +/- 2.01 adducts/10(8) bases, Mann-Whitney U-test, z = 2.53, P = 0.011), PAH exposure in the two subgroups being similar (7.06 +/- 6.83 versus 6.67 +/- 8.00 1-pyrenol micromol/mol creatinine). The highest number of GSTM1 null subjects (12/23, 39%) belonged to the quartile with the highest adduct levels (i.e., >4.67 adducts/10(8) nucleotides). That is, coke-oven workers with GSTM1 *0/*0 genotype had a significantly higher risk of having high adduct levels than individuals with active GSTM1 genotype (Fisher exact test P = 0.0355; odds ratio (OR) = 4.145, 95% CI 1.0-18.8). Multiple linear regression analysis showed that the increase in anti-BPDE-DNA adduct levels in LMF was significantly related to the high occupational exposure to PAHs (benzo[a]pyrene (BaP)) of coke-oven workers (t = 3.087, P < 0.01) and to the lack of GSTM1 activity (t = 3.512, P < 0.001), rather than to the two other confounding factors of PAH intake, i.e. charcoal-broiled meat consumption and smoking habits. In conclusion, our results indicate the clear influence of the GSTM1 detoxifying genotype on anti-BPDE-DNA adduct formation in the LMF of coke-oven workers. This is invaluable for future environmental-occupational studies using this biomarker of PAH exposure.  相似文献   

5.
Individual variability in xenobiotic metabolism has been associated with susceptibility to developing complex diseases. Genes involved in xenobiotic metabolism have been evaluated in association studies; the difficulty of obtaining accurate gene frequencies in mixed populations makes interpretation of the results difficult. We sought to estimate population parameters for the cytochrome P450 and glutathione S-transferase gene families, thus contributing to studies using these genes as markers. We describe the frequencies of six genes (CYP1A1, CYP2D6, CYP2E1, GSTM1, GSTT1, and GSTP1) and estimate population parameters in 115 Euro-descendants and 196 Afro-descendants from Curitiba, South of Brazil. PCR-based methods were used for genotyping, and statistical analysis were performed by AMOVA with ARLEQUIN software. The mutant allele frequencies in the Afro-descendants and Euro-descendants, respectively, were: CYP1A1*2A = 30.1% and 15.2%; CYP2D6*4 = 14.5% and 21.5%; CYP2E1*5B = 7.9% and 5%; GSTP1*B = 37.8% and 28.3%. The null genotype frequencies were: GSTM1*0 = 36.8% and 46.1%; GSTT1*0 = 24.2% and 17.4%.  相似文献   

6.
The aim of this study was to investigate the relationship between genetic polymorphism of metabolic enzymes and DNA adduct levels in lymphocytes of low dose cigarette smokers (less than 20 cigarettes per day). We previously reported the effects of cytochrome P4501A1 (CYP1A1) and glutathione S-transferase M1 (GSTM1) on lymphocyte DNA adducts. This time we considered not only CYP1A1 and GSTM1 but also cytochrome P4502E1 (CYP2E1) and glutathione S-transferase T1 (GSTT1). DNA adducts in lymphocytes obtained from low dose cigarette smokers (n = 41) and nonsmokers (n = 56) were measured by the 32P-postlabelling method. The adduct levels were compared regarding smoking status and polymorphic genotypes of these four enzymes. The mean SD of DNA adduct levels in all low dose cigarette smokers and non-smokers was 1 05 0 83 per 108 nucleotidesand 0 85 0 35 per 108 nucleotides, respectively. In low dose cigarette smokers, adduct levels were higher in the rare homozygous (MM) for CYP1A1-exon 7 polymorphism compared with the other types such as common homozygous (WW) and heterozygous (WM). CYP1A1-WM, MM in combination with GSTM1 null showed highest adduct levelamong low smokers. The low smokers with rare homozygous for CYP2E1 Dra1 polymorphism tended to have lower adduct levels than wild types. Low dose cigarette smokers with combined GSTM1 null and T1 null had a higher tendency for adduct levels than others. However none of the differences reached statistical significance.  相似文献   

