首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Pseudomonas-like yellow-orange-pigmented non-fluorescent denitrifying strains KMM 235 and KMM 1447T were isolated from marine ascidian specimens and investigated by a polyphasic approach to clarify their taxonomic status. On the basis of 16S rDNA gene sequence data the new isolates clustered with the Pseudomonas stutzeri species group with sequence similarities of >98%. The results of DNA-DNA hybridization and biochemical characterization showed genetic and phenotypic distinction between strains KMM 235 and KMM 1447T and from the other validly described Pseudomonas species. Strain KMM 235 was found to be closely related to the type strain of Pseudomonas stutzeri in their phenotypic and genetic characteristics and represented, probably, a new P. stutzeri genomovar. It is proposed that strain KMM 1447T be classified as a new species of the genus Pseudomonas, Pseudomonas xanthomarina sp. nov., with the type strain KMM 1447T (=JCM 12468T=NRIC 0617T=CCUG 46543T).  相似文献   

2.
Pseudomonas stutzeri OX1 meta pathway genes for toluene and o-xylene catabolism were analyzed, and loci encoding phenol hydroxylase, catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde dehydrogenase, and 2-hydroxymuconate semialdehyde hydrolase were mapped. Phenol hydroxylase converted a broad range of substrates, as it was also able to transform the nongrowth substrates 2,4-dimethylphenol and 2,5-dimethylphenol into 3,5-dimethylcatechol and 3,6-dimethylcatechol, respectively, which, however, were not cleaved by catechol 2,3-dioxygenase. The identified gene cluster displayed a gene order similar to that of the Pseudomonas sp. strain CF600 dmp operon for phenol catabolism and was found to be coregulated by the tou operon activator TouR. A hypothesis about the evolution of the toluene and o-xylene catabolic pathway in P. stutzeri OX1 is discussed.  相似文献   

3.
Three Pseudomonas strains were tested for the ability to sense and respond to nitrobenzoate and aminobenzoate isomers in chemotaxis assays. Pseudomonas putida PRS2000, a strain that grows on benzoate and 4-hydroxybenzoate by using the beta-ketoadipate pathway, has a well-characterized beta-ketoadipate-inducible chemotactic response to aromatic acids. PRS2000 was chemotactic to 3- and 4-nitrobenzoate and all three isomers of aminobenzoate when grown under conditions that induce the benzoate chemotactic response. P. putida TW3 and Pseudomonas sp. strain 4NT grow on 4-nitrotoluene and 4-nitrobenzoate by using the ortho (beta-ketoadipate) and meta pathways, respectively, to complete the degradation of protocatechuate derived from 4-nitrotoluene and 4-nitrobenzoate. However, based on results of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase assays, both strains were found to use the beta-ketoadipate pathway for the degradation of benzoate. Both strains were chemotactic to benzoate, 3- and 4-nitrobenzoate, and all three aminobenzoate isomers after growth with benzoate but not succinate. Strain TW3 was chemotactic to the same set of aromatic compounds after growth with 4-nitrotoluene or 4-nitrobenzoate. In contrast, strain 4NT did not respond to any aromatic acids when grown with 4-nitrotoluene or 4-nitrobenzoate, apparently because these substrates are not metabolized to the inducer (beta-ketoadipate) of the chemotaxis system. The results suggest that strains TW3 and 4NT have a beta-ketoadipate-inducible chemotaxis system that responds to a wide range of aromatic acids and is quite similar to that present in PRS2000. The broad specificity of this chemotaxis system works as an advantage in strains TW3 and 4NT because it functions to detect diverse carbon sources, including 4-nitrobenzoate.  相似文献   

