首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the milk of marsupials, oligosaccharides usually predominate over lactose during early to mid lactation. Studies have shown that tammar wallaby milk contains a major series of neutral galactosyllactose oligosaccharides ranging in size from tri- to at least octasaccharides, as well as β(1-6) linked N-acetylglucosamine-containing oligosaccharides as a minor series. In this study, acidic oligosaccharides were purified from red kangaroo milk and characterized by (1)H-nuclear magnetic resonance spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, to be as follows: Neu5Ac(α2-3)Gal(β1-4)Glc (3'-SL), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Glc (sialyl 3'-galactosyllactose), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose b), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)(-3-O-sulfate)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc. These acidic oligosaccharides were shown to be sialylated or sulfated in the non-reducing ends to the major linear and the minor branched series of neutral oligosaccharides of tammar wallaby milk.  相似文献   

2.
2-Methyl-3-phenylcyclopropylmethyl 3-phenoxybenzyl ether 2 and cyanohydrin ester 3, a couple of pyrethroids with three asymmetric centers, were synthesized. Of each of the four diastereomers of 2 and 3, only the (1R*,2R*,3R*)-2a and 3a showed significant insecticidal activities. Dual sets of enantiomers [(1R,2R,3R)-(-)-2a and (1S,2S,3S)-(+)-2a] and [(1R,2R,3R)-(-)-3a and (1S,2S,3S)-(+)-3a] were synthesized through the asymmetric cyclopropanation using the Aratani catalyst. Significant separations of insecticidal activities were observed between both the enantiomers against the tobacco cutworm (Spodoptera litura) and the common mosquito (Culex pipiens pallens); (1S,2S,3S)-(+)-2a and (+)-3a showed higher activities than their antipodes (1R,2R,3R)(-)-2a and (-)-3a. This result is the second example of such synthetic pyrethroids with three asymmetric centers.  相似文献   

3.
Smad3 protein is a prominent member of the Tgfb receptor signaling pathway. Smad3(-/-) mice display decreased radiation-induced skin fibrosis, suggesting a defect in both Tgfb-mediated fibroblast proliferation and migration. We established bone marrow stromal cell lines from Smad3(-/-) mice and homozygous littermate(+/+) mice. Smad3(-/-) cells displayed a significant increase in radiation resistance with a D(0)=2.25+/- 0.14 Gy compared to Smad3(+/+) cells with a D(0)=1.75+/- 0.03 (P=0.023). Radioresistance was abrogated by reinsertion of the human SMAD3 transgene, resulting in a D(0)=1.49 0.10 (P=0.028) for Smad3(-/-)(3) cells. More Smad3(-/-) cells than Smad3(+/+) cells were in the G(2)/M phase; Smad3(-/-)(3) cells were similar to Smad3(+/+) cells. Smad3(+/+) cells exhibited increased apoptosis 24 h after 5 Gy (15%) or 8 Gy (43%) compared to less than 1% in Smad3(-/-) cells exposed to either dose. The movement of Smad3(-/-) cells, measured in an automated cell tracking system, was slower than that of Smad3(+/+) cells. Smad3(-/-)(3) cells resembled Smad3(+/+) cells. These studies establish concordance of a defective Tgfb signal transduction pathway, an increased proportion of G(2)/M cells, and radioresistance. The decreased migratory capacity of Smad3(-/-) cells in vitro correlates with decreased radiation fibrosis in vivo in mice deficient in Tgfb signaling.  相似文献   

4.
Hydrochloric acid treatment of methyl 3-(4-isobutylphenyl)-3-methylglycidate and methyl 2-hydroxy-3-(4-isobutylphenyl)-3-butenoate, a rearrangement product of the former, in acetic acid gave 3-(4-isobutylphenyl)-3-methylpyruvic acid and 2-(4-isobutylphenyl)-pro-panal. The same treatment of 2-hydroxy-3-(4-isobutylphenyl)-3-butenoic acid gave 2-(4-isobutylphenyl)-propanal. Both 3-(4-isobutylphenyl)-3-methylpyruvic acid and 2-(4-iso-butylphenyl)-propanal were oxidized to 2-(4-isobutylphenyl)-propionic acid.  相似文献   