7.
The GSTT1 and GSTM1 genes are characterized by the existence of a GST*0 null allele responsible for a lack of enzyme activity, with the respective null genotypes GSTT1*0/0 and GSTM1*0/0. The three resulting genotypes (GSTs*1/1, *1/0 and *0/0) are associated with a trimodal distribution of glutathione-conjugator activity. Previous epidemiological studies have only evaluated the cancer risk associated with the GST null genotype relative to the two GST carrier genotypes (GSTs1*1/1 and *1/0). We developed GSTT1 and GSTM1 TaqMan real-time quantitative PCR assays to discriminate each of the three genotypes, with the albumin gene (ALB) as reference. The mean N(GSTT1*1/1) value was 1.0 (95% confidence interval 0.80-1.20). The mean N(GSTT1*1/0) value was 0.48 (95% CI 0.36-0.60). One (3.4%) of the 29 DNA samples yielded the GSTM1*1/1 genotype (N(GSTM1*1/1) = 1), a frequency in keeping with the Hardy-Weinberg distribution. The mean N(GSTM1*1/0) value was 0.50 (95% CI 0.42-0.58). All GSTT1*0/0 and GSTM1*0/0 samples yielded N(GST) values of 0 (Ct = 40); the frequencies of these genotypes (27.6% and 55.2%, respectively) were in keeping with published data. The GSTT1 and GSTM1 real-time PCR assays described here unambiguously discriminate each of the three existing genotypes which should be valuable for assessing the relative risk of cancer associated with each of the three GST genotypes.  相似文献   

8.
Several genes involved in the metabolism of carcinogens have been found to be polymorphic in the human population, and specific alleles are associated with increased risk of cancer at various sites. This study is focused on the polymorphic enzymes glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) that are involved in the detoxification of many xenobiotics involved in the etiology of bladder cancer. To investigate the role of GSTM1 and GSTT1 in bladder carcinogenesis, the polymerase chain reaction was used to determine GSTM1 and GSTT1 genotypes of cancer patients (n = 76) and controls (n = 248). The proportion of putative risk GSTM1 null genotype in the case group was 52.6%, compared to 49.6% in the control group, but the GSTT1 0/0 frequency in the bladder cancer group was significantly higher (P = 0.04) in comparison with the control group (27.6 vs 16.9%). Individuals lacking the GSTT1 gene are at an approximately 1.9-fold higher risk (OR = 1.87, C.I. 95% = 1.03-3.42) of developing bladder cancer in comparison with individuals with at least one active allele in the GSTT1 locus. A significantly higher incidence of GSTM1 deletion genotype (P = 0.02) was found in smokers with bladder cancer compared to the controls (70.6 vs 49.6%). Smokers lacking the GSTM1 gene are at an approximately 2.4-fold higher risk of bladder cancer (OR = 2.44, C.I. 95% = 1.10-5.30). The effect of smoking associated with the GSTT1 0/0 genotype was not found to affect the risk of bladder cancer.  相似文献   

9.
10.
The enzymes phospholipases A2 are believed to be involved in the pathology of schizophrenia. We investigated allelic and genotype frequencies of PLA2G4A BanI polymorphism and the rs4375 in PLA2G6A in Croatian schizophrenic patients (n=81) and controls (n=182), using PCR/RFLP. Genotype and allelic frequencies of both loci, alone or in combination did not show significant difference (chi2-test). Allele-wise and genotype-wise meta-analyses of BanI polymorphism in case-control and family-based studies also revealed no significant association with schizophrenia. Multiple logistic regression analyses revealed statistically significant association between several items from PANSS general psychopathology scale and BanI polymorphism in PLA2G4A. BanI polymorphism further showed a significant impact on mean age of the onset of disease in males (betaA1=0.351, P=0.021; Spearman's rA1=0.391, P=0.010) indicating lower mean age at admission in homozygous A2A2 males.  相似文献   

