首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
In the present study, we investigate effect of amylin on the insulin sensitivity of rat skeletal muscle extensor digitorum longus (EDL) using in vitro intact muscle incubation in combination with metabolic radioactive labeling. The molecular basis of the amylin action was further examined using proteomic analysis. In particular, proteins of interest were characterized using an integrated microcharacterization procedure that involved in-gel trypsin digestion, organic solvent extraction, high performance liquid chromatography separation, microsequencing and microsequence analysis. We found that amylin significantly decreased the insulin-stimulated glucose incorporation into glycogen (p < 0.01) and produced a protein spot of approximately 20 ku in size. This amylin responsive protein (hereby designated as amylin responsive protein 1, APR1) was identified to be protein p20. Moreover, ARP1 spots on gels were found to consistently produce a corresponding radioactive spot on X-ray films in 32Pi but not in 35S-methionine labeling experiments. In conclusion, our results showed that in vitro amylin concomitantly evoked the production of ARP1 and caused insulin resistance in EDL muscle. It is suggested that protein p20 may be involved in amylin signal transduction and the appearance of ARP1 may be a step in a molecular pathway leading to the development of insulin resistance. ARP1 might therefore be a useful molecular marker for amylin action, insulin resistance and Type 2 diabetes.  相似文献   

2.
Skeletal muscle regenerates following grafting, but little is known about protein synthesis and its regulation during regeneration. We determined the sequence of changes in protein synthesis in rat extensor digitorum longus (EDL) muscle by the measurement of phenylalanine (Phe) incorporation into muscle protein at various times after grafting. Compared with control EDL, Phe incorporation in grafts doubled in 1 day, was four- to eight-fold greater from days 2 to 10 after grafting, and then subsided. Tissue mass (wet weight) increased rapidly from days 7 to 20 in EDL grafts. The maximal increase in protein synthesis occurred 7-10 days after grafting, whether or not the nerve was left intact. Autoradiography indicated that incorporated radioactivity was associated with regenerating muscle fibers on day 10. Deficiencies of insulin, pituitary or testicular hormones, or chronic in vivo administration of insulin, growth hormone, testosterone, or tri-iodothyronine did not substantially alter the elevation in incorporation of the Phe into muscle protein 10 days after grafting. The breakdown of EDL protein, measured in vitro simultaneously with protein synthesis, was increased five-fold, and overall protein degradation was elevated six-fold 10 days after grafting. These findings indicate that Phe incorporation is rapidly elevated following grafting of the EDL, and that by days 7-10 reflects synthesis in regenerating muscle fibers. The increase in protein synthesis associated with muscle regeneration at this time appears to be independent of innervation and anabolic hormones.  相似文献   

3.
The present study characterized total and myofibrillar protein breakdown rates in a muscle preparation frequently used in vitro, i.e. incubated extensor digitorum longus (EDL) and soleus (SOL) muscles of young rats. Total and myofibrillar protein breakdown rates were assessed by determining net production by the incubated muscles of tyrosine and 3-methylhistidine (3-MH) respectively. Both amino acids were determined by h.p.l.c. Both total and myofibrillar protein breakdown rates were higher in SOL than in EDL muscles and were decreased by incubating the muscles maintained at resting length, rather than flaccid. After fasting for 72 h, total protein breakdown (i.e. tyrosine release) was increased by 73% and 138% in EDL muscles incubated flaccid and at resting length respectively. Net production of tyrosine by SOL muscle was not significantly altered by fasting. In contrast, myofibrillar protein degradation (i.e. 3-MH release) was markedly increased by fasting in both muscles. When tissue was incubated in the presence of 1 munit of insulin/ml, total protein breakdown rate was inhibited by 17-20%, and the response to the hormone was similar in muscles incubated flaccid or at resting length. In contrast, myofibrillar protein breakdown rate was not altered by insulin in any of the muscle preparations. The results support the concepts of individual regulation of myofibrillar and non-myofibrillar proteins and of different effects of various conditions on protein breakdown in different types of skeletal muscle. Thus determination of both tyrosine and 3-MH production in red and white muscle is important for a more complete understanding of protein regulation in skeletal muscle.  相似文献   

