首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a psoralen delivery system mediated by a DNA third strand that binds selectively to linear target duplexes immediately downstream from the Sickle Cell β-globin gene mutation and the comparable wild-type β-globin gene sequence, the kinetics of formation and yield of psoralen monoadducts and crosslinks with pyrimidine residues at and near the mutant base pair site and its wild-type counterpart were determined. By exploiting irradiation specificities at 300, 365 and 419 nm, it was possible to evaluate the orientation equilibrium of 3′-linked intercalated psoralen and to develop conditions that lead to preferential formation of each type of photoproduct in both the mutant and wild-type sequences. This makes possible the preparation of each type of photoproduct for use as a substrate for DNA repair. In this way, the base pair change(s) that each generates can be established.  相似文献   

2.
3.
The sequence specificity of DNA damage of n-bromoalkylphenanthridinium bromides, with linker chain lengths (n) of 4,6,8 and 10 methylene groups, was investigated in the plasmid pUC8 and in intact human cells. A linear amplification assay was used to elucidate the DNA sequence specificity of the alkylating agents. In this assay Taq DNA polymerase extends from an oligonucleotide primer up to the damage site and the products run on a DNA sequencing gel to reveal the precise sites of DNA damage. For both the plasmid and cellular experiments, the compound that caused the most damage to DNA was the n = 6 compound, followed by (in decreasing order) the n = 4, n = 8, and n = 10 compounds. There were significant differences in the sequence specificity of DNA damage between n-bromoalkylphenanthridinium bromides of different linker chain length: (1) the main sites of damage were at guanines for the n = 4,6 and 8 compounds but at guanines and adenines for the n = 10 compound; (2) a consensus sequence of 5′-c(a/t)Ggg-3′ was obtained for the n = 4,6 and 8 compounds but 5′-c(a/c)(G/A)(g/a)-3′ for the n = 10 compound; (3) runs of consecutive Gs were the major site of damage for the n = 4,6 and 8 compounds, but consecutive Gs or consecutive As for the n = 10 compound; (4) for damage at single isolated guanines, the most damaged sequences were at 5′-Ga-3′ for the n = 4 compound but at 5′-Gt-3′ for the n = 6,8 and 10 compounds. The tandemly repeated alpha RI DNA sequence was the DNA target in intact human K562 cells. In intact human cells, the compounds produced damage with similar DNA sequence selectivity to that found in plasmid DNA. The n = 4 and 6 compounds possess marginal anti-tumour activity and these compounds produced the most damage in intact human cells. The n = 8 and 10 compounds do not demonstrate significant anti-tumour activity and these compounds resulted in the least damage in cells.  相似文献   

4.
The binding of guanosine/thymidine-rich oligodeoxyribonucleotides containing various deletions, extensions, and point mutations to polypurine DNA targets was investigated by DNase I footprinting. Intermolecular purine-purine-pyrimidine triple-helical DNA formation was best achieved using oligonucleotides 12 nucleotides in length. Longer oligonucleotides were slightly weaker in binding affinity, whereas shorter oligonucleotides were considerably weaker. Oligonucleotide extensions had a slight effect on triplex formation, while single point mutations located near the oligonucleotide ends had a greater effect. In the cases of extensions and point mutations, changes to the 3' end of the oligonucleotide had a consistently greater effect on triplex formation than changes to the 5' end. Such differences in triplex-forming ability were not caused by an intrinsic property of these oligonucleotides, since the same point mutated oligonucleotides could bind with high affinity to duplex DNAs containing complementary sites. Taken together, our data suggest that there may be an asymmetry involved in the process of purine-motif triplex formation, with interactions between the 3' end of the oligonucleotide and complementary sequences on the target duplex DNA being dominant.  相似文献   