11.
Polymorphism of GSTM1 and GSTP1 genes was studied in patients with cystic fibrosis (CF) and chronic bronchopulmonary diseases (CBPD) living in Bashkortostan. A combination of certain GSTM1 and GSTP1 genotypes accompanied by severe mutations in CFTR gene proved to intensify a pathologic process in respiratory organs of patients with CF; a combination of the normal GSTM1 and heterozygous I/V GSTP1 genotypes is the most favorable (OR = 4.49; chi 2 = 11.53, P < 0.002). In patients with CBPD, a combination of the GSTM1 null genotype and the homozygous GSTP1 V/V genotype is the most common (5.5% versus 1.3% in control; chi 2 = 3.01, P = 0.08). The frequency of this genotype is highest in groups of patients with recurrent bronchitis (8.1%; P = 0.07; OR = 6.75) and bronchiectatic disease (BED) (9.1%, P > 0.10, OR = 7.65). A combination of the null GSTM1 and I/V GSTP1 genotypes was found in 40.0% of patients with chronic nonobstructive bronchitis (chi 2 = 4.87; P = 0.03; OR = 4.03). Among patients with BED, a proportion of individuals with the normal GSTM1 and I/V GSTP1 genotypes was increased (36.4% versus 19.4% in control). In patients with chronic obstructive pulmonary disease (COPD), the frequencies of the GSTM1 and GSTP1 genotype combinations virtually did not differ from those in the control group suggesting that COPD severity is not related to changes in activities of glutathione S-transferases M1 and P1.  相似文献   

12.
Genetic polymorphisms of glutathione S-transferases (GSTs) and type 2 diabetes mellitus (T2DM) risk have been widely studied, however, the results were somewhat conflicting. To evaluate the association of GSTs (GSTM1, GSTT1 and GSTP1) gene polymorphisms with T2DM, a meta-analysis was performed before October, 2012. ORs were pooled according to random-effects model. There were a total of 1354/1666 (n = 9) cases/controls (studies) for GSTM1, 1271/1470 (n = 8) for GSTT1, and 1205/1250 (n = 7) for GSTM1. There were significant associations between GSTM1 polymorphism, GSTT1 polymorphism and T2DM in the contrast of present genotype vs. null genotype, with pooled OR = 1.99 (95%CI = 1.46–2.71) and OR = 1.61 (95%CI = 1.19–2.17), respectively. Yet no significant association of GSTP1 polymorphism and T2DM was showed. When stratified by ethnicity, the significant associations were also existed in Asians for GSTM1 and GSTT1, but not GSTP1. No publication bias but some extent of heterogeneity was observed. Finally, the accumulated evidence proved the obvious associations of GSTM1 and GSTT1 polymorphisms with an increased risk of T2DM.  相似文献   

13.
We investigated whether the presence of (+)-anti-benzo(a)pyrene diolepoxide adducts to serum albumin (BPDE-SA) among workers exposed to benzo(a)pyrene (BaP) and unexposed reference controls was influenced by genetic polymorphisms of cytochrome P4501A1 (CYP1A1), microsomal epoxide hydrolase (EHPX), glutathione S-transferases M1 (GSTM1) and P1 (GSTP1), all involved in BaP metabolism. Exposed workers had significantly higher levels of adducts (0.124 ± 0.02 fmol BPTmg?1 SA, mean ± SE) and a higher proportion of detectable adducts (40.3%) than controls (0.051 ± 0.01 fmol BPT mg?1 SA; 16.1%) (p = 0:014 and p = 0:012). Smoking increased adduct levels only in occupationally exposed workers with the GSTM1 deletion (GSTM1 null) (p = 0:034). Smokers from the exposed group had higher adduct levels when they were CYP1A1 *1/*1 wild-type rather than heterozygous and homozygous for the variant alleles (CYP1A1 *1/*2 plus *2/*2) (p = 0:01). The dependence of BPDE-SA adduct levels and frequency on the CYP1A1 *1/*1 genotype was most pronounced in GSTM1-deficient smokers. Exposed workers with GSTM1 null/GSTP1 variant alleles had fewer detectable adducts than those with the GSTM1 null/GSTP1*A wild-type allele, supporting for the first time the recent in vitro finding that GSTP1 variants may be more effective in the detoxification of BPDE than the wild-type allele. Logistic regression analysis indicated that occupational exposure, wild-type CYP1A1*1/*1 allele and the combination of GSTM1 null genotype+EHPX genotypes associated with predicted low enzyme activity were significant predictors of BPDE-SA adducts. Though our findings should be viewed with caution because of the relatively limited size of the population analysed, the interaction between these polymorphic enzymes and BPDE-SA adducts seems to be specific for high exposure and might have an impact on the quantitative risk estimates for exposure to polycyclic aromatic hydrocarbons.  相似文献   

