首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the mating system and reproductive strategies of an endangered species is critical to the success of captive breeding. The big‐headed turtle (Platysternon megacephalum) is one of the most threatened turtle species in the world. Captive breeding and reintroduction are necessary to re‐establish wild populations of P. megacephalum in some of its historical ranges in China, where the original populations have been extirpated. However, the captive breeding of P. megacephalum is very difficult and this may be due to its mysterious reproductive strategies and special behavior (e.g., aggressive temperament and territoriality). In this study, we achieved successful captive breeding of P. megacephalum by creating a habitat that mimics natural conditions and then investigated its mating system using microsatellite makers. A total of 16 clutches containing 79 eggs of P. megacephalum were collected, and 52 were hatched successfully over two breeding seasons. Of the 15 effective clutches, 6 clutches (40%) exhibited multiple paternity. There was no significant correlation between clutch size and multiple paternity, and no significant difference in hatching success between multiple‐sired and single‐sired clutches. However, there was significant correlation between male body size and the number of offspring, with higher‐ranked males contributing to more clutches. Our results provide the first evidence of multiple paternity and male hierarchy in P. megacephalum. These findings suggest that multiple paternity and male hierarchy should be considered in captive breeding programs for P. megacephalum, and creating a habitat that mimics natural conditions is an effctive way to achieve successful captive breeding and investigate the mating systems of this species.  相似文献   

2.

Within captive management programs for species of conservation concern, understanding the genetic mating system is of fundamental importance, given its role in generating and maintaining genetic diversity and promoting opportunities for sperm competition. If a goal of a conservation program is reintroduction, knowledge of the mating system may also inform prediction models aimed at understanding how genetic diversity may be spatially organized, thus informing decisions regarding where and which individuals should be released to maximize genetic diversity in the wild population. Within captive populations, such information may also influence how animals are maintained in order to promote natural behaviors. Here we investigate the genetic mating system of the Guatemalan beaded lizard, Heloderma charlesbogerti, a member of an entire clade lacking such information. A group of adult male and female H. charlesbogerti co-habited a large outdoor enclosure for five years during the species’ perceived breeding season. Through genomic parentage analysis, 50% of clutches comprising multiple offspring were found to result from multiple paternity, with up to three males siring offspring within single clutches. Both males and females were observed to produce offspring with multiple partners within a given year. As such, within this captive environment, where opportunities existed for mating with multiple partners, the genetic mating system was found to be highly polygamous, with multiple paternity common within clutches. These findings are novel for the family Helodermatidae, and the results have broader implications about how reproductive opportunities should be managed within captive conservation programs.

  相似文献   

3.
Sperm competition appears to be an important aspect of any mating system in which individual female organisms mate with multiple males and store sperm. Post-copulatory sexual selection may be particularly important in species that store sperm throughout long breeding seasons, because the lengthy storage period may permit extensive interactions among rival sperm. Few studies have addressed the potential for sperm competition in species exhibiting prolonged sperm storage. We used microsatellite markers to examine offspring paternity in field-collected clutches of the Ocoee salamander (Desmognathus ocoee), a species in which female organisms store sperm for up to 9 months prior to fertilization. We found that 96% of clutches were sired by multiple males, but that the majority of females used sperm from only two or three males to fertilize their eggs. The high rate of multiple mating by females suggests that sperm competition is an important aspect of this mating system. Comparison of our data with those of other parentage studies in salamanders and newts reveals that multiple mating may be common in urodele amphibians. Nevertheless, the number of males siring offspring per clutch in D. ocoee did not differ appreciably from that in other species of urodeles with shorter storage periods.  相似文献   

