首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

2.
Rao M  Tvaroska I 《Proteins》2001,44(4):428-434
A homology model of alpha-1,3-galactosyltransferase (alpha-1,3-GalT), the retaining enzyme responsible for the formation of alpha-galactosyl epitopes, has been developed by means of molecular modeling using the SpsA glycosyltransferase structure. A protein-ligand docking approach was used to model alpha-1,3-GalT complexed with UDP and UDP-Gal. The comparison of structural features found in the alpha-1,3-GalT homology model with available structural data on this class of enzymes revealed similarities in the UDP-binding pocket. In the predicted structure of the complexes, the pyrophosphate interacts with the DVD motif (Asp-225, Val-226, and Asp-227) of alpha-1,3-GalT through the Mn(2+) cation. The uridine part of the UDP binds into the well-defined cavity that consists of Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, and Thr-137 in a conformation that is generally observed in the crystal structures of other glycosyltransferase complexes.  相似文献   

3.
alpha-Cobratoxin, a long chain curaremimetic toxin from Naja kaouthia venom, was produced recombinantly (ralpha-Cbtx) from Escherichia coli. It was indistinguishable from the snake toxin. Mutations at 8 of the 29 explored toxin positions resulted in affinity decreases for Torpedo receptor with DeltaDeltaG higher than 1.1 kcal/mol. These are R33E > K49E > D27R > K23E > F29A >/= W25A > R36A >/= F65A. These positions cover a homogeneous surface of approximately 880 A(2) and mostly belong to the second toxin loop, except Lys-49 and Phe-65 which are, respectively, on the third loop and C-terminal tail. The mutations K23E and K49E, and perhaps R33E, induced discriminative interactions at the two toxin-binding sites. When compared with the short toxin erabutoxin a (Ea), a number of structurally equivalent residues are commonly implicated in binding to muscular-type nicotinic acetylcholine receptor. These are Lys-23/Lys-27, Asp-27/Asp-31, Arg-33/Arg-33, Lys-49/Lys-47, and to a lesser and variable extent Trp-25/Trp-29 and Phe-29/Phe-32. In addition, however, the short and long toxins display three major differences. First, Asp-38 is important in Ea in contrast to the homologous Glu-38 in alpha-Cbtx. Second, all of the first loop is insensitive to mutation in alpha-Cbtx, whereas its tip is functionally critical in Ea. Third, the C-terminal tail may be specifically critical in alpha-Cbtx. Therefore, the functional sites of long and short curaremimetic toxins are not identical, but they share common features and marked differences that might reflect an evolutionary pressure associated with a great diversity of prey receptors.  相似文献   

4.
The editing domain of valyl-tRNA synthetase (ValRS) is known to deacylate, or edit, misformed Thr-tRNA(Val) (post-transfer editing). Here, we determined the 1.7-Angstroms resolution crystal structure of the Thermus thermophilus ValRS editing domain. A comparison of the structure with the previously reported tRNA complex structure revealed conformational changes of the editing domain upon accommodation of the terminal A76; the "GTG loop" moves to expand the pocket, and the side chain of Phe-264 on the GTG loop rotates to interact with the A76 adenine ring. If these conformational changes did not occur, then C75 and A76 of the tRNA would clash with Phe-264. To elucidate the mechanism of the threonine side-chain recognition, we determined the crystal structure of the editing domain bound with [N-(L-threonyl)-sulfamoyl]adenosine at 1.7-Angstroms resolution. The gamma-OH of the threonyl moiety is recognized by the Lys-270, Thr-272, and Asp-279 side chains, which may reject the cognate valyl moiety. Accordingly, ValRS mutants with an Ala substitution for Lys-270 or Asp-279 synthesized significant amounts of Thr-tRNA(Val). The misproduced Thr-tRNA(Val) was hydrolyzed efficiently by the wild-type ValRS, but this post-transfer editing activity was drastically impaired by the Ala substitutions for Lys-270 and Asp-279 and was also decreased by those for Arg-216, Phe-264, and Thr-272. These results indicate that the threonyl moiety and A76 of Thr-tRNA(Val) are recognized by the Lys-270, Thr-272, and Asp-279 side chains and by the Phe-264 side chain, respectively, of the ValRS editing domain.  相似文献   