5.
As a result of screening of microorganisms, Mucor ambiguus IFO 6742 was found to reduce methyl 2-chloro-3-(4-methoxyphenyl)-3-oxopropionate (2) to give methyl (2S,3R)-2-chloro-3-hydroxy-3-(4-methoxyphenyl)propionate [(2S,3R)-3] in good yield with high enantioselectivity. The resulting (2S, 3R)-3 was converted into methyl (2S,3R)-3-(4-methoxyphenyl)glycidate [(2S,3R)-4] by treatment with sodium methoxide. On the other hand, its enantiomer, (2R,3S)-4 was obtained by the Mitsunobu esterification of (2S,3R)-3 and subsequent treatment with sodium methoxide. Also (2R,3S)-4 was obtained by the treatment of (2RS,3S)-3, which was obtained from 2 by Trichoderma viride OUT 4642, with sodium methoxide.  相似文献   

6.
Structural characterizations of marsupial milk oligosaccharides have been performed in only three species: the tammar wallaby, the red kangaroo and the koala. To clarify the homology and heterogeneity of milk oligosaccharides among marsupials, 21 oligosaccharides of the milk carbohydrate fraction of the common brushtail possum were characterized in this study. Neutral and acidic oligosaccharides were separated from the carbohydrate fraction of mid-lactation milk and characterized by 1H-nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The structures of the 7 neutral oligosaccharides were Gal(β1-3)Gal(β1-4)Glc (3’-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3”, 3’-digalactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I), Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl lacto-N-novopentaose I), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-3)Gal(β1-4)Glc (galactosyl lacto-N-novopentaose II). The structures of the 14 acidic oligosaccharides detected were Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Glc (sialyl 3’-galactosyllactose), Gal(β1-3)(O-3-sulfate)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate a) Gal(β1-3)[Gal(β1-4)(O-3-sulfate)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I sulfate b), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)(?3-O-sulfate)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)[Gal(β1-4)(?3-O-sulfate)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose b), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Gal(β1-3)(?3-O-sulphate)Gal(β1-3)Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc, Neu5Ac(α2-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)(?3-O-sulphate)Gal(β1-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc, Gal(β1-3)Gal(β1-3)Gal(β1-3)[Gal(β1-4)(?3-O-sulphate)GlcNAc(β1-6)]Gal(β1-4)Glc and Gal(β1-3)Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (galactosyl sialyl lacto-N-novopentaose b). No fucosyl oligosaccharides were detected. Galactosyl lacto-N-novopentaose II, lacto-N-novopentaose I sulfate a, lacto-N-novopentaose I sulfate b and galactosyl sialyl lacto-N-novopentaose b are novel oligosaccharides. The results are compared with those of previous studies on marsupial milk oligosaccharides.  相似文献   

7.
Previous structural characterizations of marsupial milk oligosaccharides had been performed in only two macropod species, the tammar wallaby and the red kangaroo. To clarify the homology and heterogeneity of milk oligosaccharides among marsupial species, which could provide information on their evolution, the oligosaccharides of the koala milk carbohydrate fraction were characterized in this study. Neutral and acidic oligosaccharides were separated from the carbohydrate fraction of milk of the koala, a non-macropod marsupial, and characterized by 1H-nuclear magnetic resonance spectroscopy. The structures of the neutral saccharides were found to be Gal(β1-4)Glc (lactose), Gal(β1-3)Gal(β1-4)Glc (3′-galactosyllactose), Gal(β1-3)Gal(β1-3)Gal(β1-4)Glc (3′,3″-digalactosyllactose), Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (lacto-N-novopentaose I) and Gal(β1-3){Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (fucosyl lacto-N-novopentaose I), while those of the acidic saccharides were Neu5Ac(α2-3)Gal(β1-4)Glc (3′-SL), Neu5Ac(α2-3)Gal(β1-3)Gal(β1-4)Gal (sialyl 3′-galactosyllactose), Neu5Ac(α2-3)Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose a), Gal(β1-3)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose b), Gal(β1-3)[Neu5Ac(α2-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc (sialyl lacto-N-novopentaose c), and Neu5Ac(α2-3)Gal(β1-3){Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-6)}Gal(β1-4)Glc (fucosyl sialyl lacto-N-novopentaose a). The neutral oligosaccharides, other than fucosyl lacto-N-novopentaose I, a novel hexasaccharide, had been found in milk of the tammar wallaby, a macropod marsupial, while the acidic oligosaccharides, other than fucosyl sialyl lacto-N-novopentaose a had been identified in milk carbohydrate of the red kangaroo. The presence of fucosyl oligosaccharides is a significant feature of koala milk, in which it differs from milk of the tammar wallaby and the red kangaroo.  相似文献   

