首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase.  相似文献   

2.
6-carboxy-eosin is introduced as a sensitive, non-covalently bound fluorescent probe for monitoring conformational changes in detergent-solubilized Na,K-ATPase. The dissociation constant for 6-carboxy-eosin is about 0.1 microM in 20 mM NaCl at 6 degrees C (pH 7.0) for Na,K-ATPase solubilized in C12E8. It is shown that the slow conformational change from E2 (in K+) to E1 (in Na+) is 4-fold more rapid in the solubilized state than in the membrane-bound state, both for shark rectal gland and pig kidney Na,K-ATPase. The rate of the E1 to E2 transition is rapid and of the same order of magnitude both for the membrane-bound and the solubilized enzyme. All conformational transitions are considerably slower for pig kidney enzyme than for shark enzyme, both in the membrane-bound and in the solubilized state.  相似文献   

3.
A method for the isolation of membrane-bound Na,K-ATPase in quantity from brain gray matter is described. The method permits a large amount of enzyme to be obtained rather quickly with about 60% of the original activity of Na,K-ATPase of the tissue being recovered. The enzyme is stable, it has a specific activity of about 200 μmoles ATP split per mg protein per hour. Mg-ATPase comprises about 1% of the total ATPase activity. The enzymatic properties of this Na,K-ATPase do not differ from those in the literature; the turnover number is about 9300 min?1.  相似文献   

4.
The structure of two-dimensional crystals of membrane-bound Na,K-ATPase from rabbit kidney has been analyzed with a correlation averaging procedure. Two principally different crystal forms are observed with p1 and p21 symmetry, respectively. In the p1 form the averaged projection structure shows a triangular shaped protein domain interpreted as a protomer (alpha beta-unit) of Na,K-ATPase. In the p21-form the stain-deficient area is extended toward a twofold symmetry axis. The results are in good agreement with a previous analysis where Fourier methods were applied to well ordered crystals of pig kidney Na,K-ATPase and illustrate that the correlation averaging procedure can be used for the analysis of membrane crystals of Na,K-ATPase showing curved lattice lines.  相似文献   

5.
A B Chetverin 《FEBS letters》1986,196(1):121-125
Three methods were used to assess protein concentration in membrane-bound Na,K-ATPase preparations: standard Lowry assay, Kjeldahl nitrogen determination and amino acid analysis. While the first two methods showed excellent agreement, the third one always gave a lower value which varied drastically depending on the condition of sample treatment before amino acid analysis. This result reinforces the Lowry method in assessing the true concentration of Na,K-ATPase protein and suggests 250 kDa to be a true estimate of the molecular mass of the smallest ligand-binding unit of the enzyme. The cyanate method reveals two NH2-terminal residues of the beta-subunit (NH2-Ala) and one such residue of the alpha-subunit (NH2-Gly) per ligand-binding unit. From the data on equimolarity of the alpha- and beta-subunits in Na,K-ATPase this suggests that the enzyme molecule is composed of two alpha beta-protomers, one possessing a modified (presumably an N-blocked) alpha-subunit.  相似文献   

6.
Differences in the kinetic behavior and properties of monomeric and oligomeric forms of membrane-bound Na/K-ATPase are analyzed. It is concluded that enzyme molecules within oligomeric complexes are affected by extrinsic signals that result in change of enzyme activity, whereas the individual (protomeric) state is insensitive to these signals. Some of the major factors of such regulation are microviscosity of the lipid environment, reactive oxygen species, and intracellular protein kinases.  相似文献   

7.
In this work, we examined occlusion of 22Na+ and 86Rb+ in membranous and detergent-solubilized Na,K-ATPase from outer renal medulla. Optimum conditions for occlusion of 22Na+ were provided by formation of the phosphorylated complex from the beta,gamma-bidentate complex of chromium (III) with ATP (CrATP). Release of occluded cations occurred at equally slow rates in soluble and membrane-bound Na,K-ATPase. Values of 22Na+ occlusion as high as 11 nmol/mg of protein were measured, corresponding to 1.8-2.7 mol of Na+/mol of phosphorylated Na,K-ATPase as determined by 32P incorporation from [gamma-32P]CrATP. Maximum capacity for phosphorylation from [gamma-32P]CrATP was 6 nmol/mg of protein and equal to capacities for binding of [48V]vanadate and [3H]ouabain. The stoichiometry for occlusion of Rb+ was close to 2 Rb+ ions/phosphorylation site. In an analytical ultracentrifuge, the soluble Na+- or Rb+-occluded complexes showed sedimentation velocities (S20,w = 6.8-7.4) consistent with monomeric alpha beta-units. The data show that soluble monomeric alpha beta-units of Na,K-ATPase can occlude Rb+ or Na+ with the same stoichiometry as the membrane-bound enzyme. The structural basis for occlusion of cations in Na,K-ATPase is suggested to be the formation of a cavity inside a monomeric alpha beta-unit constituting the minimum protein unit required for active Na,K-transport.  相似文献   