5.
Based on predictions of the structure of proteinase 3C of poliovirus, mutations have been made at residues that are supposed to constitute the catalytic triad. Wild-type and mutant 3C were expressed in Escherichia coli, purified to homogeneity, and characterized by the ability to cleave a synthetic peptide substrate or an in vitro translated polypeptide consisting of part of the polyprotein of poliovirus. Additionally, the ability of autocatalytic processing of a precursor harboring wild-type or mutant 3C sequences was tested. Single substitutions of the residues His-40, Glu-71, and Cys-147 by Tyr, Gln, and Ser, respectively, resulted in an inactive enzyme. Replacement of Asp-85 by Asn resulted in an enzyme that was as active as wild-type enzyme in trans cleavage assays but whose autoprocessing ability was impaired. Our results are consistent with the proposal that residues His-40, Glu-71, and Cys-147 constitute the catalytic triad of poliovirus 3C proteinase. Furthermore, residue Asp-85 is not required for proper proteolytic activity despite being highly conserved between different picornaviruses. This indicates that Asp-85 might be involved in a different function of 3C.  相似文献   

6.
The conformation of the staphylococcal nuclease-bound metal-dTdA complex, previously determined by NMR methods [Weber, D.J., Mullen, G.P., Mildvan, A.S. (1991) Biochemistry 30:7425-7437] was docked into the X-ray structure of the enzyme-Ca(2+)-3',5'-pdTp complex [Loll, P.J., Lattman, E.E. (1989) Proteins: Struct., Funct., Genet. 5:183-201] by superimposing the metal ions, taking into account intermolecular nuclear Overhauser effects from assigned aromatic proton resonances of Tyr-85, Tyr-113, and Tyr-115 to proton resonances of the leaving dA moiety of dTdA, and energy minimization to relieve small overlaps. The proton resonances of the Phe, Tyr, and Trp residues of the enzyme in the ternary enzyme-La(3+)-dTdA complex were sequence specifically assigned by 2D phase-sensitive NOESY, with and without deuteration of the aromatic protons of the Tyr residues, and by 2D heteronuclear multiple quantum correlation (HMQC) spectroscopy and 3D NOESY-HMQC spectroscopy with 15N labeling. While resonances of most Phe, Tyr and Trp residues were unshifted by the substrate dTdA from those found in the enzyme-La(3+)-3',5'-pdTp complex and the enzyme-Ca(2+)-3',5'-pdTp complex, proton resonances of Tyr-85, Tyr-113, Tyr-115, and Phe-34 were shifted by 0.08 to 0.33 ppm and the 15N resonance of Tyr-113 was shifted by 2.1 ppm by the presence of substrate. The optimized position of enzyme-bound dTdA shows the 5'-dA leaving group to partially overlap the inhibitor, 3',5'-pdTp (in the X-ray structure). The 3'-TMP moiety of dTdA points toward the solvent in a channel defined by Ile-18, Asp-19, Thr-22, Lys-45, and His-46. The phosphate of dTdA is coordinated by the metal, and an adjacent inner sphere water ligand is positioned to donate a hydrogen bond to the general base Glu-43 and to attack the phosphorus with inversion. Arg-35 and Arg-87 donate monodentate hydrogen bonds to different phosphate oxygens of dTdA, with Arg-87 positioned to protonate the leaving 5'-oxygen of dA, thus clarifying the mechanism of hydrolysis. Model building of an additional 5'-dGMP onto the 3'-oxygen of dA placed this third nucleotide onto a surface cleft near residues Glu-80, Asp-83, Lys-84, and Tyr-115 with its 3'-OH group accessible to the solvent, thus defining the size of the substrate binding site as accommodating a trinucleotide.  相似文献   