4.
While endurance exercise training has been shown to enhance insulin action in skeletal muscle, the effects of high resistance strength training are less clear. The purpose of this study was to determine the rate of glucose uptake in skeletal muscle in which compensatory hypertrophy was induced by synergist muscle ablation. Basal and insulin mediated [3H] 2-deoxyglucose uptake were measured in soleus and EDL muscles using the perfused rat hindquarter preparation. Neither basal nor insulin mediated glucose uptake, when expressed per gram muscle, were enhanced in hypertrophied soleus muscles compared with control muscles, despite a twofold increase in mass (P less than 0.01). In the EDL, muscle mass increased 60% with synergist ablation (P less than 0.01), however insulin mediated glucose uptake was not different from that of control muscles. The basal rate of glucose uptake in hypertrophied EDL muscles was increased twofold over that of control muscles (P less than 0.05), possibly due to changes in neural input and/or loading. These results suggest that the stimulus for development of increased muscle mass is different from that for metabolic adaptations.  相似文献   

5.
The protein phosphatase calcineurin is a signaling intermediate that induces the transformation of fast-twitch skeletal muscle fibers to a slow-twitch phenotype. This reprogramming of the skeletal muscle gene expression profile may have therapeutic applications for metabolic disease. Insulin-stimulated glucose uptake in skeletal muscle is both impaired in individuals with type II diabetes mellitus and positively correlated with the percentage of slow- versus fast-twitch muscle fibers. Using transgenic mice expressing activated calcineurin in skeletal muscle, we report that skeletal muscle reprogramming by calcineurin activation leads to improved insulin-stimulated 2-deoxyglucose uptake in extensor digitorum longus (EDL) muscles compared with wild-type mice, concomitant with increased protein expression of the insulin receptor, Akt, glucose transporter 4, and peroxisome proliferator-activated receptor-gamma co-activator 1. Transgenic mice exhibited elevated glycogen deposition, enhanced amino acid uptake, and increased fatty acid oxidation in EDL muscle. When fed a high-fat diet, transgenic mice maintained superior rates of insulin-stimulated glucose uptake in EDL muscle and were protected against diet-induced glucose intolerance. These results validate calcineurin as a target for enhancing insulin action in skeletal muscle.  相似文献   

6.
1. The present study was designed to explore the mechanisms by which insulin stimulates system A of amino acid transport in extensor digitorum longus (EDL) muscles, by using a system A analogue, alpha-(methyl)aminoisobutyric acid (MeAIB). 2. Insulin stimulation of MeAIB uptake was noted after only 30 min of incubation and was maximal at 60 min. Kinetics of the insulin effect on MeAIB uptake were characterized by an increased Vmax. without modification of Km for MeAIB. 3. Incubation of EDL muscles with cycloheximide for 90 min did not modify MeAIB uptake in either the presence or the absence of insulin, indicating the independence of insulin action from protein synthesis de novo. Incubations for 180 min with cycloheximide caused a decrease in basal MeAIB uptake; however, the percentage stimulation of amino acid transport by insulin was unaltered. Basal MeAIB uptake was increased by incubation for 180 min, but under these conditions no change in the percentage effect of insulin was found. 4. Ouabain, gramicidin D, or both, markedly decreased basal MeAIB uptake by EDL muscle, but the percentage effect of insulin was unaltered. 5. We conclude that insulin action on amino acid transport through system A in muscle is rapid, is characterized by an increased Vmax., and is independent of protein synthesis de novo and the Na+ electrochemical gradient. Our data are compatible with insulin acting directly on the system A transporter.  相似文献   

7.
Amylin appears to interfere with the action of insulin in muscle and possibly in liver. We have attempted to detect a direct antagonism between amylin and insulin in cultured rat hepatocytes. The stimulation of glucokinase gene expression was used as a marker of insulin action. Amylin proved ineffective in suppressing subsequent accumulation of glucokinase mRNA in response to maximal or submaximal doses of insulin. When applied to cells already induced by prior incubation with insulin alone, amylin failed to reverse induction, in contrast to the effectiveness of glucagon under the same conditions. Thus, amylin is not a physiological antagonist of insulin in the control of hepatic glucokinase gene expression.  相似文献   

