首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The kinetics of Ca2+-induced fusion of phosphatidylcholine-phosphatidic acid vesicles has been studied using the dependence of proton nuclear magnetic resonance linewidths on vesicle size. The linewidth of the lipid acyl chain methylene resonance been shown to be sensitive to changes in vesicle size but insensitive to vesicle aggregation. For vesicle systems with the same lipid composition, the linewidth increases in a linear fashion with vesicle radius over the range 125–300 Å. This dependence has been used to determine quantitatively fusion rates and the dependence of such rates on Ca2+ as well as an vesicle concentration. For vesicle concentrations in the range of 3 · 10?6–10?5 M and Ca2+ concentration at a level approaching 1 : 1 with respect to phosphatidic acid, the initial fusion rates have been found to be fast, with half-times of 1–10 min. An order of reaction of 2.7 with respect to vesicle concentration has been observed. Mechanisms of vesicle fusion are discussed in view of these observations.  相似文献   

2.
Gamma-aminobutyric acid type A receptor-associated protein (GABARAP) belongs to a family of small ubiquitin-like adaptor proteins implicated in intracellular vesicle trafficking and autophagy. We have used diffusion-ordered nuclear magnetic resonance spectroscopy to study the temperature and concentration dependence of the diffusion properties of GABARAP. Our data suggest the presence of distinct conformational states and provide support for self-association of GABARAP molecules. Assuming a monomer–dimer equilibrium, a temperature-dependent dissociation constant could be derived. Based on a temperature series of 1H15N heteronuclear single quantum coherence nuclear magnetic resonance spectra, we propose residues potentially involved in GABARAP self-interaction. The possible biological significance of these observations is discussed with respect to alternative scenarios of oligomerization.  相似文献   

3.
Binding of glyceraldehyde 3-phosphate to glyceraldehyde-3-phosphate dehydrogenase, the membrane protein known as Band 6, causes shifts in the 31P nuclear magnetic resonance spectrum of the substrate (Fossel, E.T. and Solomon, A.K. (1977) Biochim. Biophys. Acta 464, 82–92). We have studied the resonance shifts produced by varying the sodium/potassium ratio, at constant ionic strength, in order to examine the relationship between the cation transport system and glyceraldehyde-3-phosphate dehydrogenase. Alteration of the potassium concentration at the extracellular face of the vesicle affects the conformation of glyceraldehyde-3-phosphate dehydrogenase at the cytoplasmic face, thus showing that a conformation change induced by a change in extracellular potassium can be transmitted across the membrane. Alterations of the sodium concentration at the cytoplasmic face also affect the enzyme conformation, whereas sodium changes at the extracellular face are without effect. In contrast, there is no sidedness difference in the effect of potassium concentrations. The half-values for these effects are like those for activation of the red cell (Na+ + K+)-ATPase. We have also produced ionic concentration gradients across the vesicle similar to those Glynn and Lew ((1970) J. Physiol. London 207, 393–402) found to be effective in running the cation pump backwards to produce adenosine triphosphate in the human red cell. The sodium/potassium concentration dependence of this process in red cells is mimicked by 31P resonance shifts in the (glyceraldehyde 3-phosphate/glyceraldehyde-3-phosphate dehydrogenase/inside out vesicle) system. These experiments provide strong support for the existence of a functional linkage between the membrane (Na+ + K+)-ATPase and the glyceraldehyde-3-phosphate dehydrogenase at the cytoplasmic face.  相似文献   

4.
The assignment of the 1H nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor with the use of two-dimensional 1H nuclear magnetic resonance techniques at 500 MHz is described. The assignments are based entirely on the known amino acid sequence and the nuclear magnetic resonance data. Individual resonance assignments were obtained for all backbone and Cβ protons, with the exception of those of Arg1, Pro2, Pro13 and the amide proton of Gly37. The side-chain resonance assignments are complete, with the exception of Pro2 and Pro13, the Nδ protons of Asn44 and the peripheral protons of the lysine residues and all but two of the arginine residues.  相似文献   

5.
A nonpeptidic, cation-conducting channel has been designed, synthesized, and evaluated. The channel was found to conduct protons and Na+ through phospholipid bilayers. The evaluation of Na+ transport was conducted using a dynamic 23Na-NMR (nuclear magnetic resonance) in phospholipid vesicles and a planar bilayer using a patch clamp amplifier. Several control compounds were prepared to determine which of the structural “modules” were necessary. Experiments using fluorescent residues and fluorescence energy transfer were undertaken to locate the channel within the bilayer and to demonstrate that the channel functions as a monomeric unit.  相似文献   