7.
We introduced mutations to test the function of the conserved amino-terminal region of the gamma subunit from the Escherichia coli ATP synthase (F0F1-ATPase). Plasmid-borne mutant genes were expressed in an uncG strain which is deficient for the gamma subunit (gamma Gln-14-->end). Most of the changes, which were between gamma Ile-19 and gamma Lys-33, gamma Asp-83 and gamma Cys-87, or at gamma Asp-165, had little effect on growth by oxidative phosphorylation, membrane ATPase activity, or H+ pumping. Notable exceptions were gamma Met-23-->Arg or Lys mutations. Strains carrying these mutations grew only very slowly by oxidative phosphorylation. Membranes prepared from the strains had substantial levels of ATPase activity, 100% compared with wild type for gamma Arg-23 and 65% for gamma Lys-23, but formed only 32 and 17%, respectively, of the electrochemical gradient of protons. In contrast, other mutant enzymes with similar ATPase activities (including gamma Met-23-->Asp or Glu) formed H+ gradients like the wild type. Membranes from the gamma Arg-23 and gamma Lys-23 mutants were not passively leaky to protons and had functional F0 sectors. These results suggested that substitution by positively charged side chains at position 23 perturbed the energy coupling. The catalytic sites of the mutant enzymes were still regulated by the electrochemical H+ gradient but were inefficiently coupled to H+ translocation in both ATP-dependent H+ pumping and delta mu H+ driven ATP synthesis.  相似文献   

8.
The binding of the Epstein-Barr virus glycoprotein gp350 by complement receptor type 2 (CR2) is critical for viral attachment to B lymphocytes. We set out to test hypotheses regarding the molecular nature of this interaction by developing an enzyme-linked immunosorbent assay (ELISA) for the efficient analysis of the gp350-CR2 interaction by utilizing wild-type and mutant forms of recombinant gp350 and also of the CR2 N-terminal domains SCR1 and SCR2 (designated CR2 SCR1-2). To delineate the CR2-binding site on gp350, we generated 17 gp350 single-site substitutions targeting an area of gp350 that has been broadly implicated in the binding of both CR2 and the major inhibitory anti-gp350 monoclonal antibody (MAb) 72A1. These site-directed mutations identified a novel negatively charged CR2-binding surface described by residues Glu-21, Asp-22, Glu-155, Asp-208, Glu-210, and Asp-296. We also identified gp350 amino acid residues involved in non-charge-dependent interactions with CR2, including Tyr-151, Ile-160, and Trp-162. These data were supported by experiments in which phycoerythrin-conjugated wild-type and mutant forms of gp350 were incubated with CR2-expressing K562 cells and binding was assessed by flow cytometry. The ELISA was further utilized to identify several positively charged residues (Arg-13, Arg-28, Arg-36, Lys-41, Lys-57, Lys-67, Arg-83, and Arg-89) within SCR1-2 of CR2 that are involved in the binding interaction with gp350. These experiments allowed a comparison of those CR2 residues that are important for binding gp350 to those that define the epitope for an effective inhibitory anti-CR2 MAb, 171 (Asn-11, Arg-13, Ser-32, Thr-34, Arg-36, and Tyr-64). The mutagenesis data were used to calculate a model of the CR2-gp350 complex using the soft-docking program HADDOCK.  相似文献   

9.
Kaposi's sarcoma-associated human herpesvirus (KSHV) is thought to cause Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Previously, we reported that the KSHV complement control protein (KCP) encoded within the viral genome is a potent regulator of the complement system; it acts both as a cofactor for factor I and accelerates decay of the C3 convertases (Spiller, O. B., Blackbourn, D. J., Mark, L., Proctor, D. G., and Blom, A. M. (2003) J. Biol. Chem. 278, 9283-9289). KCP is a homologue to human complement regulators, being comprised of four complement control protein (CCP) domains. In this, the first study to identify the functional sites of a viral homologue at the amino acid level, we created a three-dimensional homology-based model followed by site-directed mutagenesis to locate complement regulatory sites. Classical pathway regulation, both through decay acceleration and factor I cleavage of C4b, required a cluster of positively charged amino acids in CCP1 stretching into CCP2 (Arg-20, Arg-33, Arg-35, Lys-64, Lys-65, and Lys-88) as well as positively (Lys-131, Lys-133, and His-135) and negatively (Glu-99, Glu-152, and Asp-155) charged areas at opposing faces of the border region between CCPs 2 and 3. The regulation of the alternative pathway (via factor I-mediated C3b cleavage) was found to both overlap with classical pathway regulatory sites (Lys-64, Lys-65, Lys-88 and Lys-131, Lys-133, His-135) as well as require unique, more C-terminal residues in CCPs 3 and 4 (His-158, His-171, and His-213) and CCP 4 (Phe-195, Phe-207, and Leu-209). We show here that KCP has evolved to maintain the spatial structure of its functional sites, especially the positively charged patches, compared with host complement regulators.  相似文献   

