首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test thehypothesis that muscle O2 uptake(O2) on-kinetics islimited, at least in part, by peripheralO2 diffusion, we determined theO2 on-kinetics in1) normoxia (Control);2) hyperoxic gas breathing(Hyperoxia); and 3) hyperoxia andthe administration of a drug (RSR-13, Allos Therapeutics), whichright-shifts the Hb-O2dissociation curve (Hyperoxia+RSR-13). The study was conducted inisolated canine gastrocnemius muscles(n = 5) during transitions from restto 3 min of electrically stimulated isometric tetanic contractions(200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% peakO2). In all conditions,before and during contractions, muscle was pump perfused withconstantly elevated blood flow (), at a levelmeasured at steady state during contractions in preliminary trials withspontaneous . Adenosine was infusedintra-arterially to prevent inordinate pressure increases with theelevated . was measuredcontinuously, arterial and popliteal venousO2 concentrations were determinedat rest and at 5- to 7-s intervals during contractions, andO2 was calculated as · arteriovenous O2 content difference.PO2 at 50%HbO2saturation (P50) was calculated.Mean capillary PO2(cO2)was estimated by numerical integration.P50 was higher in Hyperoxia+RSR-13[40 ± 1 (SE) Torr] than in Control and in Hyperoxia (31 ± 1 Torr). After 15 s of contractions,cO2was higher in Hyperoxia (97 ± 9 Torr) vs. Control (53 ± 3 Torr) and in Hyperoxia+RSR-13 (197 ± 39 Torr) vs. Hyperoxia. Thetime to reach 63% of the difference between baseline and steady-stateO2 during contractions was 24.7 ± 2.7 s in Control, 26.3 ± 0.8 s in Hyperoxia, and 24.7 ± 1.1 s in Hyperoxia+RSR-13 (not significant). Enhancement ofperipheral O2 diffusion (obtainedby increasedcO2at constant O2 delivery) duringthe rest-to-contraction (60-70% of peakO2) transition did notaffect muscle O2on-kinetics.

  相似文献   

2.
Increased ventilation-perfusion(A/)inequality is observed in ~50% of humans during heavy exercise andcontributes to the widening of the alveolar-arterialO2 difference(A-aDO2). Despite extensive investigation, the cause remains unknown. As a firststep to more direct examination of this problem, we developed an animalmodel. Eight Yucatan miniswine were studied at rest and duringtreadmill exercise at ~30, 50, and 85% of maximalO2 consumption (O2 max). Multipleinert-gas, blood-gas, and metabolic data were obtained. TheA-aDO2increased from 0 ± 3 (SE) Torr at rest to 14 ± 2 Torr duringthe heaviest exercise level, but arterialPO2(PaO2) remained at resting levels during exercise. There was normalA/inequality [log SD of the perfusion distribution(log) = 0.42 ± 0.04] at rest, and moderate increases(log = 0.68 ± 0.04, P < 0.0001) wereobserved with exercise. This result was reproducible on a separate day.TheA/inequality changes are similar to those reported in highly trainedhumans. However, in swine, unlike in humans, there was no inert gasevidence for pulmonary end-capillary diffusion limitation during heavyexercise; there was no systematic difference in the measuredPaO2 and the PaO2 as predicted from the inertgases. These data suggest that the pig animal model iswell suited for studying the mechanism of exercise-inducedA/ inequality.

  相似文献   

3.
Iturriaga, Rodrigo, and Julio Alcayaga. Effects ofCO2-on catecholamine efflux from cat carotid body. J. Appl. Physiol. 84(1): 60-68, 1998.Using achronoamperometric technique with carbon-fiber microelectrodes andneural recordings, we simultaneously measured the effects of thefollowing procedures on catecholamine efflux (CA) andfrequency of chemosensory discharges (fx) fromsuperfused cat carotid body: 1) theaddition ofCO2- to Tyrode solution previously buffered withN-2-hydroxyethylpiperazine-N -2-ethanesulfonicacid, maintaining pH at 7.40; 2)hypercapnia (10% CO2, pH 7.10);3) hypoxia(PO2 h  40 Torr) with andwithoutCO2-;and 4) the impact of several bolusesof dopamine (DA; 10-100 µg) on hypoxic and hypercapnic challenges. WithCO2-,hypoxia increased fx which preceded CAincreases, whereas hypercapnia raised fx but didnot consistently increase CA. Repeated stimuli induced similarfx increases, but attenuated CA. AfterDA, hypoxia produced larger CA, which preceded chemosensoryresponses. WithoutCO2-, hypoxia produced a similar pattern of CA andfx responses. Switching to Tyrode solution withCO2-at pH 7.40 raised fx but did not increase CA.WithCO2- and after DA, hypoxic-induced CAs were larger than in its absence. Results suggest that DA release is not essential for chemosensory excitation.

