首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J.S. Ashadevi  S.R. Ramesh 《Genetica》2000,109(3):235-243
By analyzing the progeny of crosses involving brown eye mutants and the wild types in two members of Drosophila nasuta subgroup namely D. n. nasuta and D. n. albomicans we could show that the mutant gene is recessive, located in the chromosome 2 and the alleles of this gene are present at different loci. A study of fitness in the eye color mutants in comparison with the wild types revealed that D. n. nasuta mutant has higher viability at both 25 ± 1°C and ambient temperatures; while D. n. albomicans mutant has faster rate of development only at 25 ± 1°C. Quantitative analysis of eye pigments in the mutants revealed that there is biosynthesis of both pteridines and xanthommatins unlike in bw/bw of D. melanogaster, where only xanthommatins are synthesized. In both the species, the pteridine quantities in mutants are similar; whereas xanthommatin quantity in is 10 times higher than that of . Further, the F1 progeny of intraspecific crosses (wild type X mutant) are found to have high amounts of pteridine, even when compared with parental wild type. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The onset of pattern formation in the developing Drosophila retina begins with the initiation of the morphogenetic furrow, the leading edge of a wave of retinal development that transforms a uniform epithelium, the eye imaginal disc into a near crystalline array of ommatidial elements. The initiation of this wave of morphogenesis is under the control of the secreted morphogens Hedgehog (Hh), Decapentaplegic (Dpp) and Wingless (Wg). We show that the Epidermal Growth Factor Receptor and Notch signaling cascades are crucial components that are also required to initiate retinal development. We also show that the initiation of the morphogenetic furrow is the sum of two genetically separable processes: (1) the 'birth' of pattern formation at the posterior margin of the eye imaginal disc; and (2) the subsequent 'reincarnation' of retinal development across the epithelium.  相似文献   

3.
During Drosophila eye development, cell differentiation is preceded by the formation of a morphogenetic furrow, which progresses across the epithelium from posterior to anterior. Cells within the morphogenetic furrow are apically constricted and shortened along their apical-basal axis. However, how these cell shape changes and, thus, the progression of the morphogenetic furrow are controlled is not well understood. Here we show that cells simultaneously lacking Hedgehog and Dpp signal transduction fail to shorten and do not enter the morphogenetic furrow. Moreover, we have identified a gene, cadherin Cad86C, which is highly expressed in cells of the leading flank of the morphogenetic furrow. Ectopic activation of either the Hedgehog or Dpp signal transduction pathway results in elevated Cad86C expression. Conversely, simultaneous loss of both Hedgehog and Dpp signal transduction leads to decreased Cad86C expression. Finally, ectopic expression of Cad86C in either eye-antennal imaginal discs or wing imaginal discs results in apical constriction and shortening of cells. We conclude that Hedgehog and Dpp signaling promote the shortening of cells within the morphogenetic furrow. Induction of Cad86C expression might be one mechanism through which Hedgehog and Dpp promote these cell shape changes.  相似文献   

4.
5.
J. V. Price  E. D. Savenye  D. Lum    A. Breitkreutz 《Genetics》1997,147(3):1139-1153
The Drosophila epidermal growth factor receptor (EGFR) is a key component of a complex signaling pathway that participates in multiple developmental processes. We have performed an F(1) screen for mutations that cause dominant enhancement of wing vein phenotypes associated with mutations in Egfr. With this screen, we have recovered mutations in Hairless (H), vein, groucho (gro), and three apparently novel loci. All of the E(Egfr)s we have identified show dominant interactions in transheterozygous combinations with each other and with alleles of N or Su(H), suggesting that they are involved in cross-talk between the N and EGFR signaling pathways. Further examination of the phenotypic interactions between Egfr, H, and gro revealed that reductions in Egfr activity enhanced both the bristle loss associated with H mutations, and the bristle hyperplasia and ocellar hypertrophy associated with gro mutations. Double mutant combinations of Egfr and gro hypomorphic alleles led to the formation of ectopic compound eyes in a dosage sensitive manner. Our findings suggest that these E(Egfr)s represent links between the Egfr and Notch signaling pathways, and that Egfr activity can either promote or suppress Notch signaling, depending on its developmental context.  相似文献   

6.
Events in the morphogenetic furrow set the stage for all subsequent compound eye development in Drosophila. The periodic pattern of the adult eye begins in the furrow with the spaced initiation of ommatidial rudiments, the preclusters. A wave of mitosis closely follows the furrow. A cell-by-cell analysis reveals details of these events. Early stages of ommatidial assembly can be resolved using a lead sulfide stain. Overt ommatidial organization begins in the morphogenetic furrow as cells gather into periodically spaced concentric aggregates. A stereotyped sequence of cell rearrangements converts these aggregates into preclusters. In the furrow, new rows of ommatidia are initiated at the equator and grow as new clusters are added to the peripheral ends. Mitotic labeling using BrdU feeds shows that all cells not incorporated into a precluster divide. BrdU injections show that cells divide roughly simultaneously between two adjacent rows of ommatidia.  相似文献   