10.
Manithody C  Rezaie AR 《Biochemistry》2005,44(30):10063-10070
It has been hypothesized that two antiparallel structures comprised of residues 82-91 and 102-116 in factor Xa (fXa) may harbor a factor Va- (fVa-) dependent prothrombin recognition site in the prothrombinase complex. There are 11 charged residues in the 82-116 loop of human fXa (Glu-84, Glu-86, Lys-90, Arg-93, Lys-96, Glu-97, Asp-100, Asp-102, Arg-107, Lys-109, and Arg-115). With the exception of Glu-84, which did not express, and Asp-102, which is a catalytic residue, we expressed the Ala substitution mutants of all other residues and evaluated their proteolytic and amidolytic activities in both the absence and presence of fVa. K96A and K109A activated prothrombin with 5-10-fold impaired catalytic efficiency in the absence of fVa. All mutants, however, exhibited normal activity toward the substrate in the presence of fVa. K109A also exhibited impaired amidolytic activity and affinity for Na(+); however, both fVa and higher Na(+) restored the catalytic defect caused by the mutation. Analysis of the X-ray crystal structure of fXa indicated that Glu-84 may interact by a salt bridge with Lys-109, explaining the lack of expression of E84A and the lower activity of K109A in the absence of fVa. These results suggest that none of the residues under study is a fVa-dependent recognition site for prothrombin in the prothrombinase complex; however, Lys-96 is a recognition site for the substrate independent of the cofactor. Moreover, the 82-116 loop is energetically linked to fVa and Na(+) binding sites of the protease.  相似文献   

11.
The tetradecapeptide Ac-D-F-L-A-E-G-G-G-V-R-G-P-R-V-OMe, which mimics residues 7f-20f of the A alpha-chain of human fibrinogen, has been co-crystallized with bovine thrombin from ammonium sulfate solutions in space group P2(1) with unit cell dimensions of a = 83.0 A, b = 89.4 A, c = 99.3 A, and beta = 106.6 degrees. Three crystallographically independent complexes were located in the asymmetric unit by molecular replacement using the native bovine thrombin structure as a model. The standard crystallographic R-factor is 0.167 at 2.3-A resolution. Excellent electron density could be traced for the decapeptide, beginning with Asp-7f and ending with Arg-16f in the active site of thrombin; the remaining 4 residues, which have been cleaved from the tetradecapeptide at the Arg-16f/Gly-17f bond, are not seen. Residues 7f-11f at the NH2 terminus of the peptide form a single turn of alpha-helix that is connected by Gly-12f, which has a positive phi angle, to an extended chain containing residues 13f-16f. The major specific interactions between the peptide and thrombin are 1) a hydrophobic cage formed by residues Tyr-60A, Trp-60D, Leu-99, Ile-174, Trp-215, Leu-9f, Gly-13f, and Val-15f that surrounds Phe-8f; 2) a hydrogen bond linking Phe-8f NH to Lys-97 O;3) a salt link between Glu-11f and Arg-173; 4) two antiparallel beta-sheet hydrogen bonds between Gly-14f and Gly-216; and 5) the insertion of Arg-16f into the specificity pocket. Binding of the peptide is accompanied by a considerable shift in two of the loops near the active site relative to human D-phenyl-L-prolyl-L-arginyl chloromethyl ketone (PPACK)-thrombin.  相似文献   