  相似文献   

4.
Treppo, Steven, Srboljub M. Mijailovich, and José G. Venegas. Contributions of pulmonary perfusion and ventilation toheterogeneity in A/measured by PET. J. Appl. Physiol. 82(4): 1163-1176, 1997. To estimate the contributions of the heterogeneity in regionalperfusion () and alveolar ventilation(A) to that of ventilation-perfusionratio (A/), we haverefined positron emission tomography (PET) techniques to image localdistributions of andA per unit of gas volume content(s and sA,respectively) and VA/ indogs. sA was assessed in two ways:1) the washout of 13NN tracer after equilibrationby rebreathing (sAi), and2) the ratio of an apneic image after a bolus intravenousinfusion of 13NN-saline solution to an image collectedduring a steady-state intravenous infusion of the same solution(sAp).sAp was systematically higher than sAi in allanimals, and there was a high spatial correlation betweens andsAp in both body positions(mean correlation was 0.69 prone and 0.81 supine) suggesting thatventilation to well-perfused units was higher than to those poorlyperfused. In the prone position, the spatial distributions ofs, sAp, and A/ were fairlyuniform with no significant gravitational gradients; however, in thesupine position, these variables were significantly more heterogeneous,mostly because of significant gravitational gradients (15, 5.5, and10%/cm, respectively) accounting for 73, 33, and 66% of thecorresponding coefficient of variation (CV)2 values. Weconclude that, in the prone position, gravitational forces in blood andlung tissues are largely balanced out by dorsoventral differences inlung structure. In the supine position, effects of gravity andstructure become additive, resulting in substantial gravitationalgradients in s andsAp, with the higherheterogeneity inA/ caused by agravitational gradient in s, only partially compensated by that in sA.

  相似文献   

5.
Li, M. H., J. Hildebrandt, and M. P. Hlastala.Quantitative analysis of transpleural flux in the isolated lung.J. Appl. Physiol. 82(2): 545-551, 1997.In this study, the loss of inert gas through the pleura of anisolated ventilated and perfused rabbit lung was assessed theoreticallyand experimentally. A mathematical model was used to represent an idealhomogeneous lung placed within a box with gas flow(box) surrounding the lung. Thealveoli are assumed to be ventilated with room air(A) andperfused at constant flow () containinginert gases (x) with various perfusate-air partition coefficients(p,x).The ratio of transpleural flux of gas(plx)to its total delivery to the lung via pulmonary artery( ),representing fractional losses across the pleura, can be shown todepend on four dimensionless ratios:1)p,x,2) the ratio of alveolar ventilation to perfusion(A/), 3) the ratioof the pleural diffusing capacity(Dplx) to the conductance ofthe alveolar ventilation (Dplx /Ag,where g is the capacitancecoefficient of gas), and 4) theratio of extrapleural (box) ventilation to alveolar ventilation(box/A).Experiments were performed in isolated perfused and ventilated rabbitlungs. The perfusate was a buffer solution containing six dissolvedinert gases covering the entire 105-fold range ofp,x usedin the multiple inert gas elimination technique. Steady-state inert gasconcentrations were measured in the pulmonary arterial perfusate,pulmonary venous effluent, exhaled gas, and box effluent gas. Theexperimental data could be described satisfactorily by thesingle-compartment model. It is concluded that a simple theoreticalmodel is a useful tool for predicting transpleural flux from isolatedlung preparations, with known ventilation and perfusion, for inertgases within a wide range of .