6.
The Lewisx–Lewisx interaction has been increasingly studied, using a variety of techniques including nuclear magnetic resonance spectroscopy, mass spectrometry, vesicle adhesion, atomic force microscopy, and surface plasmon resonance spectroscopy. However, the detailed molecular mechanism of these weak, divalent cation dependent interactions remains unclear, and new models are needed to probe the nature of this phenomenon in term of key roles of the different hydroxyl groups on Lewisx trisaccharide determinant involved in the Lewisx–Lewisx interaction. An interesting solution is to synthesize a series of Lewisx pentaosyl glycosphingolipid derivatives in which one of the eight hydroxyl groups of Lewisx trisaccharide is replaced by a hydrogen atom, and to test the adhesion induced by interaction of these derivatives, in order to gain insight into the functions played by the hydroxyl groups of the Lewisx trisaccharide. This article describes the synthesis of 3d-deoxy and 4d-deoxy Lewisx pentaosyl glycosphingolipids, to be used for study of the Lewisx–Lewisx interaction. Botao Fan: Deceased October 22, 2006  相似文献   

7.
Ca2+-induced transformation of phosphatidylcholine-phosphatidic acid vesicles to larger bilayer structures has been examined using nuclear magnetic resonance, electron microscopy, gel permeation and radioisotope tracer techniques. For concentrated vesicle preparations where phosphatidic acid content remains less than 50% of total lipid, transformation to larger well defined unilamellar structures can be induced. The size of the product formed is dependent on phosphatidic acid content and on Ca2+ content when Ca2+ levels are between 0.3 and 1.0 mol ratios with respect to phosphatidic acid. During transformation bilayer composition remains unchanged and internal contents are retained in the final structure. These properties are indicative of concerted two vesicle and multiple vesicle fusions. The controllable and concerted fusions make the phosphatidic acid system suitable for further mechanistic studies.  相似文献   

8.
39K nuclear magnetic resonance was used to measure the efflux of K+ from suspensions of human erythrocytes [red blood cells (RBCs)], that occurred in response to the calcium ionophore, A23187 and calcium ions; the latter activate the Gárdos channel. Signals from the intra- and extracellular populations of 39K+ were selected on the basis of their longitudinal relaxation times, T 1, by using an inversion- recovery pulse sequence with the mixing time, τ1, chosen to null one or other of the signals. Changes in RBC volume consequent upon efflux of the ions also changed the T 1 values so a new theory was implemented to obviate a potential artefact in the data analysis. The velocity of the K+ efflux mediated by the Gárdos channel was 1.19±0.40 mmol (L RBC)−1 min−1 at 37°C.  相似文献   

9.
The objective of this work is physicochemical characterization of nimesulide-cyclodextrin binary systems both in solution and solid state and to improve the dissolution properties of nimesulide (N) via complexation with α-, β, and γ-cyclodextrins (CDs). Detection of inclusion complexation was done in solution by means of phase solubility analysis, mass spectrometry, and 1H nuclear magnetic resonance (1H-NMR) spectroscopic studies, and in solid state using differential scanning calorimetry (DSC), powder x-ray diffractometry (X-RD), scanning electron microscopy (SEM), and in vitro dissolution studies. Phase solubility, mass spectrometry and 1H-NMR studies in solution revealed 1∶1 M complexation of N with all CDs. A true inclusion of N with β-CD at 1∶2 M in solid state was confirmed by DSC, powder X-RD and SEM studies. Dissolution properties of N-CD binary systems were superior when compared to pure N.  相似文献   

10.
High performance liquid chromatographic analysis of the total nuclear DNAs of 6 millets plant species indicates that the 5-methylcytosine content ranges from 3% in barn yard millet to 9.6% in great millet while the fraction of cytosines methylated varies between 14% in little millet to 31 % in pearl millet. Digestion of millet DNAs with MspI/HpaII suggests that CpG methylation is more in great millet DNA while CpC methylation is more in the other 5 millet DNAs. Digestion of millet DNAs with MboI, Sau3AI andDpnI indicates that some of the5’ GATC3’ sequences are methylated at adenine and/or cytosine residues except in little millet where adenine methylation of the5’GATC3’ sequences is insignificant and there is a predominance of cytosine methylation in these sequences.  相似文献   