8.
The membrane-bound cation-transporting P-type Na,K-ATPase isolated from pig kidney membranes is much more resistant towards thermal inactivation than the almost identical membrane-bound Na,K-ATPase isolated from shark rectal gland membranes. The loss of enzymatic activity is correlated well with changes in protein structure as determined using synchrotron radiation circular dichroism (SRCD) spectroscopy. The enzymatic activity is lost at a 12°C higher temperature for pig enzyme than for shark enzyme, and the major changes in protein secondary structure also occur at T(m)'s that are ~10-15°C higher for the pig than for the shark enzyme. The temperature optimum for the rate of hydrolysis of ATP is about 42°C for shark and about 57°C for pig, both of which are close to the temperatures for onset of thermal unfolding. These results suggest that the active site region may be amongst the earliest parts of the structure to unfold. Detergent-solubilized Na,K-ATPases from the two sources show the similar differences in thermal stability as the membrane-bound species, but inactivation occurs at a lower temperature for both, and may reflect the stabilizing effect of a bilayer versus a micellar environment.  相似文献   

9.
Membrane-bound and dodecyloctaoxyethyleneglycol monoether-solubilized Na,K-ATPases from pig kidney were covalently attached to microtiter plate wells pretreated with p-benzoquinone (plus collodion for some plates). The immobilized enzymes were detected with the mouse monoclonal antibody (named 38) specific to Na,K-ATPase and a perioxidase-conjugated rabbit IgG anti-mouse IgG. When the two Na,K-ATPase preparations were applied to each well at the same protein concentration, the color intensity of the peroxidase reaction for determination of antibody was two to three times stronger with the solubilized enzyme than with the membrane-bound enzyme. Similar titer values were obtained from the graphical analysis of titration curves of both enzymes. Red cell membrane proteins as well as Na,K-ATPase were covalently attached to the plastic. p-Benzoquinone should be generally useful for coupling membrane proteins, even in detergent solutions, to microtiter plate wells.  相似文献   

10.
Infrared spectroscopy in the amide I region of purified membrane-bound Na,K-ATPase preparation shows that Na+- and K+-bound forms of the enzyme have almost the same secondary structure. No difference is detected in the beta-structure (pleated sheets) content. This is contrary to the statement of the recent paper (Gresalfi, T. J., and Wallace, B. A. (1984) J. Biol. Chem. 259, 2622-2628) where a similar preparation was examined by circular dichroism spectroscopy and it was claimed that net 7% of protein peptide groups undergo a beta-sheet to alpha-helix conformational change upon Na,K-ATPase conversion from the K+ to the Na+ form. The discrepancy of the results is most likely caused by the particulate nature of the enzyme preparations used that could lead to optical artifacts in CD but not in IR measurements. A thorough comparison of IR spectra of these enzyme forms has revealed a very minor spectral difference which could suggest conformational perturbations, if any, of a much lower scale and another type than that claimed by Gresalfi and Wallace. The K+ form tends to absorb slightly more in the region of the alpha-helix band. This could reflect some distortion or a transition to a random coil structure of a small fraction of alpha-helical segments (less than or equal to 2% protein peptide groups) upon the enzyme conversion from the K+ to the Na+ form.  相似文献   

11.
Highly purified membrane-bound Na,K-ATPase from pig kidney outer medulla was dissolved in the non-ionic detergent C12E8. Chromatography of the dissolved material on a DEAE matrix yielded enzymatical material having a ouabain-binding capacity of 6.9 nmoles per mg protein (measured according to Lowry et al., with bovine serum albumin as standard). This material, which after addition of lipids had the same K+-phosphatase turnover as the membrane-bound enzyme, could consist entirely of live molecules with a molecular weight of 145 kDa, a value close to that expected for αβ-protomers of Na,K-ATPase.  相似文献   