8.
We have reconstituted the platelet glycoprotein (GP) Ib-IX-mediated activation of the integrin alpha(IIb)beta(3) in a recombinant DNA expression model, and show that 14-3-3 is important in GPIb-IX signaling. CHO cells expressing alpha(IIb)beta(3) adhere poorly to vWF. Cells expressing GPIb-IX adhere to vWF in the presence of botrocetin but spread poorly. Cells coexpressing integrin alpha(IIb)beta(3) and GPIb-IX adhere and spread on vWF, which is inhibited by RGDS peptides and antibodies against alpha(IIb)beta(3). vWF binding to GPIb-IX also activates soluble fibrinogen binding to alpha(IIb)beta(3) indicating that GPIb-IX mediates a cellular signal leading to alpha(IIb)beta(3) activation. Deletion of the 14-3-3-binding site in GPIbalpha inhibited GPIb-IX-mediated fibrinogen binding to alpha(IIb)beta(3) and cell spreading on vWF. Thus, 14-3-3 binding to GPIb-IX is important in GPIb-IX signaling. Expression of a dominant negative 14-3-3 mutant inhibited cell spreading on vWF, suggesting an important role for 14-3-3. Deleting both the 14-3-3 and filamin-binding sites of GPIbalpha induced an endogenous integrin-dependent cell spreading on vWF without requiring alpha(IIb)beta(3), but inhibited vWF-induced fibrinogen binding to alpha(IIb)beta(3). Thus, while different activation mechanisms may be responsible for vWF interaction with different integrins, GPIb-IX-mediated activation of alpha(IIb)beta(3) requires 14-3-3 interaction with GPIbalpha.  相似文献   

9.
The most acidic carbohydrate chains released by alkaline borohydride treatment of the bulk of airway mucins secreted by a patient (blood group O, secretor) suffering from a mildly infected chronic bronchitis have been fractionated using high-performance anion-exchange chromatography (HPAEC) according to a protocol already described [Lo-Guidice et al., J. Biol. Chem. 269 (1994) 18794] and were analyzed using 1H-NMR spectroscopy and matrix-assisted laser-adsorption-time-of-flight (MALDI-TOF) spectrometry. Many fractions corresponded to mixtures of oligosaccharides. This confirmed the wide diversity of the post-translational processes involved in the biosynthesis of airway mucins, which had already been observed in bronchial diseases, such as chronic bronchitis and cystic fibrosis (CF). Seven fractions were directly purified by HPAEC, allowing their structural determination. Six of them corresponded to 3-O-sulfated oligosaccharide chains terminated by a sulfated N-acetyllactosamine, a sulfated Lewis X or a sulfated Lewis A determinant, and the last one corresponded to a 6-O-sulfated chain terminated by a sulfated H-2 determinant. Three oligosaccharides had core type 2 and the other four had core type 4: IIIc2-9: Gal(beta1-3)[HSO(3)-3-Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol, IIIc2-10: Gal(beta1-3)[Fuc(alpha1-2)Gal(beta1-4)[HSO(3)-6-]GlcNAc(beta1-6)]GalNAc-ol, IIIc2-4: Fuc(alpha1-2)Gal(beta1-3)[HSO(3)-3-Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)]GalNAc-ol, IIIc2-8: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[HSO(3)-3-Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol, IIIc2-7: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[Gal(beta1-4)[HSO(3)-6-]GlcNAc(beta1-6)]GalNAc-ol, IIIc2-3: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[HSO(3)-3-Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)]GalNAc-ol, IIIc1-4: Fuc(alpha1-2)Gal(beta1-3)GlcNAc(beta1-3)[HSO(3) -3-Gal(beta1-3)[Fuc(alpha1-4)]GlcNAc(beta1-3)Gal(beta1-4)GlcNAc(beta1-6)]GalNAc-ol. Like previous data concerning the airway mucins from another patient (blood group O and non-secretor) suffering from chronic bronchitis [Lo-Guidice et al., Glycoconj. J. 14 (1997) 113], no disialylated oligosaccharide and no sialylated and sulfated oligosaccharide bearing sialyl Lewis X epitope could be isolated. This is in contrast with the data obtained with the airway mucins secreted by the patient severely infected by Pseudomonas aeruginosa and suffering from CF, suggesting that important differences occur in the biosynthesis of airway mucins secreted by patients suffering from different bronchial diseases with or without severe infection.  相似文献   