11.
A procedure is described here whereby the conformation, of a flexible molecule in solution can be found. The method depends on the study of the nuclear magnetic resonance spectrum of the molecule in the presence of perturbations due to specifically bound lanthanide cations. The magnetic perturbations are of two kinds: shifts of nuclear magnetic resonance spectral lines in the presence of cations such as Eu3+ and changes in relaxation rates of the nuclear magnetic resonance excitations in the presence of cations such as Gd3+. Suitable expressions are given for the relation between the magnitude of the perturbations and the geometry of the lanthanide complex in the absence of through-bond perturbations and for an axially symmetric system. It is proved that the spectral changes described here are not due to through-bond (contact) effects. The circumstances, in which the anisotropy of the magnetic susceptibility tensor, as seen in the nuclear magnetic resonance spectra, is of axial symmetry, are defined. The experimental systems described are of this kind. A computer program has been devised that searches for the conformations of the molecule which fit the nuclear magnetic resonance data.We outline here the principles of the method and how we have used a combination of relaxation and shift probes to obtain the conformation of adenosine-5′-monophosphate at pH 2. It is shown that a small family of closely related conformations fit the nuclear magnetic resonance data. These conformations are very similar to that of the crystal structure of AMP.  相似文献   

12.
Motility is used as a routine parameter for assessing spermatozoa activity. The quality rating techniques adopted are based on electron or optical microscopy. However, these methods depend on gross structural and dynamical features of sperm cells and do not provide information on metabolic activity of intact cells. Lately, biochemical assays have become popular. Such methods are cumbersome and destroy the samples. Magnetic resonance methods offer a non-invasive method for studies on intact sperms. We have investigated respiration, maturation andin vitro capacitation of sperms from human ejaculates and sperms extracted from goat reproductive organ using electron spin resonance spin labelling and [31P] nuclear magnetic resonance methods. These studies clearly establish the advantages of magnetic resonance in studies related to metabolic activity of sperms.  相似文献   

13.
In the course of work on the interactions of electric and magnetic fields with both living and dead biological materials, it was noticed that certain published dielectrophoretic yield curves for biological cells showed unexplained deviations in the region of 2 kHz. Dielectrophoretic measurements made at frequencies and magnetic fields which satisfied the nuclear magnetic resonance conditions showed sharply resonant features. Dielectric measurements showed small, but sharp, resonances most easily seen in the dielectric loss curves which had a bandwidth of the order of one Hertz and presented at the frequencies which satisfied the magnetic resonance conditions for the ambient magnetic field. Resonances were found corresponding to the frequencies for electron spin resonance and nuclear magnetic resonance for1H,31P,23Na,37Cl and39K. The onset of these resonances occurs at the value of the steady magnetic field strength so that one quantum of magnetic flux (2.07×10?15wb) would link a single biological cell or pair of cells, approximately 1 G (100μT) in the case of a 5-μm yeast cell. The effects of these magnetic resonance conditions on the mean generation time ofE. coli and on the reaction of the enzyme lysozyme with the substrateM. lysodeikticus cells are also shown.  相似文献   

14.
15.
The representation of the shape of a biconcave erythrocyte by a set of three parametric equations was achieved by using the expressions that transform the curvilinear coordinates from the disc-cyclide coordinate system [denoted J2R; Moon and Spencer (1988), Field Theory Handbook, Springer-Verlag, Berlin] to Cartesian coordinates. The equations are products of elliptic functions, so the challenge was to relate the three major ’shape-defining’ measurements of the human erythrocyte in Cartesian coordinates to three parameters in the new curvilinear coordinates, to give a realistic representation of the shape of the membrane-surface. The relationships between the coefficients of the Cartesian degree-4 surface that describes the discocyte and the coordinate transformation equations were derived with the aid of Mathematica; and the membrane-surface of the cell was drawn using the ParametricPlot3D function in this ‘package’. By having the erythrocyte shape expressed in its new form it is readily amenable to further transformations that might be used to model those changes in shape that are seen when the cells are immersed in media of various osmolalities, or when they change metabolic ’states’. On the other hand, the relationship between the coefficients of the Cartesian expression for the disc-cyclide surface is relevant to image analysis of erythrocytes, as determined by physical methods that rely on Cartesian imaging ’slices’. These methods include confocal microscopy and various nuclear magnetic resonance microimaging procedures.  相似文献   