12.
Point mutations in anthrax protective antigen that block translocation   总被引:4,自引:0,他引:4  
The protective antigen (PA) moiety of anthrax toxin delivers the toxin's enzymatic moieties to the cytosol of mammalian cells by a mechanism associated with its ability to heptamerize and form a transmembrane pore. Here we report that mutations in Lys-397, Asp-425, or Phe-427 ablate killing of CHO-K1 cells by a cytotoxic PA ligand. These mutations blocked PA's ability to mediate pore formation and translocation in cells but had no effect on its receptor binding, proteolytic activation, or ability to oligomerize and bind the toxin's enzymatic moieties. The mutation-sensitive residues lie in the 2beta(7)-2beta(8) and 2beta(10)-2beta(11) loops of domain 2 and are distant both in primary structure and topography from the 2beta(2)-2beta(3) loop, which is believed to participate in formation of a transmembrane beta-barrel. These results suggest that Lys-397, Asp-425, and Phe-427 participate in conformational rearrangements of a heptameric pore precursor that are necessary for pore formation and translocation. Identification of these residues will aid in elucidating the mechanism of translocation and may be useful in developing therapeutic and prophylactic agents against anthrax.  相似文献   

13.
Glycine receptors (GlyRs) are chloride channels that mediate fast inhibitory neurotransmission and are members of the pentameric ligand-gated ion channel (pLGIC) family. The interface between the ligand binding domain and the transmembrane domain of pLGICs has been proposed to be crucial for channel gating and is lined by a number of charged and aromatic side chains that are highly conserved among different pLGICs. However, little is known about specific interactions between these residues that are likely to be important for gating in α1 GlyRs. Here we use the introduction of cysteine pairs and the in vivo nonsense suppression method to incorporate unnatural amino acids to probe the electrostatic and hydrophobic contributions of five highly conserved side chains near the interface, Glu-53, Phe-145, Asp-148, Phe-187, and Arg-218. Our results suggest a salt bridge between Asp-148 in loop 7 and Arg-218 in the pre-M1 domain that is crucial for channel gating. We further propose that Phe-145 and Phe-187 play important roles in stabilizing this interaction by providing a hydrophobic environment. In contrast to the equivalent residues in loop 2 of other pLGICs, the negative charge at Glu-53 α1 GlyRs is not crucial for normal channel function. These findings help decipher the GlyR gating pathway and show that distinct residue interaction patterns exist in different pLGICs. Furthermore, a salt bridge between Asp-148 and Arg-218 would provide a possible mechanistic explanation for the pathophysiologically relevant hyperekplexia, or startle disease, mutant Arg-218 → Gln.  相似文献   

14.
The interaction between eukaryotic cytochrome c and the tryptic fragment of bovine liver microsomal cytochrome b5 was studied by 1H-n.m.r. spectroscopy, and a procedure was developed that may be generally applicable to the study of macromolecular interactions by n.m.r. At pH6.3 (27 degrees C, I approx. 0.04) the two ferricytochromes were found to form a 1:1 complex with an association constant of approx. 10(3) M -1. The protein--protein-interaction region was found to encompass the region of the surface of horse cytochrome c that includes Ile-81, Phe-82, Ala-83 and Ile-85, and Lys-13 and Lys-72 of horse cytochrome c were suggested to be involved in two important intermolecular interactions. Me3Lys-72 of Candida krusei cytochrome c was shown to be involved in the interaction.  相似文献   

15.
The Holliday junction cleavage protein, Hjc resolvase of Pyrococcus furiosus, is the first Holliday junction resolvase to be discovered in Archaea. Although the archaeal resolvase shares certain biochemical properties with other non-archaeal junction resolvases, no amino acid sequence similarity has been identified. To investigate the structure-function relationship of this new Holliday junction resolvase, we constructed a series of mutant hjc genes using site-directed mutagenesis targeted at the residues conserved among the archaeal orthologs. The products of these mutant genes were purified to homogeneity. With analysis of the activity of the mutant proteins to bind and cleave synthetic Holliday junctions, one acidic residue, Glu-9, and two basic residues, Arg-10 and Arg-25, were found to play critical roles in enzyme action. This is in addition to the three conserved residues, Asp-33, Glu-46, and Lys-48, which are also conserved in the motif found in the type II restriction endonuclease family proteins. Two aromatic residues, Phe-68 and Phe-72, are important for the formation of the homodimer probably through hydrophobic interactions. The results of these studies have provided insights into the structure-function relationships of the archaeal Holliday junction resolvase as well as the universality and diversity of the Holliday junction cleavage reaction.  相似文献   