10.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

11.
Cyclic nucleotide-gated (CNG) channels play a pivotal role in phototransduction. Mutations in the cone CNG channel subunits CNGA3 and CNGB3 account for >70% of all known cases of achromatopsia. Cones degenerate in achromatopsia patients and in CNGA3(-/-) and CNGB3(-/-) mice. This work investigates the molecular basis of cone degeneration in CNG channel deficiency. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we generated mouse lines with CNG channel deficiency on a cone-dominant background, i.e. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice. The retinal phenotype and potential cell death pathways were examined by functional, biochemical, and immunohistochemical approaches. CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) mice showed impaired cone function, opsin mislocalization, and cone degeneration similar to that in the single knock-out mice. The endoplasmic reticulum stress marker proteins, including Grp78/Bip, phospho-eIF2α, phospho-IP(3)R, and CCAAT/enhancer-binding protein homologous protein, were elevated significantly in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, compared with the age-matched (postnatal 30 days) Nrl(-/-) controls. Along with these, up-regulation of the cysteine protease calpains and cleavage of caspase-12 and caspase-7 were found in the channel-deficient retinas, suggesting an endoplasmic reticulum stress-associated apoptosis. In addition, we observed a nuclear translocation of apoptosis-inducing factor (AIF) and endonuclease G in CNGA3(-/-)/Nrl(-/-) and CNGB3(-/-)/Nrl(-/-) retinas, implying a mitochondrial insult in the endoplasmic reticulum stress-activated cell death process. Taken together, our findings suggest a crucial role of endoplasmic reticulum stress in cone degeneration associated with CNG channel deficiency.  相似文献   

12.
Microbial hydroxylation of (+/-)-(2Z,4E)-5-(1',2'-epoxy-2',6',6'-trimethylcyclohexyl)-3-methyl-2,4-pentadienoic acid (3a) with Cercospora cruenta, a fungus producing (+)-abscisic acid, gave a four-stereoisomeric mixture consisting of (+)- and (-)-xanthoxin acid (4a), and (+)- and (-)-epi-xanthoxin acid (5a) by an HPLC analysis with a chiral column. Screening of the microorganisms capable of oxidizing (+/-)-3a showed that Cunninghamella echinulata stereoselectively oxidized (+/-)-3a to xanthoxin acid (4a) with the some degree of enantioselectivity as (-)-3a to (-)-4a.  相似文献   

13.
A bacterial consortium capable of degrading the fumigant 1,3-D ((Z)- and (E)-1,3-dichloropropene) was enriched from an enhanced soil. This mixedculture degraded (Z)- and (E)-1,3-D only in the presence of a suitable biodegradable organic substrate, such as tryptone, tryptophan, or alanine. After 8 months of subculturing at 2- to 3-week intervals, a strain of Rhodococcus sp. (AS2C) that was capable of degrading 1,3-D cometabolically in the presenceof a suitable second substrate was isolated. (Z)-3-chloroallyl alcohol (3-CAA) and (Z)-3-chloroacrylic acid (3-CAAC), and (E)-3-CAA and (E)-3-CAAC were the metabolites of (Z)- and (E)-1,3-D, respectively. (E)-1,3-D was degraded faster than (Z)-1,3-D by the strain AS2C and the consortium. AS2C also degraded (E)-3-CAA faster than (Z)-3-CAA. Isomerization of (E)-1,3-D to (Z)-1,3-D orthe (Z) form to the (E) form did not occur.  相似文献   