4.
Pseudomonas vesicularis and Staphylococcus sciuri were isolated as dominant strains from phenol-acclimated activated sludge. P. vesicularis was an efficient degrader of phenol, catechol, p-cresol, sodium benzoate and sodium salicylate in a single substrate system. Under similar conditions S. sciuri degraded only phenol and catechol from among aromatic compounds that were tested. Cell-free extracts of P. vesicularis grown on phenol (376 mg l(-1)), sodium benzoate (576 mg l(-1)) and sodium salicylate (640 mg l(-1)) showed catechol 2,3-dioxygenase activity initiating an extradiol (meta) splitting pathway. The degradative intradiol (ortho) pathway as a result of catechol 1,2-dioxygenase synthesis was induced in P. vesicularis cells grown on catechol (440 mg l(-1)) orp-cresol (432 mg l(-1)). Catechol 1,2-dioxygenase and the ortho-cleavage has been also reported in S. sciuri cells capable of degrading phenol (376 mg l(-1)) or catechol (440 mg l(-1)). In cell-free extracts of S. sciuri no meta-cleavage enzyme activity was detected. These results demonstrated that gram-positive S. sciuri strain was able to effectively metabolize some phenols as do many bacteria of the genus Pseudomonas but have a different capacity for degrading of these compounds.  相似文献   

5.
Xiao Y  Zhang JJ  Liu H  Zhou NY 《Journal of bacteriology》2007,189(18):6587-6593
Alcaligenes sp. strain NyZ215 was isolated for its ability to grow on ortho-nitrophenol (ONP) as the sole source of carbon, nitrogen, and energy and was shown to degrade ONP via a catechol ortho-cleavage pathway. A 10,152-bp DNA fragment extending from a conserved region of the catechol 1,2-dioxygenase gene was obtained by genome walking. Of seven complete open reading frames deduced from this fragment, three (onpABC) have been shown to encode the enzymes involved in the initial reactions of ONP catabolism in this strain. OnpA, which shares 26% identity with salicylate 1-monooxygenase of Pseudomonas stutzeri AN10, is an ONP 2-monooxygenase (EC 1.14.13.31) which converts ONP to catechol in the presence of NADPH, with concomitant nitrite release. OnpC is a catechol 1,2-dioxygenase catalyzing the oxidation of catechol to cis,cis-muconic acid. OnpB exhibits 54% identity with the reductase subunit of vanillate O-demethylase in Pseudomonas fluorescens BF13. OnpAB (but not OnpA alone) conferred on the catechol utilizer Pseudomonas putida PaW340 the ability to grow on ONP. This suggests that OnpB may also be involved in ONP degradation in vivo as an o-benzoquinone reductase converting o-benzoquinone to catechol. This is analogous to the reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone by a tetrachlorobenzoquinone reductase (PcpD, 38% identity with OnpB) in the pentachlorophenol degrader Sphingobium chlorophenolicum ATCC 39723.  相似文献   

6.
This study aimed to characterization of catechol 1,2-dioxygenase from a Gram-negative bacterium, being able to utilize a wide spectrum of aromatic substrates as a sole carbon and energy source. Strain designated as N6, was isolated from the activated sludge samples of a sewage treatment plant at Bentwood Furniture Factory Jasienica, Poland. Morphology, physio-biochemical characteristics and phylogenetic analysis based on 16S rDNA sequence indicate that strain belongs to Pseudomonas putida. When cells of strain N6 grown on protocatechuate or 4-hydroxybenzoic acid mainly protocatechuate 3,4-dioxygenase was induced. The activity of catechol 1,2-dioxygenase was rather small. The cells grown on benzoic acid, catechol or phenol showed high activity of only catechol 1,2-dioxygenase. This enzyme was optimally active at 35 °C and pH 7.4. Kinetic studies showed that the value of Km and Vmax was 85.19 ??M and 14.54 ??M min−1 respectively. Nucleotide sequence of gene encoding catechol 1,2-dioxygenase in strain N6 has 100% identity with catA genes from two P. putida strains. The deduced 301-residue sequence of enzyme corresponds to a protein of molecular mass 33.1 kDa. The deduced molecular structure of the catechol 1,2-dioxygenase from P. putida N6 was very similar and characteristic for the other intradiol dioxygenases.  相似文献   