  相似文献   

6.
Shimazu, Takeshi, Tetsuo Yukioka, Hisashi Ikeuchi, Arthur D. Mason, Jr., Peter D. Wagner, and Basil A. Pruitt, Jr.Ventilation-perfusion alterations after smoke inhalation injury inan ovine model. J. Appl. Physiol.81(5): 2250-2259, 1996.To study the pathophysiological mechanismof progressive hypoxemia after smoke inhalation injury, alterations inventilation-perfusion ratio(A/)were studied in an ovine model by using the multiple inert gaselimination technique. Because ethane was detected in expired gas ofsome sheep, we replaced ethane with krypton, which was a uniqueapplication of the multiple inert gas elimination technique when one ofthe experimental gases is present in the inspirate. Severity-related changes were studied 24 h after injury in control and mild, moderate, and severe inhalation injury groups. Time-related changes were studiedin controls and sheep with moderate injury at 6, 12, 24, and 72 h.Arterial PO2 decreased progressivelywith severity of injury as well as with time. In smoke-exposed animals,blood flow was recruited to lowA/compartment (0 < A/ < 0.1; 17.6 ± 10.6% of cardiac output, 24 h,moderate injury) from normal A/compartment (0.1 < A/ < 10). However, increases in true shunt(A/ = 0; 5.6 ± 2.5%, 24 h, moderate injury) and dead space were notconsistent findings. TheA/patterns suggest the primary change in smoke inhalation injury to be adisturbance of ventilation.

  相似文献   

7.
Carvalho, Paula, Shane R. Johnson, Nirmal B. Charan.Non-cAMP-mediated bronchial arterial vasodilation in response toinhaled -agonists. J. Appl.Physiol. 84(1): 215-221, 1998.We studied thedose-dependent effects of inhaled isoetharine HCl, a -adrenergicbronchodilator (2.5, 5.0, 10.0, and 20.0 mg), on bronchial blood flow(br) in anesthetized sheep. Isoetharine resulted ina dose-dependent increase in br. With atotal dose of 17.5 mg, br increased from baselinevalues of 22 ± 3.4 (SE) to 60 ± 16 ml/min(P < 0.001), an effect independentof changes in cardiac output and systemic arterial pressure. To furtherstudy whether synthesis of endogenous nitric oxide (NO) affects-agonist-induced increases in br, weadministered isoetharine (20 mg) by inhalation before and after theNO-synthase inhibitorN-nitro-L-argininemethyl ester (L-NAME).Intravenous L-NAME (30 mg/kg) rapidly decreased br by ~80% of baseline,whereas L-NAME via inhalation(10 mg/kg) resulted in a delayed and smaller (~22%) decrease.Pretreatment with L-NAME viaboth routes of administration attenuated bronchial arterialvasodilation after subsequent challenge with isoetharine. We concludethat isoetharine via inhalation increases br in adose-dependent manner and that -agonist-induced relaxation ofvascular smooth muscle in the bronchial vasculature is partiallymediated via synthesis of NO.

  相似文献   

8.
Tokics, Leif, Göran Hedenstierna, Leif Svensson, BoBrismar, Torsten Cederlund, Hans Lundquist, and ÅkeStrandberg. / distributionand correlation to atelectasis in anesthetized paralyzed humans.J. Appl. Physiol. 81(4):1822-1833, 1996.Regional ventilation and perfusion were studiedin 10 anesthetized paralyzed supine patients by single-photon emissioncomputerized tomography. Atelectasis was estimated from twotransaxial computerized tomography scans. The ventilation-perfusion(/) distribution was alsoevaluated by multiple inert gas elimination. While the patients wereawake, inert gas / ratio wasnormal, and shunt did not exceed 1% in any patient. Computerizedtomography showed no atelectasis. During anesthesia, shunt ranged from0.4 to 12.2%. Nine patients displayed atelectasis (0.6-7.2% ofthe intrathoracic area), and shunt correlated with the atelectasis(r = 0.91, P < 0.001). Shunt was located independent lung regions corresponding to the atelectatic area. There wasconsiderable / mismatch, withventilation mainly of ventral lung regions and perfusion of dorsalregions. Little perfusion was seen in the most ventral parts (zone 1)of caudal (diaphragmatic) lung regions. In summary, shunt during anesthesia is due to atelectasis in dependent lung regions. The / distributions differ fromthose shown earlier in awake subjects.

