首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TGR(mREN2)27 (TGR) rats develop severe hypertension and an inverted circadian blood pressure profile with peak blood pressure in the daytime rest phase. The present study investigated the in vitro responsiveness of different arteries of TGR rats during day and night. Twelve-week-old TGR rats and normotensive Sprague-Dawley (SPRD) controls, synchronized to 12h light, 12h dark (LD 12:12) (light 07:00 19:00), were killed at 09:00 (during rest) and 21:00 (during activity), and endothelium-dependent relaxation by acetylcholine and vascular contraction by angiotensin II were studied by measuring isometric force in ring segments of abdominal aorta and mesenteric and renal arteries. In SPRD rats, consistent day-night variation was found, with greater responses to angiotensin II during the daytime rest span. In TGR rats, biological time-dependent differences were found in the renal vasculature, but not in the aorta and mesenteric artery. Relaxation of SPRD rat aorta and mesenteric artery by acetylcholine was greater at 09:00, whereas in TGR rats, day-night variation was absent (mesenteric artery) or inverted (aorta). In conclusion, based on the study of two time points, daynight variation in vascular contractility of aorta and mesenteric artery is blunted in TGR rats, whereas renal artery segments showed an unchanged daynight pattern compared to SPRD controls. (Chronobiology International, 18(4), 665 681, 2001)  相似文献   

2.
In male heterozygous transgenic hypertensive rats, TGR(mREN2)27 (TGR), exhibiting an inverse blood pressure profile and in normotensive Sprague-Dawley (SPRD) controls, the density and affinity of angiotensin II receptors were determined at six circadian times in glomeruli of animals 11 weeks old kept under light-dark 12h:12 (LD 12:12) conditions. Angiotensin II receptors were also studied in rats 18-20 weeks old of both strains at 2h after light onset. As a measure of renal excretory functions, diuresis, creatinine, and protein excretion were monitored using metabolic cages. The expression of angiotensin II receptor mRNA was determined in renal arteries 2h-4h after light onset. The following results were obtained: [1] Renal excretory functions showed significant daily variation, with higher excretion rates in the dark span in both TGR and SPRD rats. [2] No circadian phase dependency was found in the glomerular angiotensin II receptors in both rat strains. However, receptor density was significantly lower in TGR than in SPRD rats. In both strains, receptor number increased with aging. [3] In renal arteries, the angiotensin II receptor mRNA of the main receptor subtype AT1A was neither strain nor age dependent, AT1B- and AT2-receptor mRNAs were significantly lower in TGR than SPRD rats. In conclusion, the results demonstrate that the overactive renin-angiotensin system in TGR rats led to a down-regulation of glomerular angiotensin II receptors that was not accompanied by a down-regulation of the mRNA of the dominant AT1A- receptor subtype. Circadian short-term variations in blood pressure in both TGR and SPRD rats are not reflected by daily variation in angiotensin II receptor density of renal glomeruli or by variation in receptor expression in renal vascular tissue. (Chronobiology International, 18(3), 447-459, 2001)  相似文献   

3.
The transgenic TGR(mREN-2)27 rat is not only characterized by fulminant hypertension, but also by a disturbance in circadian blood pressure regulation, resulting in inverse circadian blood pressure profiles. The reasons for these alterations are not very well understood at present. We therefore investigated the circadian rhythms in several hormones participating in blood pressure regulation. From TGR and Sprague-Dawley (SPRD) control rats synchronized to 12h light and 12h dark (LD 12:12) blood was collected at different circadian times (07, 11, 15, 19, 23, 03, and 07 again, 5 rats per strain and time). The activities of plasma renin and converting enzyme, as well as plasma concentrations of corticosterone and aldosterone, were determined by radioimmunoassay (RIA). SPRD rats showed significant circadian rhythms in all variables except plasma renin activity, with maxima occurring during the day. TGR rats showed significant circadian rhythmicity in plasma renin activity and corticosterone and daily variation in aldosterone; angiotensin-converting enzyme (ACE) activity did not reach statistical significance. In TGR rats, 24h means in plasma renin activity and aldosterone were approximately sevenfold and fourfold higher, respectively, than in SPRD rats. Peak concentrations in corticosterone around 15h were more than two times higher in TGR rats than in SPRD rats, whereas no differences were observed during the night. It is concluded that, in TGR rats, the overall increase in plasma renin activity and aldosterone may contribute to the elevated blood pressure. The comparatively high levels in corticosterone and plasma renin activity during daytime may be involved in the inverse circadian blood pressure profiles in the transgenic animals. (Chronobiology International, 17(5), 645-658, 2000)  相似文献   