8.
GSK3 involvement in amylin signaling in isolated rat soleus muscle   总被引:1,自引:0,他引:1  
Abaffy T  Cooper GJ 《Peptides》2004,25(12):2119-2125
Amylin can evoke insulin resistance by antagonizing insulin in a non-competitive manner. Here, we investigated the glycogenolytic effect of amylin in isolated skeletal muscle and compared it to the effects of a calcitonin gene-related peptide (CGRP). Amylin alone had no statistically significant effect on glucose transport. However, amylin decreased insulin-stimulated glucose transport by about 30%. The involvement of cAMP could not be detected at the concentrations shown to promote glycogenolysis. Previously, it has been shown that increased glycogen synthase kinase 3 (GSK3) activity plays a role in insulin resistance. Here, the ratio of GSK3 :β isoforms in rat soleus was found to be 1.2:1. We found that amylin increased GSK3 activity, which in turn led to increased phosphorylation of glycogen synthase and decreased glycogen synthesis de novo.  相似文献   

9.
Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity in isolated skeletal muscle of insulin-resistant, prediabetic obese Zucker rats and if these effects of GSK3 inhibition are associated with enhanced insulin signaling. Type I soleus and type IIb epitrochlearis muscles from female obese Zucker rats were incubated in the absence or presence of a selective, small organic GSK3 inhibitor (1 microM CT118637, Ki < 10 nM for GSK3alpha and GSK3beta). Maximal insulin stimulation (5 mU/ml) of glucose transport activity, glycogen synthase activity, and selected insulin-signaling factors [tyrosine phosphorylation of insulin receptor (IR) and IRS-1, IRS-1 associated with p85 subunit of phosphatidylinositol 3-kinase, and serine phosphorylation of Akt and GSK3] were assessed. GSK3 inhibition enhanced (P <0.05) basal glycogen synthase activity and insulin-stimulated glucose transport in obese epitrochlearis (81 and 24%) and soleus (108 and 20%) muscles. GSK3 inhibition did not modify insulin-stimulated tyrosine phosphorylation of IR beta-subunit in either muscle type. However, in obese soleus, GSK3 inhibition enhanced (all P < 0.05) insulin-stimulated IRS-1 tyrosine phosphorylation (45%), IRS-1-associated p85 (72%), Akt1/2 serine phosphorylation (30%), and GSK3beta serine phosphorylation (39%). Substantially smaller GSK3 inhibitor-mediated enhancements of insulin action on these insulin signaling factors were observed in obese epitrochlearis. These results indicate that selective GSK3 inhibition enhances insulin action in insulin-resistant skeletal muscle of the prediabetic obese Zucker rat, at least in part by relieving the deleterious effects of GSK3 action on post-IR insulin signaling. These effects of GSK3 inhibition on insulin action are greater in type I muscle than in type IIb muscle from these insulin-resistant animals.  相似文献   

10.
The present study investigated the role of amylin in lipid metabolism and its possible implications for insulin resistance. In 5- to 7-h-fasted conscious rats, infusion of rat amylin (5 nmol/h for 4 h) elevated plasma glucose, lactate, and insulin (P <0.05 vs. control, repeated-measures ANOVA) with peak values occurring within 60 min. Despite the insulin rise, plasma nonesterified fatty acids (NEFA) and glycerol were also elevated (P < 0.001 vs. control), and these elevations (80% above basal) were sustained over the 4-h infusion period. Although unaltered in plasma, triglyceride content in liver was increased by 28% (P < 0.001) with a similar tendency in muscle (18%, P = 0.1). Infusion of the rat amylin antagonist amylin-(8-37) (125 nmol/h) induced opposite basal plasma changes to amylin, i.e., lowered plasma NEFA, glycerol, glucose, and insulin levels (all P < 0.05 vs. control); additionally, amylin-(8-37) blocked amylin-induced elevations of these parameters (P < 0.01). Treatment with acipimox (10 mg/kg), an anti-lipolytic agent, before or after amylin infusion blocked amylin's effects on plasma NEFA, glycerol, and insulin but not on glucose and lactate. We conclude that amylin could exert a lipolytic-like action in vivo that is blocked by and is opposite to effects of its antagonist amylin-(8-37). Further studies are warranted to examine the physiological implications of lipid mobilization for amylin-induced insulin resistance.  相似文献   