5.
The effect of target size on microarray hybridization efficiencies and specificity was investigated using a set of 166 oligonucleotide probes targeting the 16S rRNA gene of Escherichia coli. The targets included unfragmented native rRNA, fragmented rRNA ( approximately 20 to 100 bp), PCR amplicons (93 to 1,480 bp), and three synthetic single-stranded DNA oligonucleotides (45 to 56 bp). Fluorescence intensities of probes hybridized with targets were categorized into classes I (81 to 100% relative to the control probe), II (61 to 80%), III (41 to 60%), IV (21 to 40%), V (6 to 20%), and VI (0 to 5%). Good hybridization efficiency was defined for those probes conferring intensities in classes I to IV; those in classes V and VI were regarded as weak and false-negative signals, respectively. Using unfragmented native rRNA, 13.9% of the probes had fluorescence intensities in classes I to IV, whereas the majority (57.8%) exhibited false-negative signals. Similar trends were observed for the 1,480-bp PCR amplicon (6.6% of the probes were in classes I to IV). In contrast, after hybridization of fragmented rRNA, the percentage of probes in classes I to IV rose to 83.1%. Likewise, when DNA target sizes were reduced from 1,480 bp to 45 bp, this percentage increased approximately 14-fold. Overall, microarray hybridization efficiencies and specificity were improved with fragmented rRNA (20 to 100 bp), short PCR amplicons (<150 bp), and synthetic targets (45 to 56 bp). Such an understanding is important to the application of DNA microarray technology in microbial community studies.  相似文献   

6.
7.
The interactions of pyrimidine deoxyribo- or 2′-O-methylribo-psoralen-conjugated, triplex-forming oligonucleotides, psTFOs, with a 17-bp env-DNA whose purine tract is 5′-AGAGAGAAAAAAGAG-3′, or an 18-bp gag-DNA whose purine tract is 5′-AGG GGGAAAGAAAAAA-3′, were studied over the pH range 6.0–7.5. The stability of the triplex formed by a deoxy-env-psTFO containing 5-methylcytosines and thymines decreased with increasing pH (Tm = 56°C at pH 6.0; 27°C at pH 7.5). Replacement of 5-methylcytosines with 8-oxo-adenines reduced the pH dependence, but lowered triplex stability. A 2′-O-methyl-env-psTFO containing uracil and cytosine did not form a triplex at pH 7.5. Surprisingly, replacement of the cytosines in this oligomer with 5-methylcytosines dramatically increased triplex stability (Tm = 25°C at pH 7.5), and even greater stability was achieved by selective replacement of uracils with thymines (Tm = 37°C at pH 7.5). Substitution of the contiguous 5-methylcytosines of the deoxy-gag-psTFO with 8-oxo-adenines significantly reduced pH dependence and increased triplex stability. In contrast to the behavior of env-specific TFOs, triplexes formed by 2′-O-methyl-gag-psTFOs did not show enhanced stability. Replacement of the 3′-terminal phosphodiester of the TFO with a methylphosphonate group significantly increased the resistance of both deoxy- and 2′-O-methyl-TFOs to degradation by 3′-exonucleases, while maintaining triplex stability.  相似文献   

8.
A DNA third strand with a 3'-psoralen substituent was designed to form a triplex with the sequence downstream of the T.A mutant base pair of the human sickle cell beta-globin gene. Triplex-mediated psoralen modification of the mutant T residue was sought as an approach to gene repair. The 24-nucleotide purine-rich target sequence switches from one strand to the other and has four pyrimidine interruptions. Therefore, a third strand sequence favorable to two triplex motifs was used, one parallel and the other antiparallel to it. To cope with the pyrimidine interruptions, which weaken third strand binding, 5-methylcytosine and 5-propynyluracil were used in the third strand. Further, a six residue "hook" complementary to an overhang of a linear duplex target was added to the 5'-end of the third strand via a T(4) linker. In binding to the overhang by Watson-Crick pairing, the hook facilitates triplex formation. This third strand also binds specifically to the target within a supercoiled plasmid. The psoralen moiety at the 3'-end of the third strand forms photoadducts to the targeted T with high efficiency. Such monoadducts are known to preferentially trigger reversion of the mutation by DNA repair enzymes.  相似文献   