4.
The leatherback turtle (Dermochelys coriacea) is an endangered species, and world-wide populations are declining. To understand better the mating structure of this pelagic and fragile species, we investigated paternity in nearly 1000 hatchlings from Playa Grande in Parque Marino Nacional Las Baulas, Costa Rica. We collected DNA samples from 36 adult female leatherbacks and assessed allele frequency distributions for three microsatellite loci. For 20 of these 36 females, we examined DNA from hatchlings representing multiple clutches, and in some cases assessed up to four successive clutches from the same female. We inferred paternal alleles by comparing maternal and hatchling genotypes. We could not reject the null hypothesis of single paternity in 12 of 20 families (31 of 50 clutches), but we did reject the null hypothesis in two families (eight of 50 clutches). In the remaining six families, the null hypothesis could not be accepted or rejected with certainty because the number of hatchlings exhibiting extra nonmaternal alleles was small, and could thus be a result of mutation or sample error. Successive clutches laid by the same female had the same paternal allelic contribution, indicating sperm storage or possibly monogamy. None of 20 females shared the same three-locus genotype whereas there were two instances of shared genotypes among 17 inferred paternal three-locus genotypes. We conclude that both polyandry and polygyny are part of the mating structure of this leatherback sea turtle population.  相似文献   

5.
Investigating the mating system of a population provides insight into the evolution of reproductive patterns, and can inform conservation management of threatened or endangered species. Combining behavioural and genetic data is necessary to fully understand the mating system and factors affecting male reproductive success, yet behavioural data are often difficult to collect for threatened species. In the present study, we use behavioural data and paternity analyses to characterize the mating system of a high density population of a long-lived, ancient reptile (tuatara, Sphenodon punctatus ). We further investigate the phenotypic traits (including body size, body condition, tail length, and ectoparasite load) that affect male reproductive success. Our behavioural data reflect a seasonally monogamous system with low levels of polyandry and polygyny that are consistent with male mate guarding. Male reproduction is highly skewed (only 25–30% of males are successful), and body size is the primary predictor of male reproductive success. Based on the genetic data, multiple paternity was found in only 8% of clutches, and the results of the paternity analyses showed monandrous clutches from socially polyandrous females. Our behavioural and genetic results revealed complexities in female mating patterns that support the potential for cryptic female choice or sperm competition. This warrants further experimental investigation into the mechanisms underlying reptile fertilization and the disparities between social and genetic polyandry in wild populations.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 161–170.  相似文献   

6.
I examined multiple mating and its function in female earwigs, Euborellia plebeja (Dermaptera: Anisolabididae). Like other earwigs, females of this species care for their eggs and intermittently lay eggs in clutches (iteroparity). Analysis of two polymorphic allozyme loci revealed that wild-caught adult females laid clutches with low within-brood genetic relatedness (0.210), indicating that females were promiscuous under natural conditions. Rearing experiments in the laboratory revealed that: (1) repeated mating with a single male increased female fecundity (number of clutches laid) and hence the number of hatchlings produced; (2) estimated sperm number was positively correlated with hatchability; (3) when frequency of mating was controlled, polyandry enhanced hatchability, although this effect was not statistically significant; (4) duration of maternal care varied for clutches with low hatchability, and sometimes exceeded the mean interclutch interval. Thus, although a possible benefit of polyandry is suggested, the greater beneficial effect of repeated mating on female fecundity can explain polyandrous mating in this species. Because female earwigs invest considerable effort in brooding their clutches, it may be adaptive to suppress oviposition unless stored sperm ensures high fertility. Copyright 2003 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.   相似文献   

7.
Reproductive biology of the rosylip sculpin, an intertidal spawner   总被引:1,自引:0,他引:1  
Rosylip sculpin Ascelichthys rhodorus spawned in the intertidal during the winter in the north‐eastern Pacific. Large numbers of males typically congregated at spawning sites, where females deposited clutches. The mating system of this species was external fertilization and group spawning at specific oviposition sites under boulders in the intertidal, and no alternative male mating strategies. Males were abundant at sites while oviposition was occurring, and most abandoned the sites as spawning tapered off seasonally despite the presence of developing clutches. Experimental removal of males from sites suggested that males provided some short‐term benefits to clutches, with catastrophic loss of clutches significantly lower when males were present. The large number of males at an oviposition site and histological evidence indicating high sperm production and storage of sperm prior to release suggest a high level of sperm competition in this species. This spawning pattern appears to differ in substantial ways from any other reported fish mating system.  相似文献   