11.
p8 protein expression is known to be upregulated in the exocrine pancreas during acute pancreatitis. Own previous work revealed glucose-dependent p8 expression also in endocrine pancreatic beta-cells. Here we demonstrate that glucose-induced INS-1 beta-cell expansion is preceded by p8 protein expression. Moreover, isopropylthiogalactoside (IPTG)-induced p8 overexpression in INS-1 beta-cells (p8-INS-1) enhances cell proliferation and expansion in the presence of glucose only. Although beta-cell-related gene expression (PDX-1, proinsulin I, GLUT2, glucokinase, amylin) and function (insulin content and secretion) are slightly reduced during p8 overexpression, removal of IPTG reverses beta-cell function within 24 h to normal levels. In addition, insulin secretion of p8-INS-1 beta-cells in response to 0-25 mM glucose is not altered by preceding p8-induced beta-cell expansion. Adenovirally transduced p8 overexpression in primary human pancreatic islets increases proliferation, expansion, and cumulative insulin secretion in vitro. Transplantation of mock-transduced control islets under the kidney capsule of immunosuppressed streptozotocin-diabetic mice reduces blood glucose and increases human C-peptide serum concentrations to stable levels after 3 days. In contrast, transplantation of equal numbers of p8-transduced islets results in a continuous decrease of blood glucose and increase of human C-peptide beyond 3 days, indicating p8-induced expansion of transplanted human beta-cells in vivo. This is underlined by a doubling of insulin content in kidneys containing p8-transduced islet grafts explanted on day 9. These results establish p8 as a novel molecular mediator of glucose-induced pancreatic beta-cell expansion in vitro and in vivo and support the notion of existing beta-cell replication in the adult organism.  相似文献   

12.
Mechanism of insulin resistance in A-ZIP/F-1 fatless mice   总被引:22,自引:0,他引:22  
Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and may be related to alterations in fat metabolism. Fatless mice have been created using dominant-negative protein (A-ZIP/F-1) targeted gene expression in the adipocyte and shown to develop diabetes. To understand the mechanism responsible for the insulin resistance in these mice, we conducted hyperinsulinemic-euglycemic clamps in awake fatless and wild type littermates before the development of diabetes and examined insulin action and signaling in muscle and liver. We found the fatless mice to be severely insulin-resistant, which could be attributed to defects in insulin action in muscle and liver. Both of these abnormalities were associated with defects in insulin activation of insulin receptor substrate-1 and -2-associated phosphatidylinositol 3-kinase activity and a 2-fold increase in muscle and liver triglyceride content. We also show that upon transplantation of fat tissue into these mice, triglyceride content in muscle and liver returned to normal as does insulin signaling and action. In conclusion, these results suggest that the development of insulin resistance in type 2 diabetes may be due to alterations in the partitioning of fat between the adipocyte and muscle/liver leading to accumulation of triglyceride in the latter tissues with subsequent impairment of insulin signaling and action.  相似文献   

13.
Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degrees C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation.  相似文献   

14.
Differences in the concentrations of signal transduction proteins often alter cellular function and phenotype, as is evident from numerous, heterozygous knockout mouse models for signal transduction proteins. Here, we measured signal transduction proteins involved in the adaptation to exercise and insulin signalling in fast rat extensor digitorum longus (EDL; 3% type I fibres) and the slow soleus muscles (84% type I fibres). The EDL and soleus were excised from four rats, the proteins extracted and subjected to Western blots for various signal transduction proteins. Our results show major differences in signal transduction protein concentrations between EDL and soleus. The EDL to soleus concentration ratios were: Calcineurin: 1.43 +/- 0.10; ERK1: 0.38 +/- 0.18; ERK2: 0.61 +/- 0.16; p38alpha, beta: 1.36 +/- 0.15; p38gamma/ERK6: 0.95 +/- 0.11; PKB/AKT: 1.44 +/- 0.08; p70S6k: 6.86 +/- 3.58; GSK3beta: 0.69 +/- 0.03; myostatin: 1.95 +/- 0.43; NF-kappaB: 0.32 +/- 0.10 (values >1 indicate higher expression in the EDL, and values < 1 indicate higher expression in the soleus). With the exception of p38gamma/ERK6, the concentration of each signal transduction protein was uniformly higher in one muscle than in the other in all four animals. These experiments show that signal transduction protein concentrations vary between fast and slow muscles, presumably reflecting a concentration difference on a fibre level. Proteins that promote particular functions such as growth or slow phenotype are not necessarily higher in muscles with that particular trait (e.g. higher in larger fibres or slow muscle). Interindividual differences in fibre composition might explain variable responses to training and insulin.  相似文献   