14.
The yolk sac of the pregnant rat which functions as a true placenta is a target organ for vitamin D. This tissue can hydroxylate in position 24 both 25-hydroxy- and 1,25-dihydroxyvitamin D3 (25-OHD3 and 1,25-(OH)2D3). The present report describes an in vitro model for the study of 1,25-(OH)2D3 action on the further metabolism of 25-OH[3H]D3 and 1,25-(OH)2[3H]D3 by yolk sac. The tissue explants were preincubated with 1,25-(OH)2D3 for 18 h in a serum-free culture medium. Physiological concentrations of 1,25-(OH)2D3 were the most effective in stimulating (7.5-fold) the 1,25-(OH)2D3 24-hydroxylase, while the 25-OHD3 24-hydroxylase stimulation (4-fold) required a 1,25-(OH)2D3 concentration of 10(-7) M. The stimulating effect of 1,25-(OH)2D3 on the 1,25-(OH)2D3 24-hydroxylase was temperature-dependent, and, since its was inhibited by actinomycin D and cycloheximide, required de novo protein synthesis. 1,24,25-(OH)3D3, 25-OHD3, and 24,25-(OH)2D3 were 10- to 1000-fold less potent than 1,25-(OH)2D3 in inducing the 1,25-(OH)2D3 hydroxylase. Our results strongly suggest that 1,25-(OH)2D3 regulated the 1,25-(OH)2D3 24-hydroxylase by a receptor-mediated process. Furthermore, 1,25-(OH)2D3 at 10(-9) M induced within 4 h an increase of its own degradation and the formation of an as yet unidentified major 1,25-(OH)2[3H]D3 metabolite. We conclude that the yolk sac can participate in the regulation of 1,25-(OH)2D3 concentration in the fetoplacental unit.  相似文献   

15.
Alkaline degradation of the ascorbigen 2-C-[(indol-3-yl)methyl]-alpha-L-xylo-hex-3-ulofuranosono-1,4-lactone (1a) led to a mixture of 1-deoxy-1-(indol-3-yl)-L-sorbose (2a) and 1-deoxy-1-(indol-3-yl)-L-tagatose (3a). The mixture of diastereomeric ketoses underwent acetylation and pyranose ring opening under the action of acetic anhydride in pyridine in the presence of 4-dimethylaminopyridine (DMAP) with the formation of a mixture of (E)-2,3,4,5,6-penta-O-acetyl-1-deoxy-1-(indol-3-yl)-L-xylo-hex-1-enitol (4a) and (E)-2,3,4,5,6-penta-O-acetyl-1-deoxy-1-(indol-3-yl)-L-lyxo-hex-1-enitol (5a), which were separated chromatographically. Deacetylation of 4a or 5a afforded cyclised tetrols, tosylation of which in admixture resulted in 1-deoxy-1-(indol-3-yl)-3,5-di-O-tosyl-alpha-L-sorbopyranose (12a) and 1-deoxy-1-(indol-3-yl)-4,5-di-O-tosyl-alpha-L-tagatopyranose (13a). Under alkaline conditions 13a readily formed 2-hydroxy-4-hydroxymethyl-3-(indol-3-yl)cyclopenten-2-one (15a) in 90% yield. Similar transformations were performed for N-methyl- and N-methoxyindole derivatives.  相似文献   

16.
Ma J  Jin X  Yang L  Liu ZL 《Phytochemistry》2004,65(8):1137-1143
Seven new diarylheptanoids, i.e., (3S,5S)-3,5-diacetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptane, (3R,5S)-3-acetoxy-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptane, (3R,5S)-3,5-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptane, (5S)-5-acetoxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3-one, 5-hydroxy-1-(3,4-dihydroxy-5-methoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptan-3-one, 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(3,4-dihydroxy-5-methoxy-phenyl)heptan-3-one and 1,5-epoxy-3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptane were isolated from the rhizomes of Chinese ginger (Zingiber officinale Roscoe), along with 25 known compounds, i.e., 8 diarylheptanoids, 14 gingerol analogs, a diterpene and 2 steroids. Their structures were elucidated by spectroscopic and chemical methods.  相似文献   

17.
Inositol 1,4,5-trisphosphate 3-kinase (IP(3)-3K) catalyses the phosphorylation of inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. cDNAs encoding three mammalian isoforms have been reported and referred to as IP(3)-3KA, IP(3)-3KB, and IP(3)-3KC. IP(3)-3KB is particularly sensitive to proteolysis at the N-terminus, a mechanism known to generate active fragments of lower molecular mass. Endogenous IP(3)-3KB has therefore not been formally identified in tissues. We have probed a series of murine tissues with an antibody directed against the C-terminus of IP(3)-3KB and used IP(3)-3KB deficient mouse tissues as negative controls. IP(3)-3KB was shown to be particularly well expressed in brain, lung, and thymus with molecular masses of 110-120kDa. The identification of the native IP(3)-3KB by Western blotting for the first time will facilitate further studies of regulation of its activity by specific proteases and/or phosphorylation.  相似文献   