8.
The goal of this study was to assess the consequences of single versus multiple paternity by identifying paternity of clutches per female to identify whether there were detectable costs or benefits. Multiple mating can occur when the benefits of mating outweigh the costs, but if costs and benefits are equal, no pattern is expected. Previous research on loggerhead sea turtle (Caretta caretta) populations found male‐biased breeding sex ratios and multiple mating by many females nesting in southwestern Florida. A sample of nesting loggerhead females who laid more than one nest over the course of the season and a subset of their hatchlings were examined from 36 clutches in 2016 on Sanibel Island, Florida. Males that fathered hatchlings in the first clutch sampled were identified in subsequent clutches. Interestingly, 75% of the females analyzed had mated singly. No male was represented in more than one female's clutches. The results suggest that females likely mate at the beginning of the season and use stored sperm for multiple clutches. Evidence for mating between laying events was limited. There was no consistent pattern across the subsequent multiple paternity clutches, suggesting benefits to loggerhead females likely equal their costs and subsequent mating is likely determined by female preference.  相似文献   

9.
We present the first data collected on the genetic mating system of the hawksbill turtle Eretmochelys imbricata, the only marine turtle not studied to date. We examined paternity within 12 egg clutches from ten female hawksbill turtles from Sabah Turtle Islands, Malaysia. A total of 375 hatchlings were analysed using five microsatellite markers. Results demonstrated that clutches from two out of ten females were sired by multiple males (maximum of two). Although at a low frequency, observation of multiple paternity indicates that hawksbill turtles exhibit the same genetic mating system (polyandry) as observed for other species of marine turtles. Consistent paternity across multiple clutches laid by individual females in one breeding season supports the hypothesis that sperm are stored from mating prior to nesting and are then used to fertilize all subsequent clutches of eggs that season.  相似文献   

10.
The success of a reintroduction program is determined by the ability of individuals to reproduce and thrive. Hence, an understanding of the mating system and breeding strategies of reintroduced species can be critical to the success, evaluation and effective management of reintroduction programs. As one of the most threatened crocodile species in the world, the Orinoco crocodile (Crocodylus intermedius) has been reduced to only a few wild populations in the Llanos of Venezuela and Colombia. One of these populations was founded by reintroduction at Caño Macanillal and La Ramera lagoon within the El Frío Biological Station, Venezuela. Twenty egg clutches of C. intermedius were collected at the El Frío Biological Station for incubation in the lab and release of juveniles after one year. Analyzing 17 polymorphic microsatellite loci from 335 hatchlings we found multiple paternity in C. intermedius, with half of the 20 clutches fathered by two or three males. Sixteen mothers and 14 fathers were inferred by reconstruction of multilocus parental genotypes. Our findings showed skewed paternal contributions to multiple-sired clutches in four of the clutches (40%), leading to an overall unequal contribution of offspring among fathers with six of the 14 inferred males fathering 90% of the total offspring, and three of those six males fathering more than 70% of the total offspring. Our results provide the first evidence of multiple paternity occurring in the Orinoco crocodile and confirm the success of reintroduction efforts of this critically endangered species in the El Frío Biological Station, Venezuela.  相似文献   

11.
Captive breeding is an integral part of many species recovery plans. Knowledge of the genetic mating system is essential for effective management of captive stocks and release groups, and can help to predict patterns of genetic diversity in reintroduced populations. Here we investigate the poorly understood mating system of a threatened, ancient reptile (tuatara) on Little Barrier Island, New Zealand and discuss its impact on the genetic diversity. This biologically significant population was thought to be extinct, due to introduced predators, until 8 adults (4 males, 4 females) were rediscovered in 1991/92. We genotyped these adults and their 121 captively-bred offspring, hatched between 1994 to 2005, at five microsatellite loci. Multiple paternity was found in 18.8% of clutches. Male variance in reproductive success was high with one male dominating mating (77.5% of offspring sired) and one male completely restricted from mating. Little Barrier Island tuatara, although clearly having undergone a demographic bottleneck, are retaining relatively high levels of remnant genetic diversity which may be complemented by the presence of multiple paternity. High variance in reproductive success has decreased the effective size of this population to approximately 4 individuals. Manipulation to equalize founder representation was not successful, and the mating system has thus had a large impact on the genetic diversity of this recovering population. Although population growth has been successful, in the absence of migrants this population is likely at risk of future inbreeding and genetic bottleneck.  相似文献   