  相似文献   

9.
Proctor, David N., Kenneth C. Beck, Peter H. Shen, Tamara J. Eickhoff, John R. Halliwill, and Michael J. Joyner. Influence ofage and gender on cardiacoutput-O2 relationshipsduring submaximal cycle ergometry. J. Appl.Physiol. 84(2): 599-605, 1998.It is presentlyunclear how gender, aging, and physical activity status interact todetermine the magnitude of the rise in cardiac output(c) during dynamic exercise. To clarify this issue,the present study examined thec-O2 uptake(O2) relationship duringgraded leg cycle ergometry in 30 chronically endurance-trained subjects from four groups (n = 6-8/group): younger men (20-30 yr), older men (56-72yr), younger women (24-31 yr), and older women(51-72 yr). c (acetylene rebreathing), strokevolume (c/heart rate), and whole bodyO2 were measured at restand during submaximal exercise intensities (40, 70, and ~90% of peakO2). Baseline restinglevels of c were 0.6-1.2 l/min less in theolder groups. However, the slopes of thec-O2relationship across submaximal levels of cycling were similar among allfour groups (5.4-5.9 l/l). The absolute cassociated with a given O2(1.0-2.0 l/min) was also similar among groups. Resting andexercise stroke volumes (ml/beat) were lower in women than in men butdid not differ among age groups. However, older men and women showed areduced ability, relative to their younger counterparts, to maintainstroke volume at exercise intensities above 70% of peakO2. This latter effect wasmost prominent in the oldest women. These findings suggest that neitherage nor gender has a significant impact on thec-O2 relationships during submaximal cycle ergometry among chronically endurance-trained individuals.

  相似文献   

10.
Creatine kinase(CK) provides ATP buffering in skeletal muscle and is expressed as1) cytosolic myofibrillar CK (M-CK)and 2) sarcomeric mitochondrial CK(ScCKmit) isoforms that differ in their subcellular localization. Wecompared the isometric contractile and fatigue properties of1) control CK-sufficient (Ctl),2) M-CK-deficient (M-CK[/]), and3) combined M-CK/ScCKmit-deficientnull mutant (CK[/]) diaphragm (Dia) todetermine the effect of the absence of M-CK activity on Dia performancein vitro. Baseline contractile properties were comparable across groupsexcept for specific force, which was ~16% lower inCK[/] Dia compared withM-CK[/] and Ctl Dia. During repetitiveactivation (40 Hz, duty cycle), force declined in all threegroups. This decline was significantly greater inCK[/] Dia compared with Ctl and M-CK[/] Dia. The pattern of forcedecline did not differ between M-CK[/] andCtl Dia. We conclude that Dia isometric muscle function is notabsolutely dependent on the presence of M-CK, whereas the completeabsence of CK acutely impairs isometric force generation duringrepetitive activation.

  相似文献   

11.
Dysoxia canbe defined as ATP flux decreasing in proportion toO2 availability with preserved ATPdemand. Hepatic venous -hydroxybutyrate-to-acetoacetate ratio(-OHB/AcAc) estimates liver mitochondrial NADH/NAD and may detectthe onset of dysoxia. During partial dysoxia (as opposed to anoxia),however, flow may be adequate in some liver regions, diluting effluentfrom dysoxic regions, thereby rendering venous -OHB/AcAc unreliable.To address this concern, we estimated tissue ATP whilegradually reducing liver blood flow of swine to zero in a nuclearmagnetic resonance spectrometer. ATP flux decreasing withO2 availability was taken asO2 uptake(O2) decreasing inproportion to O2 delivery(O2);and preserved ATP demand was taken as increasingPi/ATP.O2, tissuePi/ATP, and venous -OHB/AcAcwere plotted againstO2to identify critical inflection points. Tissue dysoxia required meanO2for the group to be critical for bothO2 and forPi/ATP. CriticalO2values for O2 andPi/ATP of 4.07 ± 1.07 and 2.39 ± 1.18 (SE) ml · 100 g1 · min1,respectively, were not statistically significantly different but notclearly the same, suggesting the possibility that dysoxia might havecommenced after O2 begandecreasing, i.e., that there could have been"O2 conformity." CriticalO2for venous -OHB/AcAc was 2.44 ± 0.46 ml · 100 g1 · min1(P = NS), nearly the same as that forPi/ATP, supporting venous -OHB/AcAc as a detector of dysoxia. All issues considered, tissue mitochondrial redox state seems to be an appropriate detector ofdysoxia in liver.