18.
The per-O-acetylated open chain derivatives of 1-(1-butylindol-3-yl)-1-deoxy-1-L-sorbose and 1-(1-butylindol-3-yl)-1-deoxy-L-tagatose, which are readily available by alkaline degradation of 1-butylascorbigen followed by acetylation, were used in a nucleoside-type synthesis. The interaction of these ketoses derivatives with bis-(trimethylsilyl)-uracil yielded in each case a mixture of (E)-2,4,5,6-tetra-O-acetyl-1-(1-butylindol-3-yl)-1,3-dideoxy-3-(uracil-1-yl)-L-xylo-hexa-1-enitol and (E)-2,4,5,6-tetra-O-acetyl-1-(1-butylindol-3-yl)-1,3-dideoxy-3-(uracil-1-yl)-L-lyxo-hexa-1-enitol, which were separated by preparative HPLC. The deacetylation of each of these compounds by MeONa in MeOH produced a mixture of 1-(1-butylindol-3-yl)-1,3-dideoxy-4-O-methyl-3-(uracil-1-yl)-alpha-L-sorbopyranose and 1-(1-butylindol-3-yl)-1,3-dideoxy-4-O-methyl-3-(uracil-1-yl)-beta-D-fructopyranose, which were also separated by HPLC, the structures were confirmed by NMR.  相似文献   

19.
Using [3H]-26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (F6-1,25-(OH)2D3), we have examined its ability to bind to the 1,25-(OH)2D3 receptor, and the ability of the resulting complex to bind DNA. The binding sites for [3H]F6-1,25-(OH)2D3 in the chick intestinal receptor represented a limited number of saturable sites for which 1,25-(OH)2D3 competes. 1,25-Dihydroxyvitamin D3 is three times more active than F6-1,25-(OH)2D3 in displacing [3H]F6-1,25-(OH)2D3. By affinity chromatography using DNA-Sephadex, the [3H]F6-1,25-(OH)2D3 receptor complex eluted from the column in a single peak at 0.14 M KCl, while [3H]-1,25-(OH)2D3 receptor complex eluted at 0.13 M KCl. These results indicate that F6-1,25-(OH)2D3 and 1,25-(OH)2D3 recognize the same binding site of the receptor and that the F6-1,25-(OH)2D3 receptor complex binds DNA more tightly than the 1,25-(OH)2D3 receptor complex. We suggest that the higher binding affinity for DNA may contribute to the greater biological activity of F6-1,25-(OH)2D3.  相似文献   

20.
The present study was carried out in order to elucidate the metabolic pathway from 1 alpha,25-(OH)2D3 to 1 alpha,25-(OH)2D3-26,23-lactone. For that purpose, we stereospecifically synthesized the vitamin D3 derivatives 1 alpha,23(S),25-(OH)3D3, 1 alpha,23(S),25(R),26-tetrahydroxyvitamin D3, and 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-lactol. The in vitro metabolism of these compounds was examined in kidney homogenates and intestinal mucosa homogenates from 1 alpha,25-(OH)2D3-supplemented chicks. The naturally occurring 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was produced (in increasing amounts) from 1 alpha,25-(OH)2D3, 1 alpha,25(R),26-(OH)3D3, 1 alpha,23(S),25-(OH),D3, 1 alpha,23(S),25(R),26-(OH)4D3, and 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol. These results indicated that there are two possible metabolic pathways from 1 alpha,25-(OH)2D3 to 1 alpha,23(S),25(R),26-(OH)4D3: the major one is by way of 1 alpha,23(S),25-(OH)3D3 and the minor one is by way of 1 alpha,25(R),26-(OH)3D3. 1 alpha,23(S),25(R),26-Tetrahydroxyvitamin D3 is further metabolized to 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone via 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactol. In the course of our studies, a new biosynthetic vitamin D3 metabolite was isolated in pure form. This metabolite was identified as 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol by UV spectrophotometry and mass spectrometry. Furthermore, we establish in this report that the lactonization of 1 alpha,23,25,26-(OH)4D3 and 1 alpha,25-(OH)2D3-26,23-lactol occurs in a stereo-retained and stereo-selective fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号