9.
A polypurine tract in the supF gene of bacteriophage lambda (base pairs 167-176) was selected as the target for triple helix formation and targeted mutagenesis by an oligopurine (5'-AGGAAGGGGG-3') containing a chemically linked psoralen derivative (4'-hydroxymethyl-4,5',8-trimethylpsoralen) at its 5' terminus (psoAG10). The thymines at base pairs 166 and 167, a 5'ApT site, were targeted for photomodification. Exposure of the triple helical complex to long wavelength ultraviolet radiation led to the covalent binding of psoAG10 to the targeted region in the supF gene and to the induction of site-specific mutations. We report here experiments to characterize the photomodification of the targeted region of the supF gene in the context of triple helix formation. An electrophoretic mobility-shift assay showed that, at low radiation doses, monoadducts at base pair 166 were the major photoadducts. At higher doses the monoadducts were converted to crosslinks between base pairs 166 and 167. HPLC analysis of enzymatically hydrolyzed photoreaction mixtures was used to confirm the electrophoresis results. A strong strand preference for specific photoadduct formation was also detected.  相似文献   

10.
11.
The triple-helix formation of octadeoxyribonucleotides, (dA)8 and (dT)8, and a shorter oligonucleotide, (dT)n (n; 4, 5, 6, or 7) has been studied by UV and CD measurements. The results showed that the third strand, (dT)5, (dT)6, or (dT)7 can bind to the double helix of (dA)8.(dT)8 at 50 mmol dm-3 MgCl2 though (dT)4 can not bind at the same concentration of the salt.  相似文献   

12.
Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators.  相似文献   

13.
Ultraviolet radiation (UVR)-induced photoproducts can be measured by a number of methods. The newly developed 32P-postlabelling method is feasible in molecular epidemiological studies due to its sensitivity, specificity and little amount DNA needed. We applied the 32P-postlabelling method to investigate the induction and repair of photoproducts (cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts) after UVR in human skin in situ and studied the effects of age, skin type and gender. The study included 30 subjects aged 32-78 years. The photoproduct induction levels varied 7- to 15-fold between the individuals tested. All four types of photoproducts were induced at a higher frequency in the older population (>/=50 years) than in the younger population (<50 years). Individuals with skin type I and II had a higher CPD induction frequency than individuals with skin type III and IV. In both cases, the differences in thymidylyl (3'-5') thymidylyl (3'-5')-2'-deoxycytidine induction reached statistical significant levels (p<0.05). Photoproduct repair rates 24 h and 48 h after UV irradiation showed a large inter-individual variation. No clear effects of age, skin type or gender on DNA repair could be detected. Our data suggest that UV-induced DNA photoproduct levels increase with age.  相似文献   

14.
The complexity of RNA hairpin folding arises from the interplay between the loop formation, the disruption of the slow-breaking misfolded states, and the formation of the slow-forming native base stacks. We investigate the general physical mechanism for the dependence of the RNA hairpin folding kinetics on the sequence and the length of the hairpin loop and the helix stem. For example, 1), the folding would slow down when a stable GC basepair moves to the middle of the stem; 2), hairpin with GC basepair near the loop would fold/unfold faster than the one with GC near the tail of the stem; 3), within a certain range of the stem length, a longer stem can cause faster folding; and 4), certain misfolded states can assist folding through the formation of scaffold structures to lower the entropic barrier for the folding. All our findings are directly applicable and quantitatively testable in experiments. In addition, our results can be useful for molecular design to achieve desirable fast/slow-folding hairpins, hairpins with/without specific misfolded intermediates, and hairpins that fold along designed pathways.  相似文献   

15.
Base substitution of the ori region of simian virus 40 leads to plaque morphology mutants with markedly decreased DNA replication. Second-site mutations within the simian virus 40 T antigen gene suppress the plaque phenotype and replication defect of base-substituted ori mutants. Two second-site mutations have been mapped to a small segment of the T antigen gene, just beyond the distal splice junction. DNA sequence analysis revealed a single missense change in this segment of the T antigen gene of each of these second-site revertants, leading to a change in codon 157 in one case and codon 166 in the other. The mutant T antigens displayed relaxed specificity for the ori signal, i.e., they can function with several variously modified ori sequences, including those with small nucleotide deletions or insertions that are inactive for replication when coupled with wild-type T antigen. Thus a region of T antigen has been identified that appears to be intimately involved in vivo in binding to the ori sequence to initiate viral DNA replication.  相似文献   