12.
Abstract

Recently, Na, K-ATPase isoforms with differential affinities for digitalis have been identified that may contribute to different toxicity profiles. Our objectives were to localize them and to define tissue receptor patterns by examining the effect of different glycosides on the Na, K-ATPase activity. The digitalis derivatives used exhibit variation in lipophilicity and rate of enzyme inhibition. Membrane fractions enriched in Na, K-ATPase were prepared from canine heart, brain, aorta and peripheral nerves. The inhibition of enzyme activities indicates a pattern of differential sensitivities with IC50 values starting from 3 nM in heart and 30 nM in brain. Therefore, high and low affinity active forms of the Na, K-ATPase enzyme coexist in these tissues. The data also suggest the existence of two Na, K-ATPase isoforms in aorta and peripheral nerves as identified by the action of digitoxigenin and LND 796 where the predominant expression is that of a high affinity form. The comparison of the patterns of digitalis sensitivities in these different tissues, suggests a more complex molecular interaction than that which can be explained by the presence of only two forms.  相似文献   

13.
Fatty acids are known as modulators of the vasoactive properties of the vessel wall and can influence the physical and functional properties of cell membrane. The membrane-bound enzyme Na,K-ATPase plays a central role in endothelial function such as vasoconstriction. In a previous study, we have shown that omega3 fatty acids inhibited Na,K-ATPase activity in human endothelial cells. As Mediterranean diet is known to protect from cardiovascular diseases, we have investigated the effects of Omegacoeur, a Mediterranean nutritional complement consisting of omega3, omega6, omega9 fatty acids, garlic and basil, on Na,K-ATPase activity in human endothelial cells (HUVECs). Cells were incubated for 18 hr with pure lecithin liposomes or Omegacoeur-enriched emulsions (4 mg lecithin/ml). Na,K-ATPase and 5'-nucleotidase activities were determined using coupled assay methods on microsomal fractions obtained from HUVECs. Cell fatty acid composition was evaluated by gas chromatography after extraction of lipids and fatty acids methylation. The results showed that Omegacoeur (0.1 mM) increased Na,K-ATPase activity by 40% without changes in 5'-nucleotidase activity. Cells incubated with Omegacoeur preferentially incorporated linoleic acid. Therefore, linoleic acid or others constituents of Omegacoeur could be responsible of the stimulation of the Na,K-ATPase activity that might be related to changes in endothelial membrane fluidity.  相似文献   

14.
Reconstitution of purified rabbit kidney Na,K-ATPase in phosphatidylcholine/phosphatidic acid liposomes resulted in the absence of ATP in a time-, temperature- and protein-dependent formation of inorganic phosphate. This formation of inorganic phosphate could be attributed to a phosphatidate phosphohydrolase activity present in the Na,K-ATPase preparation. A close interaction of the enzyme with the substrate phosphatidic acid was important, since no or little Pi production was observed under any of the following conditions: without reconstitution, after reconstitution in the absence of phosphatidic acid, with low concentrations of detergent or at low lipid/protein ratios. The hydrolysis of phosphatidic acid was not influenced by the Na,K-ATPase inhibitor ouabain but was completely inhibited by the P-type ATPase inhibitor vanadate. Besides Pi diacylglycerol was also formed, confirming that a phosphatidate hydrolase activity was involved. Since the phosphatidate phosphohydrolase activity was rather heat- and N-ethylmaleimide-insensitive, we conclude that the phosphatidic acid hydrolysis was not due to Na,K-ATPase itself but to a membrane-bound phosphatidate phosphohydrolase, present as an impurity in the purified rabbit kidney Na,K-ATPase preparations.  相似文献   

15.
The thermal stability of Na,K-ATPase from pig kidney is markedly greater than that of Na,K-ATPase from shark salt glands. The role of the lipid bilayer is studied by solubilisation of the membrane-bound enzyme in the nonionic detergent octaethyleneglycoldodecylmonoether (C12E8), addition of excess dioleylphosphatidylcholine (DOPC) or palmitoyloleylphosphatidylcholine (POPC) and reconstitution of membranes by removal of detergent. At 54 °C the reconstituted enzymatically active pig enzyme retains a high thermal stability, and reconstituted shark enzyme retains a low thermal stability, even with a 9-fold excess of DOPC. This result suggests that the origin of the difference in thermal stability is not related to bulk lipid properties of the native membranes.  相似文献   

16.
The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K(+)·P(i) with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na(+), after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na(+) demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway.  相似文献   

17.
Sodium, potassium adenosine triphosphatase (Na,K-ATPase) is a membrane-bound enzyme that maintains the Na(+) and K(+) gradients used in the nervous system for generation and transmission of bioelectricity. Recently, its activity has also been demonstrated during nerve regeneration. The present study was undertaken to investigate the ultrastructural localization and distribution of Na,K-ATPase in peripheral nerve fibers. Small blocks of the sciatic nerves of male Wistar rats weighing 250-300g were excised, divided into two groups, and incubated with and without substrate, the para-nitrophenyl phosphate (pNPP). The material was processed for transmission electron microscopy, and the ultra-thin sections were examined in a Philips CM 100 electron microscope. The deposits of reaction product were localized mainly on the axolemma, on axoplasmic profiles, and irregularly dispersed on the myelin sheath, but not in the unmyelinated axons. In the axonal membrane, the precipitates were regularly distributed on the cytoplasmic side. These results together with published data warrant further studies for the diagnosis and treatment of neuropathies with compromised Na,K-ATPase activity.  相似文献   