15.
We studied the in vitro effect of corticosterone on insulin binding, uptake of 2-deoxy-D-glucose, glycolysis, and glycogenesis in the soleus and extensor digitorum longus (EDL) of Swiss-Webster mice. In each experiment, one muscle (soleus/EDL) was incubated with corticosterone (0.1, 1, 50, and 100 micrograms/mL) and the respective contralateral muscle was incubated without corticosterone, but at the same insulin and pH levels. Corticosterone did not affect insulin binding in both muscles. However, corticosterone decreased the uptake of 2-deoxy-D-glucose and the rate of glycolysis and glycogenesis in both muscles when the dose was pharmacologic (50 and 100 micrograms/mL), but not when it was physiologic (0.1 and 1 microgram/mL). For glycolysis and glycogenesis, the suppression was greater in the EDL when compared with the soleus. This suppression was seen in both basal and insulin-stimulated conditions. In this in vitro system, where the experimental muscle is not exposed to prior hyperinsulinemia as in the in vivo model, corticosterone, at pharmacologic doses, affects postreceptor events without altering the insulin binding in the skeletal muscle.  相似文献   

16.
In this study, the protein expression profile of extensor digitorum longous (EDL) and Soleus (SOL) muscles, representing fast- and slow-twitch skeletal muscles, respectively, was established using high resolution two-dimensional electrophoresis (2-DE). One protein spot was found uniquely expressed in EDL muscle. N-terminal sequence analysis identified the protein as parvalbumin. Parvalbumin is a high affinity calcium binding protein that regulates muscle contraction and relaxation. Our experiments revealed that parvalbumin expression in EDL muscle was down-regulated during aging. In addition, high-intensity exercise could reverse this age-related change. Soleus muscles do not normally express parvalbumin, but high-intensity exercise could ectopically induce its expression in both young and old SOL muscles. We have also confirmed our 2-DE findings by immunohistochemistry on muscle sections. Our results suggest that high-intensity training could be used to improve muscle functions during aging because parvalbumin play an important role in regulating skeletal muscle contraction and relaxation.  相似文献   

17.
A M Gill  T T Yen 《Life sciences》1991,48(7):703-710
The role of islet amyloid polypeptide, also known as amylin, in insulin resistance and in the etiology of diabetes has been a subject of debate. Increased plasma amylin levels have been observed in both obese and type II diabetic patients. However, data on endogenous amylin levels with relation to pharmacological interventions have not been reported. In this study, chronic treatment of obese-diabetic viable yellow mice with ciglitazone was shown to significantly alter various parameters. Blood glucose and plasma insulin, triglyceride, and amylin levels were reduced and glucose tolerance in the presence of exogenous insulin was improved. Insulin/amylin ratios which were found to be significantly elevated in diabetic mice as compared to normal controls, were decreased after ciglitazone treatment. However, observed decreases in both amylin and insulin concentrations due to ciglitazone treatment and their subsequent increases upon withdrawal of treatment were correlated, suggesting cosecretion.  相似文献   