7.
The progression of the morphogenetic furrow in the developing Drosophila eye is an early metamorphic, ecdysteroid-dependent event. Although Ecdysone receptor-encoded nuclear receptor isoforms are the only known ecdysteroid receptors, we show that the Ecdysone receptor gene is not required for furrow function. DHR78, which encodes another candidate ecdysteroid receptor, is also not required. In contrast, zinc finger-containing isoforms encoded by the early ecdysone response gene Broad-complex regulate furrow progression and photoreceptor specification. br-encoded Broad-complex subfunctions are required for furrow progression and proper R8 specification, and are antagonized by other subfunctions of Broad-complex. There is a switch from Broad complex Z2 to Z1 zinc-finger isoform expression at the furrow which requires Z2 expression and responds to Hedgehog signals. These results suggest that a novel hormone transduction hierarchy involving an uncharacterized receptor operates in the eye disc.  相似文献   

8.
9.
Ommatidial rotation in the Drosophila eye provides a striking example of the precision with which tissue patterning can be achieved. Ommatidia in the adult eye are aligned at right angles to the equator, with dorsal and ventral ommatidia pointing in opposite directions. This pattern is established during disc development, when clusters rotate through 90 degrees, a process dependent on planar cell polarity and rotation-specific factors such as Nemo and Scabrous. Here, we demonstrate a requirement for epidermal growth factor receptor (Egfr) signalling in rotation, further adding to the manifold actions of this pathway in eye development. Egfr is distinct from other rotation factors in that the initial process is unaffected, but orientation in the adult is greatly disrupted when signalling is abnormal. We propose that Egfr signalling acts in the third instar imaginal disc to 'lock' ommatidia in their final position, and that in its absence, ommatidial orientation becomes disrupted during the remodelling of the larval disc into an adult eye. This lock may be achieved by a change in the adhesive properties of the cells: cadherin-based adhesion is important for ommatidia to remain in their appropriate positions. In addition, we have evidence that there is an error-correction mechanism operating during pupal stages to reposition inappropriately orientated ommatidia. Our results suggest that initial patterning events are not sufficient to achieve the precise architecture of the fly eye, and highlight a novel requirement for error-correction, and for an Egfr-dependent protection function to prevent morphological disruption during tissue remodelling.  相似文献   

10.
11.
《Fly》2013,7(2):88-101
Mtl is a member of the Rho family of small GTPases in Drosophila. It was shown that Mtl is involved in planar cell polarity (PCP) establishment, together with other members of the same family like Cdc42, Rac1, Rac2 and RhoA. However, while Rac1, Rac2 and RhoA function downstream of Dsh in Fz/PCP signaling and upstream of a JNK cassette, Mtl and Cdc42 do not. To determine the functional context of Mtl during PCP establishment in the Drosophila eye, we performed a loss-of-function screen to search for dominant modifiers of a sev>Mtl rough eye phenotype. In addition, genetic interaction assays with candidate genes were also carried out. Our results show that Mtl interacts genetically with members and effectors of Egfr signaling, with components and/or regulators of other signal transduction pathways, and with genes involved in cell adhesion and cytoskeleton organization. One of these genes is hibris (hbs), which encodes a member of the immunoglobulin superfamily in Drosophila. Phenotypic analyses and genetic interaction assays suggest that it may have a role during PCP establishment, interacting with both Egfr and Fz/PCP signaling during this process. Taken together, our results indicate that Mtl is functionally related to the Egfr pathway regulating ommatidial rotation during PCP establishment in the eye, being a positive regulator of this pathway. Since Egfr signaling is linked to cytoskeletal and cell junctional elements, it is likely that Mtl may be regulating cytoskeleton dynamics and thus cell adhesion during ommatidial rotation in the context of that pathway.  相似文献   