7.
Three strains of Gram-negative bacteria designated strains H2(T), H6, and H7 were isolated from bioreactors that degraded the herbicide hexazinone. Similar morphological characteristics, cellular fatty acid profiles, and 16S rRNA gene sequences show that the isolates are members of the same species. These characteristics also show that the isolates belong to the genus Pseudomonas with P. graminis, P. putida, and P. stutzeri as close relatives. The 16S rRNA gene of the H2(T) strain differed from that of type strains for P. graminis, P. putida, and P. stutzeri by 1.9, 2.5, and 2.7 %, respectively, indicating that the H2(T), H6, and H7 strains are related to P. graminis, P. putida, and P. stutzeri but are different enough to represent a novel species. The G+C content of the three strains averaged 61.2 ± 0.8 mol% which is similar to the values reported for P. graminis (61), P. putida (61.6), and P. stutzeri (62.2-65.5). The major cellular fatty acids present in the H2(T) strain were C(18:1) ω7c/C (18:1) ω6c (34.3 %), C(16:1) ω6c/C(16:1) ω7c (27.4 %), C(16:0) (20.6 %), C(12:0) (7.9 %), C(12:0) 3-OH (4.5 %), and C(10:0) 3-OH (3.1 %). The name Pseudomonas kuykendallii sp. nov. is proposed for these bacteria.  相似文献   

8.
The combined analysis of peptide mass fingerprinting and 2-DE/MS using the induced and selected protein spots following growth of Pseudomonas sp. DU102 on benzoate or p-hydroxybenzoate revealed not only alpha- and beta-subunits of protocatechuate 3,4-dioxygenase but also catechol 1,2-dioxygenase responsible for ortho-pathway through ring-cleavage of aromatic compounds. Toluate 1,2-dioxygenase and p-hydroxybenzoate hydroxylase were also identified. Purification of intradiol dioxygenases such as catechol 1,2-dioxygenase and protocatechuate 3,4-dioxygenase from the benzoate or p-hydroxybenzoate culture makes it possible to trace the biodegradation pathway of strain DU102 for monocyclic aromatic hydrocarbons. Interestingly, vanillin-induced protocatechuate 3,4-dioxygenase was identical in amino acid sequences with protocatechuate 3,4-dioxygenase from p-hydroxybenzoate.  相似文献   

9.
Pseudomonas testosteroni protocatechuate 4,5-dioxygenase and Pseudomonas putida catechol 2,3-dioxygenase (metapyrocatechase) catalyze extradiol-type oxygenolytic cleavage of the aromatic ring of their substrates. The essential active site Fe2+ of each enzyme binds nitric oxide (NO) to produce an EPR active complex with an electronic spin of S = 3/2. Hyperfine broadening of the EPR resonances of the nitrosyl complexes by 17O-enriched H2O shows that water is bound directly to the Fe2+ in the native enzymes, but is apparently displaced in substrate complexes. NO is not displaced by either substrates or inhibitors. The EPR spectra of several enzyme-inhibitor-NO complexes are different from those of enzyme-NO or enzyme-substrate-NO complexes and are found to be broadened by 17O-enriched water. The data show that at least 2 and perhaps 3 sites in the Fe ligation can be occupied by exogenous ligands. Furthermore, it is likely that substrates and inhibitors displace water by binding either at or near to the Fe in the nitrosyl complex. Nitric oxide binding is found to be substrate-dependent for each enzyme. Native catechol 2,3-dioxygenase exhibits KD values of 190 microM and 2.0 mM for NO binding in two types of independent sites. Only one type of site is observed in the catechol complex which exhibits a KD for NO of 3.4 microM. One type of NO binding site is observed for both the native and substrate complexed protocatechuate 4,5-dioxygenase with KD values of 360 and 3 microM, respectively. The presence of a specific site in the Fe coordination for NO which is modified in the substrate complex, suggests that O2 binding by the extradiol dioxygenases may also occur at the Fe.  相似文献   