18.
The molecular mechanisms responsible for impaired insulin action have yet to be fully identified. Rodent models demonstrate a strong relationship between insulin resistance and an elevation in skeletal muscle inducible nitric oxide synthase (iNOS) expression; the purpose of this investigation was to explore this potential relationship in humans. Sedentary men and women were recruited to participate (means ± SE: nonobese, body mass index = 25.5 ± 0.3 kg/m(2), n = 13; obese, body mass index = 36.6 ± 0.4 kg/m(2), n = 14). Insulin sensitivity was measured using an intravenous glucose tolerance test with the subsequent modeling of an insulin sensitivity index (S(I)). Skeletal muscle was obtained from the vastus lateralis, and iNOS, endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) content were determined by Western blot. S(I) was significantly lower in the obese compared with the nonobese group (~43%; P < 0.05), yet skeletal muscle iNOS protein expression was not different between nonobese and obese groups. Skeletal muscle eNOS protein was significantly higher in the nonobese than the obese group, and skeletal muscle nNOS protein tended to be higher (P = 0.054) in the obese compared with the nonobese group. Alternative analysis based on S(I) (high and low tertile) indicated that the most insulin-resistant group did not have significantly more skeletal muscle iNOS protein than the most insulin-sensitive group. In conclusion, human insulin resistance does not appear to be associated with an elevation in skeletal muscle iNOS protein in middle-aged individuals under fasting conditions.  相似文献   

19.
We have examined the short-term effects of leptin on protein metabolism in the rat. Indeed, an intravenous leptin administration (100 microg/kg body weight), which resulted in no changes in circulating insulin in the time interval studied, induced a decrease in the incorporation of (14)C-leucine to (14)C-skeletal muscle protein. No changes were observed in relation to muscle protein degradation (either measured in vivo following isotope preloading or in vitro as tyrosine released into the incubation medium) and gene expression associated with the different proteolytic systems (cathepsin B, m-calpain and ubiquitin-proteasome system). The effects of leptin on amino acid incorporation into muscle protein do not seem to be direct because incubation of isolated EDL muscles in the presence of 10 microg/ml of leptin did not modify either the protein incorporation or the oxidation of (14)C-leucine. It may, therefore, be suggested that leptin is able to influence protein synthesis in skeletal muscle through the action of an unknown mediator.  相似文献   

20.
Amylin, the major peptide component of the islet amyloid commonly found in the pancreases of patients with type 2 (non-insulin-dependent) diabetes mellitus (NIDDM), is a recently discovered islet polypeptide. This peptide has many structural and functional features suggesting that it is a novel hormone, which may control carbohydrate metabolism in partnership with insulin and other glucoregulatory factors. Amylin is synthesised in, and probably secreted from, the beta-cells of the islets of Langerhans, where it has recently been immunolocalised to secretory granules. DNA cloning studies indicate that in the human and the rat, amylin is generated from a precursor, preproamylin, which displays a typical signal peptide followed by a small prohormone-like sequence containing the amylin sequence. The presence of the signal peptide suggests that amylin is secreted and plays a physiological role. Amylin is probably generated by proteolytic processing similar to that for proinsulin and other islet prohormones. The human amylin gene encodes the complete polypeptide precursor in two exons which are separated by an intron of approx. 5 kb, and is located on chromosome 12. Amylin is a potent modulator of glycogen synthesis and glucose uptake in skeletal muscle, and is capable of inducing an insulin-resistant state in this tissue in vitro, and perhaps also in the liver in vivo. In normal metabolism, amylin could act in concert with insulin as a signal for the body to switch the site of carbohydrate disposal from glycogen to longer-term stores in adipose tissue, by making skeletal muscle relatively insulin-resistant, whilst at the same time leaving rates of insulin-stimulated carbohydrate metabolism in adipose tissue unaltered. Several lines of evidence now implicate elevated amylin levels in the pathogenic mechanisms underlying NIDDM, and suggest to us that the obesity which frequently accompanies this syndrome is a result of, rather than a risk factor for, NIDDM. Following the beta-cell destruction which occurs in type 1 (insulin-dependent) diabetes mellitus (IDDM), it is probable that amylin secretion disappears in addition to that of insulin. As patients with insulin-treated IDDM frequently experience problems with hypoglycaemia, and as amylin acts to modulate the action of insulin in various tissues, it is possible that amylin deficiency may contribute to morbidity in insulin-treated IDDM, perhaps through the loss of a natural damping mechanism which guards against hypoglycaemia under conditions of normal physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号