  相似文献   

12.
Effects of themenstrual cycle on heat loss and heat production(M) and core and skin temperatureresponses to cold were studied in six unacclimatized female nonsmokers(18-29 yr of age). Each woman, resting supine, was exposed to acold transient (ambient temperature = mean radiant temperature = 20 to5°C at 0.32°C/min, relative humidity = 50 ± 2%, wind speed = 1 m/s) in the follicular (F) phase(days 2-6) and midluteal (L)phase (days 19-23) of her menstrual cycle. Clothed in each of two ensembles with different thermal resistances, women performed multiple experiments in the F andL phases. Thermal resistance was 0.2 and 0.4 m2 · K · W1for ensembles A andB, respectively. Esophagealtemperature (Tes), mean weightedskin temperature(sk),finger temperature (Tfing), andarea-weighted heat flux were recorded continuously. Rate of heat debt(S) and integrated mean bodytemperature(b,i)were calculated by partitional calorimetry throughout the cold ramp. Extensive peripheral vasoconstriction in the F phase during early periods of the ramp elevated Tesabove thermoneutral levels. Shivering thermogenesis(M = M  Mbasal,W /m2) was highly correlated withdeclines insk andTfing(P <0.0001). There was a reducedslope in M as a function ofb,i inthe L phase with ensembles A(P < 0.02) andB (P < 0.01). Heat flux was higher andS was less in the L phases withensemble A(P < 0.05). An analytic modelrevealed thatsk andTes contribute as additive inputsand Tfing has a multiplicativeeffect on the total control of Mduring cold transients(R2 = 0.9).Endogenous hormonal levels at each menstrual cycle phase, coretemperature andskinputs, vascular responses, and variations in body heat balance must beconsidered in quantifying thermoregulatory responses in women duringcold stress.

  相似文献   

13.
Respiratory muscle work compromises leg blood flow during maximal exercise   总被引:10,自引:0,他引:10  
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2.

  相似文献   

14.
The mechanism(s)limiting muscle O2 uptake(O2) kinetics wasinvestigated in isolated canine gastrocnemius muscles(n = 7) during transitions from restto 3 min of electrically stimulated isometric tetanic contractions(200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% of peakO2). Two conditions weremainly compared: 1) spontaneousadjustment of blood flow () [control, spontaneous (C Spont)]; and2) pump-perfused, adjusted ~15 s before contractions at aconstant level corresponding to the steady-state value duringcontractions in C Spont [faster adjustment ofO2 delivery (FastO2 Delivery)]. During FastO2 Delivery, 1-2 ml/min of102 M adenosine wereinfused intra-arterially to prevent inordinate pressure increases withthe elevated . The purpose of the study was todetermine whether a faster adjustment ofO2 delivery would affectO2 kinetics. was measured continuously; arterial(CaO2) and popliteal venous(CvO2)O2 contents were determined atrest and at 5- to 7-s intervals during contractions;O2 delivery was calculated as · CaO2,and O2 was calculated as · arteriovenous O2 content difference. Times toreach 63% of the difference between baseline and steady-stateO2 during contractions were23.8 ± 2.0 (SE) s in C Spont and 21.8 ± 0.9 s in FastO2 Delivery (not significant). Inthe present experimental model, elimination of any delay inO2 delivery during therest-to-contraction transition did not affect muscleO2 kinetics, which suggeststhat this kinetics was mainly set by an intrinsic inertia of oxidativemetabolism.

  相似文献   

15.
This study examined the dynamics of the middlecerebral artery (MCA) blood flow response to hypocapnia in humans(n = 6) by using transcranial Dopplerultrasound. In a control protocol, end-tidalPCO2(PETCO2) was heldnear eucapnia (1.5 Torr above resting) for 40 min. In ahypocapnic protocol, PETCO2was held near eucapnia for 10 min, then at 15 Torr below eucapnia for20 min, and then near eucapnia for 10 min. During both protocols,subjects hyperventilated throughout andPETCO2 and end-tidalPO2 were controlled by using thedynamic end-tidal forcing technique. Beat-by-beat values werecalculated for the intensity-weighted mean velocity (IWM),signal power (), and theirinstantaneous product(IWM).A simple model consisting of a delay, gain terms, time constants(f,on, f,off) and baseline levels offlow for the on- and off-transients, and a gain term(gs) and time constant(s) for a second slower component was fitted to the hypocapnic protocol. The cerebral bloodflow response to hypocapnia was characterized by a significant (P < 0.001) slowprogressive adaptation inIWM, with gs = 1.26 %/Torr ands = 427 s, that persistedthroughout the hypocapnic period. Finally, the responses at the onsetand relief of hypocapnia were asymmetric(P < 0.001), withf,on (6.8 s) faster thanf,off (14.3 s).