12.
Mtl is a member of the Rho family of small GTPases in Drosophila. It was shown that Mtl is involved in planar cell polarity (PCP) establishment, together with other members of the same family like Cdc42, Rac1, Rac2 and RhoA. However, while Rac1, Rac2 and RhoA function downstream of Dsh in Fz/PCP signaling and upstream of a JNK cassette, Mtl and Cdc42 do not. To determine the functional context of Mtl during PCP establishment in the Drosophila eye, we performed a loss-of-function screen to search for dominant modifiers of a sev>Mtl rough eye phenotype. In addition, genetic interaction assays with candidate genes were also carried out. Our results show that Mtl interacts genetically with members and effectors of Egfr signaling, with components and/or regulators of other signal transduction pathways, and with genes involved in cell adhesion and cytoskeleton organization. One of these genes is hibris (hbs), which encodes a member of the immunoglobulin superfamily in Drosophila. Phenotypic analyses and genetic interaction assays suggest that it may have a role during PCP establishment, interacting with both Egfr and Fz/PCP signaling during this process. Taken together, our results indicate that Mtl is functionally related to the Egfr pathway regulating ommatidial rotation during PCP establishment in the eye, being a positive regulator of this pathway. Since Egfr signaling is linked to cytoskeletal and cell junctional elements, it is likely that Mtl may be regulating cytoskeleton dynamics and thus cell adhesion during ommatidial rotation in the context of that pathway.  相似文献   

13.
In the developing eye, wingless activity represses proneural gene expression (and thus interommatidial bristle formation) and positions the morphogenetic furrow by blocking its initiation in the dorsal and ventral regions of the presumptive eye. We provide evidence that wingless mediates both effects, at least in part, through repression of the basic helix-loop-helix protein Daughterless. daughterless is required for high proneural gene expression and furrow progression. Ectopic expression of wingless blocks Daughterless expression in the proneural clusters. This repression, and that of furrow progression, can be mimicked by an activated form of armadillo and blocked by a dominant negative form of pangolin/TCF. Placing daughterless under the control of a heterologous promoter blocks the ability of ectopic wingless to inhibit bristle formation and furrow progression. hedgehog and decapentapleigic could not rescue the wingless furrow progression block, indicating that wingless acts downstream of these genes. In contrast, Atonal and Scute, which are thought to heterodimerize with Daughterless to promote furrow progression and bristle formation, respectively, can block ectopic wingless action. These results are summarized in a model where daughterless is a major, but probably not the only, target of wingless action in the eye.  相似文献   

14.
Cellular interactions in the developing Drosophila eye   总被引:11,自引:0,他引:11  
  相似文献   

15.
The homeobox-gene rough is required in photoreceptor cells R2 and R5 for normal ommatidial assembly in the developing Drosophila eye. We have used several cell-type-specific markers and double mutant combinations to analyze cell-fate determination in rough. We show that the cells that would normally become R2 and/or R5 express a marker, a lacZ insertion in the seven-up (svp) gene, which is indicative of the R1/3/4/6 cell fate. In addition, the analysis of mitotically induced svp,ro double mutant clones in the eye indicates that in rough all outer photoreceptors are under the genetic control of the svp gene. These results show that, in the absence of rough function, R2 and R5 fail to be correctly determined and appear to be transformed into cells of the R3/4/1/6 subtype. This transformation and the subsequent developmental defects do not preclude the recruitment of R7 cells. However, the presence of ommatidia containing more than one R7 and/or R8 cell in rough implies a complex network of cellular interactions underlying cell-fate determination in the Drosophila retina.  相似文献   

16.
The formation of complex cellular arrays from unpatterned epithelia is a widespread developmental phenomenon. Insights into the mechanisms regulating this transformation have come from studying the development of the Drosophila compound eye. Pattern formation in the eye primordium is a highly ordered process in which the onset of differentiation is coordinated with synchronization of cell cycle progression. Recent studies have identified a number of genes that are required for early patterning events, and provide a link between the regulation of proliferation and pattern formation.  相似文献   

17.
18.
The Epidermal growth factor receptor is an essential gene with diverse pleiotropic roles in development throughout the animal kingdom. Analysis of sequence diversity in 10.9 kb covering the complete coding region and 6.4 kb of potential regulatory regions in a sample of 250 alleles from three populations of Drosophila melanogaster suggests that the intensity of different population genetic forces varies along the locus. A total of 238 independent common SNPs and 20 indel polymorphisms were detected, with just six common replacements affecting >1475 amino acids, four of which are in the short alternate first exon. Sequence diversity is lowest in a 2-kb portion of intron 2, which is also highly conserved in comparison with D. simulans and D. pseudoobscura. Linkage disequilibrium decays to background levels within 500 bp of most sites, so haplotypes are generally restricted to up to 5 polymorphisms. The two North American samples from North Carolina and California have diverged in allele frequency at a handful of individual SNPs, but a Kenyan sample is both more divergent and more polymorphic. The effect of sample size on inference of the roles of population structure, uneven recombination, and weak selection in patterning nucleotide variation in the locus is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号