10.
Eighteen 4-t-octylphenol-degrading bacteria were isolated and screened for the presence of degradative genes by polymerase chain reaction method using four designed primer sets. The primer sets were designed to amplify specific fragments from multicomponent phenol hydroxylase, single component monooxygenase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase genes. Seventeen of the 18 isolates exhibited the presence of a 232 bp amplicon that shared 61-92% identity to known multicomponent phenol hydroxylase gene sequences from short and/or medium-chain alkylphenol-degrading strains. Twelve of the 18 isolates were positive for a 324 bp region that exhibited 78-95% identity to the closest published catechol 1,2-dioxygenase gene sequences. The two strains, Pseudomonas putida TX2 and Pseudomonas sp. TX1, contained catechol 1,2-dioxygenase genes also have catechol 2,3-dioxygenase genes. Our result revealed that most of the isolated bacteria are able to degrade long-chain alkylphenols via multicomponent phenol hydroxylase and the ortho-cleavage pathway.  相似文献   

11.
Here we report the complete genome sequence of Pseudomonas stutzeri strain CGMCC 1.1803 (equivalent to ATCC 17588), the type strain of P. stutzeri, which encodes 4,138 open reading frames on a 4,547,930-bp circular chromosome. The CGMCC 1.1803 genome contains genes involved in denitrification, benzoate/catechol degradation, chemotaxis, and other functions.  相似文献   

12.
Ten different Pseudomonas strains isolated from contaminated soils were tested for expression of active dioxygenases. Of these, two different clusters, related to strain origin were observed. The first included two P. fluorescens strains and two P. aeruginosa strains isolated from soils polluted with polyaromatic hydrocarbons and the second two P. cepacia strains and four P. chlororaphis strains from soils with polyphenols. All the isolates showed catechol 1,2-dioxygenase basal activity, while other dioxygenases (catechol 2,3-dioxygenase, protocatechuate 2,3-, 3,4- and 4,5-dioxygenases) were detected only after growth in the presence of suitable inducers (benzoate, catechol, salicylate, phenol). Significant induction of catechol 1,2-dioxygenase, the major activity of the tested strains, was also observed when combining starvation with the presence of high molecular weight aromatic hydrocarbons with recalcitrant structures (fluoranthene, chrysene, benzanthracene, pyrene).  相似文献   

13.
Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.  相似文献   

14.
Pseudomonas sp. strain JS6 grows on a wide range of chloro- and methylaromatic substrates. The simultaneous degradation of these compounds is prevented in most previously studied isolates because the catabolic pathways are incompatible. The purpose of this study was to determine whether strain JS6 could degrade mixtures of chloro- and methyl-substituted aromatic compounds. Strain JS6 was maintained in a chemostat on a minimal medium with toluene or chlorobenzene as the sole carbon source, supplied via a syringe pump. Strain JS6 contained an active catechol 2,3-dioxygenase when grown in the presence of chloroaromatic compounds; however, in cell extracts, this enzyme was strongly inhibited by 3-chlorocatechol. When cells grown to steady state on toluene were exposed to 50% toluene-50% chlorobenzene, 3-chlorocatechol and 3-methylcatechol accumulated in the medium and the cell density decreased. After 3 h, the enzyme activities of the modified ortho ring fission pathway were induced, the metabolites disappeared, and the cell density returned to previous levels. In cell extracts, 3-methylcatechol was degraded by both catechol 1,2- and catechol 2,3-dioxygenase. Strain JS62, a catechol 2,3-dioxygenase mutant of JS6, grew on toluene, and ring cleavage of 3-methylcatechol was catalyzed by catechol 1,2-dioxygenase. The transient metabolite 2-methyllactone was identified in chlorobenzene-grown JS6 cultures exposed to toluene. These results indicate that strain JS6 can degrade mixtures of chloro- and methylaromatic compounds by means of a modified ortho ring fission pathway.  相似文献   

15.
Spontaneous alginate-producing (muc) variants were isolated from strains of Pseudomonas fluorescens, P. putida and P. mendocina at a frequency of 1 in 10(8) by selecting for carbenicillin resistance. The infrared spectrum of the bacterial exopolysaccharide was typical of an acetylated alginate similar to that previously described in Azotobacter vinelandii and in mucoid variants of P. aeruginosa. Mucoid variants were not isolated from P. stutzeri, P. pseudoalcaligenes, P. testosteroni, P. diminuta, P. acidovorans, P. cepacia or P. maltophilia.  相似文献   