16.
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 inhibits trypsin, plasmin, and factor VIIa (FVIIa)/tissue factor with Ki values of 13, 3, and 1640 nM, respectively. To investigate the molecular specificity of KD1, crystals of the complex of KD1 with bovine beta-trypsin were obtained that diffracted to 1.8 A. The P1 residue Arg-15 (bovine pancreatic trypsin inhibitor numbering) in KD1 interacts with Asp-189 (chymotrypsin numbering) and with the carbonyl oxygens of Gly-219 and Ogamma of Ser-190. Leu-17, Leu-18, Leu-19, and Leu-34 in KD1 make van der Waals contacts with Tyr-39, Phe-41, and Tyr-151 in trypsin, forming a hydrophobic interface. Molecular modeling indicates that this complementary hydrophobic patch is composed of Phe-37, Met-39, and Phe-41 in plasmin, whereas in FVIIa/tissue factor, it is essentially absent. Arg-20, Tyr-46, and Glu-39 in KD1 interact with trypsin through ordered water molecules. In contrast, insertions in the 60-loop in plasmin and FVIIa allow Arg-20 of KD1 to directly interact with Glu-60 in plasmin and Asp-60 in FVIIa. Moreover, Tyr-46 in KD1 electrostatically interacts with Lys-60A and Arg-60D in plasmin and Lys-60A in FVIIa. Glu-39 in KD1 interacts directly with Arg-175 of the basic patch in plasmin, whereas in FVIIa, such interactions are not possible. Thus, the specificity of KD1 for plasmin is attributable to hydrophobic and direct electrostatic interactions. For trypsin, hydrophobic interactions are intact, and electrostatic interactions are weak, whereas for FVIIa, hydrophobic interactions are missing, and electrostatic interactions are partially intact. These findings provide insight into the protease selectivity of KD1.  相似文献   

17.
DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, seems to be reactivated from the ADP-bound form to its ATP-bound form through stimulation of ADP release by acidic phospholipids such as cardiolipin. We previously reported that two potential amphipathic helices (Lys-327 to Ile-344 and Asp-357 to Val-374) of DnaA protein are involved in the functional interaction between DnaA and cardiolipin. In relation to one of these helices (Asp-357 to Val-374), we demonstrated that basic amino acids in the helix, especially Lys-372, are vital for this interaction. In this study, we have identified an amino acid in the second potential amphipathic helix (Lys-327 to Ile-344), which would also appear to be involved in the interaction. We constructed three mutant dnaA genes with a single mutation (dnaAR328E, dnaAR334E, and dnaAR342E) and examined the function of the mutant proteins. DnaAR328E, but not DnaAR334E and DnaAR342E, was found to be more resistant to inhibition of its ATP binding activity by cardiolipin than the wild-type protein. The stimulation of ADP release from DnaAR328E by cardiolipin was also weaker than that observed with the other mutants and the wild-type protein. These results suggest that Arg-328 of DnaA protein is involved in the functional interaction of this protein with acidic phospholipids. We propose that acidic phospholipids bind to two basic amino acid residues (Arg-328 and Lys-372) of DnaA protein and change the higher order structure of its ATP-binding pocket, which in turn stimulates the release of ADP from the protein.  相似文献   