  相似文献   

16.
During short-term maximal exercise,horses have impaired pulmonary gas exchange, manifested by diffusionlimitation and arterial hypoxemia, without marked ventilation-perfusion(A/)inequality. Whether gas exchange deteriorates progressively duringprolonged submaximal exercise has not been investigated. Sixthoroughbred horses performed treadmill exercise at ~60% of maximaloxygen uptake until exhaustion (28-39 min). Multipleinert gas, blood-gas, hemodynamic, metabolic rate, and ventilatory datawere obtained at rest and 5-min intervals during exercise. Oxygenuptake, cardiac output, and alveolar-arterialPO2 gradient were unchanged after thefirst 5 min of exercise. Alveolar ventilation increased progressivelyduring exercise, from increased tidal volume and respiratory frequency,resulting in an increase in arterialPO2 and decrease in arterialPCO2. At rest there was minimal A/inequality, log SD of the perfusion distribution (logSD) = 0.20. This doubled by 5 min of exercise (logSD = 0.40) butdid not increase further. There was no evidence of alveolar-end-capillary diffusion limitation during exercise. However, there was evidence for gas-phase diffusion limitation at all time points, and enflurane was preferentially overretained. Horses maintainexcellent pulmonary gas exchange during exhaustive, submaximal exercise. AlthoughA/inequality is greater than at rest, it is less than observed in mostmammals and the effect on gas exchange is minimal.

  相似文献   

17.
Baile, Elisabeth M., Lu Wang, Lorraine Verburgt, and PeterD. Paré. Bronchial vasodilatory response to ionic andnonionic contrast media. J. Appl.Physiol. 82(3): 841-845, 1997.It has recentlybeen shown that bronchial arterial injection of conventional contrastmedium causes a significant increase in bronchial blood flow(br) and that this response is partially attenuatedafter infusion ofN-nitro-L-arginine(L-NNA). However, the precisemechanism for this increase in br is unknown. Inthis study we examined the effect of bronchial arterial injection ofconventional ionic as well as nonionic contrast media. We measuredbr in nine anesthetized, ventilated, open-chestsheep. br was recorded before (baseline) and at thepeak response to injection of 0.5 ml of either 0.9% saline (control;isosmolar with plasma), Omnipaque 300 (iohexol; nonionic), Conray 66 (sodium iothalamate; ionic), or 50% dextrose (viscouscontrol).

  相似文献   

18.
Charan, Nirmal B., Shane R. Johnson, S. Lakshminarayan,William H. Thompson, and Paula Carvalho. Nitric oxide and-adrenergic agonist-induced bronchial arterial vasodilation.J. Appl. Physiol. 82(2): 686-692, 1997.In anesthetized sheep, we measured bronchial blood flow(br) by an ultrasonic flow probe to investigate the interaction between inhaled nitric oxide (NO; 100 parts/million) givenfor 5 min and 5 ml of aerosolized isoetharine (1.49 × 102 M concentration).NO and isoetharine increased br from 26.5 ± 6.5 to 39.1 (SE) ± 10.6 and 39.7 ± 10.7 ml/min,respectively (n = 5).Administration of NO immediately after isoetharine further increasedbr to 57.3 ± 15.1 ml/min. NO synthase inhibitorN-nitro-L-arginine methyl esterhydrochloride (L-NAME; 30 mg/kg, in 20 ml salinegiven iv) decreased br to 14.6 ± 2.6 ml/min. NO given three times alternately with isoetharine progressively increased br from 14.6 ± 2.6 to 74.3 ± 17.0 ml/min, suggesting that NO and isoetharine potentiatevasodilator effects of each other. In three other sheep, afterL-NAME, three sequential doses of isoetharine increased br from 10.2 ± 3.4 to11.5 ± 5.7, 11.7 ± 4.7, and 13.3 ± 5.7 ml/min,respectively, indicating that effects of isoetharine are predominantlymediated through synthesis of NO. When this was followed by threesequential administrations of NO, br increased by146, 172, and 185%, respectively. Thus in the bronchial circulationthere seems to be a close interaction between adenosine3,5-cyclic monophosphate- and guanosine3,5-cyclic monophosphate-mediated vasodilatation.