16.
R Bosch  E García-Valdés  E R Moore 《Gene》1999,236(1):149-157
Pseudomonas stutzeri strain AN10 is a naphthalene-degrading strain whose dissimilatory genes are chromosomally encoded. We sequenced a total of 11514bp including the entire naphthalene-degradation upper pathway (nah) of P. stutzeri AN10. Nine open reading frames, nahAaAbAcAdBFCED, encoding the enzymes for the degradation of naphthalene to salicylate, were identified. The nah genes of P. stutzeri AN10 have been compared with genes encoding isofunctional proteins from other Pseudomonas naphthalene-degradation upper pathways. The implications of the sequence homologies to the evolution of aromatic catabolic pathways are discussed. Our findings indicate that this entire catabolic module of P. stutzeri AN10 was recruited from other microorganisms and a short period of time has elapsed after its incorporation within the P. stutzeri AN10 genome. Comparisons also suggest the coexistence of two entire nah upper pathways in a host strain, and further recombination between them. These events could accelerate the evolution of modern catabolic pathways.  相似文献   

17.
18.
Plasmid-carrying Pseudomonas putida strains degrade naphthalene through different biochemical pathways. The influence of various combinations of host bacteria and plasmids on growth characteristics and competitiveness of P. putida strains was studied in chemostat culture at a low dilution rate (D=0.05 h−1) with naphthalene as the sole source of carbon and energy. Under naphthalene limitation, the plasmid-bearing strains degrading naphthalene that use catechol 1,2-dioxygenase for catechol oxidation (ortho pathway), were the most competitive. The strains bearing plasmids that control naphthalene catabolism via catechol 2,3-dioxygenase (meta pathway), were less competitive. Under these conditions the strain carrying plasmid pBS4, which encodes for naphthalene catabolism via gentisic acid, was the least competitive. Received: 24 February 1997 / Received revision: 22 May 1997 / Accepted: 25 May 1997  相似文献   

19.
The intermediate and terminal products of cyanide and thiocyanate decomposition by individual strains of the genus Pseudomonas, P. putida strain 21 and P. stutzeri strain 18, and by their association were analyzed. The activity of the enzymes of nitrogen and sulfur metabolism in these strains was compared with that of the collection strains P. putida VKM B-2187T and P. stutzeri VKM B-975T. Upon the introduction of CN- and SCN- into cell suspensions of strains 18 and 21 in phosphate buffer (pH 8.8), the production of NH4+ was observed. Due to the high rate of their utilization, NH3, NH4+, and CNO- were absent from the culture liquids of P. putida strain 21 and P. stutzeri strain 18 grown with CN- or SCN-. Both Pseudomonas strains decomposed SCN- via cyanate production. The cyanase activity was 0.75 micromol/(min mg protein) for P. putida strain 21 and 1.26 micromol/(min mg protein) for P. stutzeri strain 18. The cyanase activity was present in the cells grown with SCN- but absent in cells grown with NH4+. Strain 21 of P. putida was a more active CN- decomposer than strain 18 of P. stutzeri. Ammonium and CO2 were the terminal nitrogen and carbon products of CN- and SCN- decomposition. The terminal sulfur products of SCN- decomposition by P. stutzeri strain 18 and P. putida strain 21 were thiosulfate and tetrathionate, respectively. The strains utilized the toxic compounds in the anabolism only, as sources of nitrogen (CN- and SCN-) and sulfur (SCN-). The pathway of thiocyanate decomposition by the association of bacteria of the genus Pseudomonas is proposed based on the results obtained.  相似文献   

20.
Of a 49-strain collection of Pseudomonas stutzeri species, 11 isolates were able to degrade naphthalene and 1 isolate was able to use m- and p-toluate as sole carbon and energy sources. Of these 12 strains, 10 shared a highly homologous set of naphthalene catabolic genes, even though they belong to four different genomovars. These genes differed from those present in plasmid NAH7. In only one of these degraders could a plasmid-encoded pathway be demonstrated, and a chromosome-encoded pathway is proposed for the remaining strains. meta cleavage of catechol was only observed in those strains able to metabolize alkyl derivatives of catechol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号