18.
Strictly conserved charged residues among polygalacturonases (Asp-180, Asp-201, Asp-202, His-223, Arg-256, and Lys-258) were subjected to site-directed mutagenesis in Aspergillus niger endopolygalacturonase II. Specific activity, product progression, and kinetic parameters (K(m) and V(max)) were determined on polygalacturonic acid for the purified mutated enzymes, and bond cleavage frequencies on oligogalacturonates were calculated. Depending on their specific activity, the mutated endopolygalacturonases II were grouped into three classes. The mutant enzymes displayed bond cleavage frequencies on penta- and/or hexagalacturonate different from the wild type endopolygalacturonase II. Based on the biochemical characterization of endopolygalacturonase II mutants together with the three-dimensional structure of the wild type enzyme, we suggest that the mutated residues are involved in either primarily substrate binding (Arg-256 and Lys-258) or maintaining the proper ionization state of a catalytic residue (His-223). The individual roles of Asp-180, Asp-201, and Asp-202 in catalysis are discussed. The active site topology is different from the one commonly found in inverting glycosyl hydrolases.  相似文献   

19.
W H Ward  D H Jones  A R Fersht 《Biochemistry》1987,26(13):4131-4138
Wild-type tyrosyl-tRNA synthetase (TyrTS) from Bacillus stearothermophilus is a symmetrical dimer. Four different heterodimeric enzymes have been produced by site-directed mutagenesis at the subunit interface so that the monomers are linked by a potential salt bridge in a hydrophobic environment. The two Phe-164 residues of wild-type TyrTS are on the axis of symmetry and interact in a hydrophobic region of the subunit interface. Mutation of Phe-164 to aspartate or glutamate in full-length TyrTS and to lysine or arginine in an active truncated enzyme (delta TyrTS) induces reversible dissociation of the enzyme into inactive monomers. Mixing mutants in equimolar amounts produces four different heterodimers: TyrTS(Asp-164)-delta TyrTS(Lys-164); TyrTS(Asp-164)-delta TyrTS(Arg-164); TyrTS(Glu-164)-delta TyrTS(Lys-164); TyrTS(Glu-164)-delta TyrTS(Arg-164). A general method is derived for analyzing the kinetics of dimeric enzymes that reversibly dissociate into inactive subunits. Application to mutants of TyrTS allows estimation of dissociation constants (Kd values) for the dimers. At pH 7.8, the heterodimers have Kd values of 6-14 microM, whereas for homodimers Kd = 120-4000 microM. These values decrease to about 30 microM for homodimers of TyrTS(Asp-164), TyrTS(Glu-164), and delta TyrTS(Lys-164) when the pH favors uncharged forms of the side chains at position 164. Each of the four salt bridges engineered into the hydrophobic subunit interface of TyrTS appears, therefore, to be weak. These engineered salt bridges may be compared with naturally occurring ones. In the latter, there are complementary interactions between the charges in the salt bridge with polar groups in the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The global anaerobic regulator FNR from Escherichia coli is a dimeric Fe-S protein that is inactivated by O(2) through disruption of its [4Fe-4S] cluster and conversion to a monomeric form. As a first step in elucidating the molecular interactions that control FNR dimerization, we have performed alanine-scanning mutagenesis of a potential dimerization domain. Replacement of many hydrophobic residues (Met-143, Met-144, Leu-146, Met-147, Ile-151, Met-157, and Ile-158) and two charged residues (Arg-140 and Arg-145) with Ala decreased FNR activity in vivo. Size exclusion chromatography and Fe-S cluster analysis of three representative mutant proteins, FNR-M147A, FNR-I151A, and FNR-I158A, showed that the Ala substitutions produced specific defects in dimerization. Because hydrophobic side chains are known to stabilize subunit-subunit interactions between alpha-helices, we propose that Met-147, Ile-151, and Ile-158 lie on the same face of an alpha-helix that constitutes a dimerization interface. This alignment would also position Arg-140, Met-144, and Asp-154 on the same helical face. In support of the unusual positioning of a negatively charged residue at the dimer interface, we found that replacing Asp-154 with Ala repaired the defects caused by Ala substitutions of other residues located on the same helical face. These data also suggest that Asp-154 has an inhibitory effect on dimerization, which may be a key element in the control of FNR dimerization by O(2) availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号