  相似文献   

19.
Age, fitness, and regional blood flow during exercise in the heat   总被引:3,自引:0,他引:3  
Ho, C. W., J. L. Beard, P. A. Farrell, C. T. Minson, and W. L. Kenney. Age, fitness, and regional blood flow during exercisein the heat. J. Appl. Physiol. 82(4):1126-1135, 1997.During dynamic exercise in warm environments,the requisite increase in skin blood flow (SkBF) is supported by anincrease in cardiac output (c) and decreases insplanchnic (SBF) and renal blood flows (RBF). To examine interactionsbetween age and fitness in determining this integrated response, 24 men, i.e., 6 younger fit (YF), 6 younger sedentary (YS), 6 older fit (OF), and 6 older sedentary (OS) rested for 50 min, thenexercised at 35 and 60% maximalO2 consumption(O2 max) at36°C ambient temperature. YF had a significantly higherc and SkBF than any other group during exercise,but fitness level had no significant effect on any measured variable inthe older men. At 60%O2 max, younger subjects had significantly greater decreases in SBF and RBF than theolder men, regardless of fitness level. Total flow redirected fromthese two vascular beds (SBF + RBF) followed YF >> YS > OF > OS. A rigorous 4-wk endurance training programincreased exercise SkBF in OS, but SBF and RBF were unchanged.Under these conditions, older men distribute cdifferently to regional circulations, i.e., smaller increases in SkBFand smaller decreases in SBF and RBF. In younger subjects, the higherSkBF associated with a higher fitness level is a function of both ahigher c and a greater redistribution of flow fromsplanchnic and renal circulations, but the attenuated splanchnic andrenal vasoconstriction in older men does not appear to change withenhanced aerobic fitness.

  相似文献   

20.
Inhibition of carbonic anhydrase (CA) isassociated with a lower plasma lactate concentration([La]pl)during fatiguing exercise. We hypothesized that a lower[La]plmay be associated with faster O2uptake (O2) kinetics during constant-load exercise. Seven men performed cycle ergometer exercise during control (Con) and acute CA inhibition with acetazolamide (Acz,10 mg/kg body wt iv). On 6 separate days, each subject performed 6-minstep transitions in work rate from 0 to 100 W (below ventilatory threshold,<ET)or to a O2 corresponding to~50% of the difference between the work rate atET and peakO2(>ET).Gas exchange was measured breath by breath. Trials were interpolated at1-s intervals and ensemble averaged to yield a single response. The mean response time (MRT, i.e., time to 63% of total exponential increase) for on- and off-transients was determined using a two- (<ET) or athree-component exponential model(>ET).Arterialized venous blood was sampled from a dorsal hand vein andanalyzed for[La]pl.MRT was similar during Con (31.2 ± 2.6 and 32.7 ± 1.2 s for onand off, respectively) and Acz (30.9 ± 3.0 and 31.4 ± 1.5 s for on and off, respectively) for work rates<ET. Atwork rates >ET, MRTwas similar between Con (69.1 ± 6.1 and 50.4 ± 3.5 s for on andoff, respectively) and Acz (69.7 ± 5.9 and 53.8 ± 3.8 s for on and off, respectively). On- and off-MRTs were slower for>ET thanfor <ETexercise.[La]plincreased above 0-W cycling values during<ET and>ET exercise but was lower at the end of the transition during Acz (1.4 ± 0.2 and 7.1 ± 0.5 mmol/l for<ET and>ET,respectively) than during Con (2.0 ± 0.2 and 9.8 ± 0.9 mmol/lfor <ETand >ET,respectively). CA inhibition does not affectO2 utilization at the onset of<ET or>ETexercise, suggesting that the contribution of oxidative phosphorylationto the energy demand is not affected by acute CA inhibition with Acz.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号