18.
The reasons for differences in the Na,K-ATPase activity in rat erythrocyte ghosts obtained by hypoosmotic hemolysis in 10 mM Tris-HCl buffer pH 7.6 in the absence ("Tris-ghosts") and presence ("EDTA-ghosts") were investigated. Structurally different detergents (Triton X-100, Tween-20 and sodium deoxycholate) taken at optimal concentrations increased the enzyme activity in a similar way, i. e., 4-fold in "Tris-ghost" and by 30% in "EDTA-ghosts", the absolute activity of Na,K-ATPase in both preparations being levelled out. In the absence of EDTA, only 50-60% of the maximal enzyme activity could be revealed. Thus, in non-nuclear erythrocyte ghosts the maximal Na,K-ATPase activity can be revealed only upon a combined use of a detergent and chelator. It is concluded that the activating effect of the detergents consisting in the increase of the membrane permeability is realized on the outer surface of the membrane, whereas that of EDTA is localized on its inner surface, which is probably due to the disintegration of the cytoskeleton as a result of attachment of membrane-bound Ca2+.  相似文献   

19.
The brain contains two molecular forms of Na,K-ATPase designated alpha found in non-neuronal cells and neuronal soma and alpha + found in axolemma. Previously we have shown that the abundance of both forms (determined by immunoblots) as well as Na,K-ATPase activity increases 10-fold between 4 days before and 20 days after birth (Schmitt, C. A., and McDonough, A. A. (1986) J. Biol. Chem. 261, 10439-10444). Hypothyroidism in neonates blunts these increases. Neonatal, but not adult brain Na,K-ATPase is thyroid hormone (triiodothyronine, T3) responsive. This study defines the period during which brain Na,K-ATPase responds to T3. The start of the critical period was defined by comparing Na,K-ATPase activity and alpha and alpha + abundance in hypothyroid and euthyroid neonates (birth to 30 days of age). For all parameters, euthyroid was significantly higher by 15 days of age. The end of the critical period was defined by dosing hypothyroid neonates with T3 daily (0.1 micrograms/g body weight) beginning at increasing days of age, and sacrificing all at 30 days then assaying enzyme activity and abundance. Those starting T3 treatment on or before day 19 were restored to euthyroid levels of Na,K-ATPase activity and abundance, while those starting T3 treatment on or after day 22 remained at hypothyroid levels of enzyme activity and abundance. We conclude that brain Na,K-ATPase alpha and alpha + isoforms are sensitive to T3 by as late as 15 days of age and that the period of thyroid hormone responsiveness is over by 22 days.  相似文献   

20.
Catecholamines stimulate Na,K-ATPase activity in the microsomal membranes of the brain and brown adipose tissue. This stimulation is apparent in the absence of soluble, cytosolic inhibitors and exhibits the same characteristics in both tissues: it occurs at high concentrations (10(-6)-10(-4) M) only; there is no difference in potency between isoprenaline, norepinephrine and epinephrine (EC50 = 1-2 X 10(-5) M); the D-stereoisomer of isoprenaline is equally as effective as the L-form; stimulation of Na,K-ATPase may also be achieved by the metal chelators EDTA, EGTA and desferal; the hydrophobic beta-blockers, propranolol and alprenolol, inhibit both the norepinephrine-stimulated and basal levels of enzyme activity at concentrations of 10(-5)-10(-3) M; phenoxybenzamine, an irreversible alpha-adrenergic blocker, inhibits basal Na,K-ATPase as well as norepinephrine-stimulated enzyme activity (EC50 = 2.5 X 10(-5) M). Because none of these observations can be related to the properties of the stereospecific adrenergic receptor (alpha or beta), it may be concluded that the catecholamine-Na,K-ATPase interaction is not mediated by the receptor. More probably, catecholamines may antagonize the Na,K-ATPase inhibition caused by some tightly membrane-bound metals (but not vanadium) via the ortho-catechol moiety of the catecholamine molecule. The stimulation of brown fat Na,K-ATPase by catecholamines does not have much relevance to the norepinephrine-stimulated thermogenesis in this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号