14.
This paper aimed to analyze the association of polymorphism of GSTM1 0/0 genotype with laryngeal cancer along a hospital based case-control study. Polymorphisms of GSTM1 0/0 of samples from 36 patients with laryngeal cancer and 35 healthy controls were detected by PCR method. The reaction used as GSTM1 primers, using the sequence sense: 5'-CTGCCCTACTTGGATTGATGGG-3' and antisense: 5'-TGGATTGTAGCAGATCATGC-3'. N Acetyl transferase 1 (NAT1) gene using the primers sense: 5'-TAAAAGTAAAATGATTTGCTTTCG-3' and antisense: 5'-GCTTTCTAGCATAAATCACCAA-3' was used as internal positive control. Two sided 2 and multivariation analysis were used to analyse the results. The proportions of GSTM1 deleted genotype in cases and controls were 47.2% and 54.3%, respectively. There was significant increment of GSTM 0/0 genotype frequency in moderate smokers group of patients compared to control (P=0.033, OR= 4.78, 95% CI=1.30-7.13). We conclude that GSTM1 deleted genotype may be a genetic susceptibility marker for laryngeal cancer whose exposed to low doses carcinogens. The absence of this enzyme seems to have a role in the development of laryngeal cancer, in which the mechanism still needs further investigation.  相似文献   

15.
Schizophrenia is a chronic and neuropsychiatric disease that affects about 0.5–1% of the world’s population. An increase in dopamine and dopamine D2 receptor (DRD2) gene products has been well described in schizophrenic patients. Several groups have studied the relationship between dopaminergic hyperactivity and cellular communications have obtained discordant results. Studies searching for the relationship between the schizophrenia and DRD2 gene have gained more interest. Our objective was to determine the relationships among schizophrenic symptoms in schizophrenia subtypes and severity of symptoms in terms of DRD2 gene −141C Insertion/Deletion [Ins/Del; I/D] polymorphism by PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) assay method. Genomic DNA was prepared from peripheral blood by using salt extraction method. After amplification of genomic DNA, PCR products were digested with BstNI restriction enzyme for the detection of DRD2 gene −141C Ins/Del polymorphism in 73 schizophrenic patients and 60 healthy control subjects. The allelic frequencies of the DRD2 gene −141C Ins/Del polymorphism in case and control groups were 79.5 and 77.5% for I allele; 20.5 and 22.5% for D allele respectively. There was no significant difference in frequencies of genotypes and alleles between the two groups. In schizophrenic and control subjects, there were no significant relationship in severity of the disease and schizophrenia types among the −141C Ins/Del genotypes and alleles.  相似文献   

16.
17.
OBJECTIVE: The aims of the present study were to assess whether the glutathione S-transferase T1 (GSTT1), M1 (GSTM1), and NAD(P)H: quinone oxidoreductase 1 (NQO1) genotypes are associated with type 2 diabetes mellitus (T2 DM) and to ascertain whether the levels of blood lipids given exposure to diabetes are modified by the specific genetic polymorphisms of GSTT1, GSTM1, and NQO1. METHODS: This case-control study was conducted on 200 subjects. The genotypes were determined using a polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism. RESULTS: The GSTT1-present genotype conferred a statistically significant 0.49-fold reduction in risk of T2 DM relative to the null genotype. Individuals with GSTT1-null or GSTM1-null genotype had higher levels of low-density-lipoprotein cholesterol, apolipoprotein B, and lipoprotein(a), respectively. There was no association between either GSTM1 or NQO1 polymorphism and risk of T2 DM. CONCLUSION: The present results suggest that the GSTT1 gene may contribute to the development of T2 DM and may be one of the candidate genes of T2 DM in Chinese population.  相似文献   