16.
17.
Circularly permuted variants of ribonuclease T1 were constructed with a library of residues covalently linking the original amino and carboxyl terminal ends of the wild-type protein. The library of linking peptides consisted of three amino acids containing any combination of proline, aspartate, asparagine, serine, threonine, tyrosine, alanine, and histidine. Forty two unique linker sequences were isolated and 10 of these mutants were further characterized with regard to catalytic activity and overall thermodynamic stability. The 10 mutants with the different linking sequences (HPD, TPH, DTD, TPD, PYH, PAT, PHP, DSS, SPP, and TPS), in addition to GGG and GPG, were 4.0-6.2 kcal/mol less stable than the wild-type ribonuclease T1. However, these circular permuted variants were only 0.4-2.6 kcal/mol less stable than the direct parent protein that is missing the disulfide bond connecting residues 2 and 10. The most stable linking peptide was HPD.  相似文献   

18.
Triple-negative breast cancer (TNBC) is often aggressive and metastatic. Transforming growth factor-β acts as a tumor-promoter in TNBC. Smad3, a major downstream effector protein in the TGF-β signaling pathway, is regulated by phosphorylation at several sites. The functional significance of the phosphorylation of the linker region in Smad3 is poorly understood for TNBC. Among the four sites in the Smad3 linker region, threonine-179 (T179) appears to be unique as it serves as the binding site for multiple WW-domain-containing proteins upon phosphorylation, suggesting that this phosphorylation is a key for Smad3 to engage other pathways.Using genome editing, we introduced for the first time a knock-in (KI) mutation in the endogenous Smad3 gene in IV2, a lung-tropic subline of the human MDA-MB-231 TNBC cell line. In the resulting cell line, the Smad3 T179 phosphorylation site is replaced by non-phosphorylatable valine (T179V) with the mutation in both alleles.The T179V KI reduced cell growth rate and mammosphere formation. These phenomena were accompanied by a significant upregulation of p21Cip1 and downregulation of c-Myc. The T179V KI also reduced cell migration and invasion in vitro. In the mouse xenograft models, the T179V KI markedly reduced the establishment of primary tumor in the mammary fat pad and the lung metastasis.Our results using gene editing indicate the cancer-promoting role of Smad3 T179 phosphorylation in the human TNBC cells. Our findings highly suggest that controlling this phosphorylation may have therapeutic potential for TNBC.  相似文献   

19.
Ultraviolet (UV) exposure induces an up-regulation of melanocortin-1 receptor (MC1R) expression in human skin and the alpha-melanocyte-stimulating hormone (alpha-MSH) may reduce UVB-induced DNA damage in normal human melanocytes. Using high-performance liquid chromatography coupled to tandem mass spectrometry, we investigated the formation and repair of DNA lesions in UVB-irradiated HaCaT cells stably transfected with the wild type MC1R gene (HaCaT-MC1R). Similar levels of 8 bipyrimidine photoproducts including cyclobutane pyrimidine dimers (CPDs) (T<>T, T<>C, C<>T), (6-4) photoproducts ((6-4)PPs) (TT-(6-4)PPs, TC-(6-4)PPs) and their Dewar valence isomers together with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) were found to be generated in both non-transfected and HaCaT-MC1R cells after UVB exposure. Time-course studies of DNA photoproduct yields indicated that the DNA repair ability depended upon radiation doses. It was shown that (6-4)PPs were removed from the DNA of UVB-irradiated cells much more efficiently than CPDs. The repair efficiency of 8-oxodGuo, CPDs and (6-4)PPs was relatively similar in both cell lines and was not modified by stimulation with alpha-MSH before UVB-exposure. In conclusion, cell surface-enforced expression of MC1Rs on HaCaT keratinocytes and alpha-MSH stimulation do not affect the formation of UVB-induced DNA photoproducts and their subsequent repair.  相似文献   

20.
In this paper, we report on the analysis of acid formation in an E. coli pyk mutant. The results demonstrate that acid formation is insignificant for both the wild-type and the mutant at low glucose concentrations. However, at relatively high glucose concentrations, acid formation remains very low for the mutant but is significant for the wild-type. This substantial reduction in acids is accompanied by an increase in CO(2) production. Moreover, unlike the B. subtilis pyk mutant, the E. coli pyk mutant did not show a substantial increase in the PEP pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号