12.
Pollinating fig wasps (Hymenoptera, Agaonidae) have been the focus of numerous studies examining sex ratio evolution. Recently, molecular genetic techniques have been introduced that assume single matings in fig wasps, yet their mating biology has not been investigated genetically. We used recently developed microsatellite markers to investigate whether a pollinating fig wasp (Liporrhopalum tentacularis Grandi) produces single or mixed paternity clutches. The clutches of 12 females which had had the opportunity to mate with males of different genotypes were investigated. The results suggest that, at least in this species of fig wasp, single paternity clutches are the norm. Based on our behavioural observations, this appears to be due to mating with a single male rather than sperm competition.  相似文献   

13.
A total of 15 microsatellite primer pairs were developed from the Mountain Log Skink, Pseudemoia entrecasteauxii. Nine were used to screen 46 individuals from four populations, and a representative from P. spenceri and P. pagenstecheri. Seven of the loci exhibited large allele variation (16–30) and high heterozygosity (0.24–0.82), and the three populations were genetically differentiated. The markers were also used to screen 36 clutches of known maternity and identified high levels of multiple paternity clutches (57%). The primers developed will provide useful markers for the study of population biology and mating system of these lizards.  相似文献   

14.
One of the main advantages of self-fertilization is to provide reproductive assurance when pollen or mates are scarce. In plants, partial or facultative selfing limits the risk of pollination failure. In preferentially outcrossing species, this may result in mixed-mating. In hermaphroditic animals, recent studies suggest that mixed mating might be much rarer than in plants. However more studies are required to substantiate this claim, especially focusing on species whose lifestyle entails a high potential benefit of reproductive assurance via selfing. We studied a hermaphroditic snail, Drepanotrema depressissimum, which inhabits very unstable and fragmented freshwater habitats. Individuals often have to recolonize newly refilled ponds after long droughts, a situation of low population density and hence low mate availability in which selfing could be an advantage. We estimated selfing rates in natural populations from Guadeloupe (Lesser Antilles), and used laboratory experiments to characterize the reproductive behaviour and success of individuals with or without mates. We detected no sign of selfing in natural populations. Even when given no other option, isolated individuals were extremely reluctant to self. They produced either no or very small clutches, and in the latter case initiated egg-laying later than non-isolated individuals. Self-fertilized clutches suffered near-total (98%) inbreeding depression at the juvenile stage. The example of D. depressissimum therefore shows that a species can overcome periods of mate shortage and habitat instability without the potential to rely on facultative selfing. We hypothesize that metapopulation persistence in this landscape is probably related to a form of dormancy (aestivation in dry ground) rather than to recolonization by rare immigrants and reproductive assurance.  相似文献   

15.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

16.
Molecular technologies have revolutionized our classification of animal mating systems, yet we still know very little about the genetic mating systems of many vertebrate groups. It is widely believed that anuran amphibians have the highest reproductive diversity of all vertebrates, yet genetic mating systems have been studied in <1% of all described species. Here, we use single nucleotide polymorphisms to quantify the genetic mating system of the terrestrial breeding red‐backed toadlet Pseudophryne coriacea. In this species, breeding is prolonged (approximately 5 months), and males construct subterranean nests in which females deposit eggs. We predicted that females would display extreme sequential polyandry because this mating system has been reported in a closely related species (P. bibronii). Parentage analysis revealed that mating success was heavily skewed towards a subset of males (30.6% of potential sires) and that nearly all females (92.6%) mated with one male. In a high percentage of occupied nests (37.1%), the resident male was not the genetic sire, and very few nests (4.3%) contained clutches with multiple paternity. Unexpectedly, these results show that sequential polyandry is rare. They also show that there is a high frequency of nest takeover and extreme competition between males for nest sites, but that males rarely sneak matings. Genetic analysis also revealed introgressive hybridization between P. coriacea and the red‐crowned toadlet (Pseudophryne australis). Our study demonstrates a high level of mating system complexity, and it shows that closely related anurans can vary dramatically in their genetic mating system.  相似文献   