18.
It was hypothesized that the presence of genetic polymorphisms that decrease activity of the detoxification enzymes glutathione-S-transferase (GST) and quinone oxido-reductase (NQO1) may contribute to heart disease and affect biomarkers of coronary health and oxidative stress. Sixty-seven patients with angiographically confirmed coronary heart disease (CHD) and 63 healthy controls were genotyped for polymorphisms in the GST isoforms Mu and Theta (GSTM and GSTT respectively) and NQO1. Participants' blood levels of homocysteine (Hcy), C-reactive protein (CRP), oxidized low density lipoprotein (LDL) and total antioxidant capacity (TAOX) were measured. TAOX levels were significantly lower in women than men (P < or = 0.001) and this finding was more marked in the control group (P < or = 0.001). Hcy levels were higher in CHD patients (P=0.003 vs. control) which was mostly attributed to female patients (P=0.034 case vs. control). GSTM polymorphisms were present with greater frequencies in CHD cases with the odds ratio (OR) for GSTM equal to 3.77 vs. control. CHD patients also have an increased incidence of both GSTM and GSTT null polymorphisms (OR=5.13). In contrast, NQO1 polymorphisms were protective in CHD patients (OR=0.18 vs. control), which when stratified for genotype was due to heterozygous individuals. Significantly higher C-reactive protein levels occurred in CHD patients with lower NQO1 activity (P=0.001), however, due to the large variations in CRP levels seen in CHD patients; the clinical importance of this difference is unclear. Smokers with the GSTM null polymorphism were more likely to have CHD than non-smokers expressing the GSTM null polymorphism (OR=3.54, P=0.079). We conclude that a lack of activity in the detoxification enzymes NQO1 and GSTM, and biomarker levels are strongly associated with coronary heart disease with sex as a mitigating factor.  相似文献   

19.
Data from the EXPAH project on PAH exposure and intermediary biomarkers were analyzed with respect to individual genotypes at seven metabolic gene loci. The GSTM1 null allele was associated with significantly higher levels of two biomarkers, malondialdehyde-2′-deoxyguanosine and benzo[a]pyrene DNA adducts in the total population from three Central and Eastern European countries. The CYP1B1 Leu/Val variant demonstrated effects on both markers of oxidative DNA damage in opposite directions, producing a higher level of M1dG with a trend from wild type (Leu/Leu) to heterozygotes to homozygous (Val/Val) variants, whereas the effects of these variants were reversed for 8-oxodG. Cluster Analysis was used to group composite genotypes in order to determine if combined genotypes of multiple loci could explain some of the variation seen with the biomarkers, expressed per unit of exposure, referred to as a sensitivity index. This analysis revealed two closely related genotypes each involving four of the loci (GSTM1*0/*0, CYP1A1*1*1, CYP1B1*1/*2, GSTP1*1/*1 and GSTT1*0/*0, CYP1A1*1*1, CYP1B1*1/*2, GSTP1*1/*1.) that conferred significant resistance to the DNA damaging effects of benzo[a]pyrene, measured as the level of a benzo[a]pyrene-like adduct per unit of benzo[a]pyrene exposed.  相似文献   

20.
A common polymorphism at codon 192 in the human paraoxonase (PON) 1 gene has been shown to be associated with increased risk for coronary heart disease (CHD) in Caucasian populations. However, these findings have not been reported consistently in all Caucasian and non-Caucasian populations, suggesting that this is not a functional mutation but may mark a functional mutation present in either PON1 or a nearby gene. Recently, two other PON-like genes, designated "PON2" and "PON3," have been identified, and they are linked with the known PON1 gene on chromosome 7. Identification of additional polymorphisms in the PON-gene cluster may help to locate the functional polymorphism. In this report, we describe the existence of a common polymorphism at codon 311 (Cys-->Ser; PON2*S) in the PON2 gene, as well as its association with CHD alone and in combination with the PON1 codon 192 polymorphism in Asian Indians. The frequency of the PON2*S allele was significantly higher in cases than in controls (.71 vs. .61; P=.016). The age- and sex-adjusted odds ratio (OR) was 2.5 (95% confidence interval &sqbl0;95% CI&sqbr0;=1.8-3.1; P=.0090) for the PON2*S allele carriers. Further stratification of the PON2*S association, on the basis of the presence or absence of the PON1*B allele, showed that the CHD risk associated with the PON2*S allele was confined to PON1*B-allele carriers. Likewise, the PON1*B-allele risk was present only among PON2*S carriers. Age- and sex-adjusted ORs for the PON2*S and PON1*B were 3.6 (95% CI=2.6-4.6; P=.011) and 2.9 (95% CI=2.4-3.5; P=.0002) among the PON1*B and PON2*S carriers, respectively. Our data indicate that both polymorphisms synergistically contribute to the CHD risk in this sample and that this genetic risk is independent of the conventional plasma lipid profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号