16.
Aromatic C–H bond hydroxylation of 1-methoxynaphthalene was efficiently catalyzed by the substrate misrecognition system of the hydrogen peroxide dependent cytochrome P450BSβ (CYP152A1), which usually catalyzes hydroxylation of long-alkyl-chain fatty acids. Very importantly, the hydroxylation of 1-methoxynaphthalene can be monitored by a color change since the formation of 4-methoxy-1-naphthol was immediately followed by its further oxidation to yield Russig’s blue. Russig’s blue formation allows us to estimate the peroxygenation activity of enzymes without the use of high performance liquid chromatography, gas chromatography, and nuclear magnetic resonance measurements.  相似文献   

17.
Mycobacterium sp. 7E1B1W and seven other mycobacterial strains known to degrade hydrocarbons were investigated to determine their ability to metabolize the piperazine ring, a substructure found in many drugs. Cultures were grown at 30°C in tryptic soy broth and dosed with 3.1 mM N-phenylpiperazine hydrochloride; samples were removed at intervals and extracted with ethyl acetate. Two metabolites were purified from each of the extracts by high-performance liquid chromatography; they were identified by mass spectrometry and 1H nuclear magnetic resonance spectroscopy as N-(2-anilinoethyl)acetamide and N-acetyl-N′-phenylpiperazine. The results show that mycobacteria have the ability to acetylate piperazine rings and cleave carbon-nitrogen bonds.  相似文献   

18.
The basic problem of nuclear pore assembly is the big perinuclear space that must be overcome for nuclear membrane fusion and pore creation. Our investigations of ternary complexes: DNA–PC liposomes–Mg2+, and modern conceptions of nuclear pore structure allowed us to introduce a new mechanism of nuclear pore assembly. DNA-induced fusion of liposomes (membrane vesicles) with a single-lipid bilayer or two closely located nuclear membranes is considered. After such fusion on the lipid bilayer surface, traces of a complex of ssDNA with lipids were revealed. At fusion of two identical small liposomes (membrane vesicles) <100 nm in diameter, a “big” liposome (vesicle) with ssDNA on the vesicle equator is formed. ssDNA occurrence on liposome surface gives a biphasic character to the fusion kinetics. The “big” membrane vesicle surrounded by ssDNA is the base of nuclear pore assembly. Its contact with the nuclear envelope leads to fast fusion of half of the vesicles with one nuclear membrane; then ensues a fusion delay when ssDNA reaches the membrane. The next step is to turn inside out the second vesicle half and its fusion to other nuclear membrane. A hole is formed between the two membranes, and nucleoporins begin pore complex assembly around the ssDNA. The surface tension of vesicles and nuclear membranes along with the kinetic energy of a liquid inside a vesicle play the main roles in this process. Special cases of nuclear pore formation are considered: pore formation on both nuclear envelope sides, the difference of pores formed in various cell-cycle phases and linear nuclear pore clusters.  相似文献   

19.
Abstract

Polymer-coated lipid vesicles labeled with either a radionuclide such as technetium-99m or a paramagnetic cation such as gadolinium or manganese, exhibit an extended half-life in the circulation and reduced reticuloendothelial uptake, and are of potential utility as vascular imaging agents for both nuclear medicine and magnetic resonance. For nuclear medicine applications, lipid vesicles may be prepared with radionuclide either attached to the membrane surface by means of a suitable chelate or else encapsulated within the vesicle and offer two principle advantages compared to radiolabeled red blood cells, (i) vesicle can be prepared prior to patient arrival thereby minimizing delays and scheduling difficulties and (ii) known drug interferences are eliminated. The surface-labeling approach is technically more simple and is better suited to the production of vesicles in a pharmaceutically-acceptable form ready for labeling, however encapsulation results in vesicles which exhibit less renal clearance of entrapped label. The limitations of each approach in real clinical practice are not yet evident. For magnetic resonance applications, paramagnetically-labeled vesicles would be a superior vascular marker compared to small molecular weight paramagnetic chelates and may prove useful for blood volume and perfusion measurements. Surface-associated chelates are the approach of choice for a variety of reasons including increased relaxivity and reduced lipid dose compared to vesicles with entrapped paramagnetic chelates. The presence of polymer on the membrane surface has no effect upon die relaxivity of paramagnetic chelates eitiier entrapped widiin the vesicle or bound to the membrane surface.  相似文献   

20.
Measuring metabolism''s time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water''s sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hind-limb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic functional magnetic resonance studies in muscle, the simplicity of our approach makes this technique amenable to a wide range of functional metabolic tracer studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号