17.
In recent years, genetic studies have been used to investigate mating systems of marine turtles, but to date no such research has been conducted on the flatback turtle (Natator depressus). This study investigates paternity of flatback turtle clutches at two rookeries in Queensland, Australia; Peak Island (Keppel Bay), and Mon Repos (Bundaberg). In the 2004–2005 nesting season, tissue samples were taken from either single or multiple clutches (n = 16) of nesting females (n = 8) representing a sampling effort ranging from 25% to 50% offspring per nest. Determination of the extent of multiple paternity was done using a comparative approach that included initial inferences based on observed alleles, Chi-square tests for deviations from Mendelian expectations, and three software programs (PARENTAGE1.0, GERUD2.0 and MER3.0). Results varied depending on the approach, but by calculating a consensus value of the output from these different methods, the null hypothesis of single paternity could be rejected in at least 11 of the 16 clutches (69%). Multiple paternity was thus observed in the clutches of six of nine females (67%), with two or three fathers being the most likely outcome. Analyses of successive clutches illustrated that paternal contribution to clutch fertilization can vary through time, as observed for two females. This first evidence regarding the mating system of flatback turtles indicates that multiple paternity is common in this species and that the observed frequency of multiple paternity is among the higher values reported in marine turtle species. Application of these results to estimates of effective population size (N e) suggests that population size may have been relatively stable over long periods. Continued monitoring of population dynamics is recommended to ensure that future changes in the east coast can be detected.  相似文献   

18.
白条草蜥(Takydromus wolteri)是一种年产多窝卵的蜥蜴。为了对其婚配制度、同一雌性个体所产卵的窝内和窝间的父权状况、种群的遗传结构和物种的进化历史等研究内容进行探讨,本研究筛选出白条草蜥的9个具有高度多态性的微卫星位点。微卫星位点筛选自包含(AC)n 和(ATAG)n重复片度的微卫星富集文库。在白条草蜥安徽滁州种群的16~32个个体中对上述位点进行检测后发现,上述座位的等位基因数目范围为12~20个,期望杂合度范围为0.894~0.955,观测杂合度范围0.565~0.938,表明这些微卫星标记具有良好的遗传多样性,它们将在白条草蜥的种群遗传结构、基因流水平、种群分化和婚配制度的研究中发挥重要作用。  相似文献   

19.
Little is known about the reproductive behaviors and the actual outcomes of mating attempts in the gopher tortoise (Gopherus polyphemus). We examined the mating system and reproductive behaviors of a population of gopher tortoises in central Florida. Using microsatellite markers, we assigned fathers to the offspring of seven clutches and determined that multiple fathers were present in two of the seven clutches examined. We found that gopher tortoises exhibited a promiscuous mating system with larger males fertilizing the majority of clutches. The advantage of larger males over smaller males in fertilizing females may be a result of larger males winning access to females in aggressive bouts with other males or larger males may be more attractive to females. Clutches produced by larger females tended to be sired by a single male, whereas clutches of smaller females tended to be sired by multiple males.  相似文献   

20.
We studied the mating system of the southern water skink, Eulamprus heatwolei, during spring and summer (encompassing the breeding season) in a population in southeastern Australia. We examined potential attributes that might influence the mating system and male reproductive success including home range size, physical proximity of adults and body size, and then genotyped all mothers, offspring and potential sires. Home range overlap of both sexes was extensive, with adult females sharing the greatest amount of space with each other and adult males the least amount of space with each other. However, not all adults hold home ranges. We classified approximately one quarter of adult males as home range holders and the rest as 'floaters'. Adult females occupy home ranges more than males, with approximately three-quarters classified as home range holders. Home range ownership is not correlated with body size for either sex, however, male body size is positively correlated with the number of adult female home ranges that his home range overlaps and adult male home ranges are larger than those of females. We used microsatellite genotyping to assign paternities to 55 offspring from 17 litters and then compared this data with our home range and behavioural observations. This species displays extreme levels of multiple paternity given the small mean clutch size of three. Multiple paternity was confirmed in 11 (64.7%) of 17 clutches but three other clutches (for a total of 82.4%) also may display multiple paternity. A total of 30 offspring from 12 litters were assigned to 10 of the 32 genotyped adult males from our study site. Of these 10 adult males, half were home range holders. Five complete clutches and a total of 25 out of the 55 offspring could not be positively assigned to any male surveyed as part of the study and were attributed to floater males or resident males adjacent to our study site that had not been genotyped. While sample sizes are small, neither male home range ownership nor body size is significantly correlated with the number of paternities a male obtained. Our study suggests a polygynous mating system for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号