4.
The transgenic TGR(mREN-2)27 rat is not only characterized by fulminant hypertension, but also by a disturbance in circadian blood pressure regulation, resulting in inverse circadian blood pressure profiles. The reasons for these alterations are not very well understood at present. We therefore investigated the circadian rhythms in several hormones participating in blood pressure regulation. From TGR and Sprague-Dawley (SPRD) control rats synchronized to 12h light and 12h dark (LD 12:12) blood was collected at different circadian times (07, 11, 15, 19, 23, 03, and 07 again, 5 rats per strain and time). The activities of plasma renin and converting enzyme, as well as plasma concentrations of corticosterone and aldosterone, were determined by radioimmunoassay (RIA). SPRD rats showed significant circadian rhythms in all variables except plasma renin activity, with maxima occurring during the day. TGR rats showed significant circadian rhythmicity in plasma renin activity and corticosterone and daily variation in aldosterone; angiotensin-converting enzyme (ACE) activity did not reach statistical significance. In TGR rats, 24h means in plasma renin activity and aldosterone were approximately sevenfold and fourfold higher, respectively, than in SPRD rats. Peak concentrations in corticosterone around 15h were more than two times higher in TGR rats than in SPRD rats, whereas no differences were observed during the night. It is concluded that, in TGR rats, the overall increase in plasma renin activity and aldosterone may contribute to the elevated blood pressure. The comparatively high levels in corticosterone and plasma renin activity during daytime may be involved in the inverse circadian blood pressure profiles in the transgenic animals. (Chronobiology International, 17(5), 645–658, 2000)  相似文献   

5.
Dysfunction of the sympathetic nervous system might play an important role in disturbed 24h blood pressure regulation in transgenic hypertensive TGR (mREN2)27 (TGR) rats. Our study was performed to determine possible differences in activity of the sympathetic nervous system in TGR rats in comparison to their normotensive Sprague-Dawley (SPRD) controls; we measured plasma catecholamine and angiotensin concentrations throughout 24h under synchronized light-dark 12h:12H (LD 12:12) conditions. In the TGR rat strain, rhythms of plasma catecholamines were blunted, and the concentrations were significantly decreased. In addition, TGR rats showed increased plasma angiotensin I and II concentrations without any significant rhythm. An impaired autonomic regulation was confirmed by monitoring heart rate variability in TGR rats. Data showed that the TGR rat strain is characterized by a reduction in plasma catecholamines and an increase in angiotensin peptides. At present, it is not clear whether the reduction in catecholamines represents a decrease in sympathetic tone mediated by baroreflex activation or an increased catecholamine turnover induced by elevated angio-tensin II. However, the blunted, but normally phased, rhythms in plasma catecholamines in TGR rats make it unlikely that the sympathetic nervous system is mainly responsible for the inverse circadian blood pressure rhythm in the transgenic strain. (Chronobiology International, 18(3), 461-474, 2001)  相似文献   

6.
Dysregulation of the system of nitric oxide (NO)-cyclic 3',5'-guanosine monophosphate (cGMP) might be involved in the development of hypertension in transgenic hypertensive TGR(mREN2)27 (TGR) rats. The present study was performed to determine possible differences in the day-night pattern and the urinary excretion rates of NO and cGMP in TGR rats in comparison to normotensive Sprague-Dawley (SPRD) controls. In addition, the urinary excretion of creatinine and catecholamines was measured in both rat strains. The day-night excretion patterns of NO, cGMP, catecholamines, and creatinine were preserved in TGR rats. Urinary excretion of NO was significantly decreased in TGR rats, whereas cGMP, the second messenger of NO, was elevated in the transgenic animals. Catecholamines and creatinine excretion rates did not differ between the strains. In conclusion, data suggest that a reduced NO synthesis could contribute to the increased blood pressure in the severely hypertensive rats. However, these data make it unlikely that the disturbances in the nitric oxide-cGMP system and the sympathetic nervous system are mainly responsible for the inverse circadian blood pressure rhythm in TGR rats.  相似文献   

7.
Dysfunction of the sympathetic nervous system might play an important role in disturbed 24h blood pressure regulation in transgenic hypertensive TGR (mREN2)27 (TGR) rats. Our study was performed to determine possible differences in activity of the sympathetic nervous system in TGR rats in comparison to their normotensive Sprague-Dawley (SPRD) controls; we measured plasma catecholamine and angiotensin concentrations throughout 24h under synchronized light-dark 12h:12H (LD 12:12) conditions. In the TGR rat strain, rhythms of plasma catecholamines were blunted, and the concentrations were significantly decreased. In addition, TGR rats showed increased plasma angiotensin I and II concentrations without any significant rhythm. An impaired autonomic regulation was confirmed by monitoring heart rate variability in TGR rats. Data showed that the TGR rat strain is characterized by a reduction in plasma catecholamines and an increase in angiotensin peptides. At present, it is not clear whether the reduction in catecholamines represents a decrease in sympathetic tone mediated by baroreflex activation or an increased catecholamine turnover induced by elevated angio-tensin II. However, the blunted, but normally phased, rhythms in plasma catecholamines in TGR rats make it unlikely that the sympathetic nervous system is mainly responsible for the inverse circadian blood pressure rhythm in the transgenic strain. (Chronobiology International, 18(3), 461–474, 2001)  相似文献   

8.
G Soulban  G Labrecque 《Life sciences》1989,45(25):2485-2489
The 24-hr variations in clotting times and vitamin K-dependent blood coagulation factors were studied in rats kept on a 12-hr light-dark cycle (light on: 0600-1800 hours). Clotting times were determined under a binocular microscope by measuring the time required for the formation of the first fibrin thread. Factors II, VII and X were analyzed by the prothrombin test while the factor IX was quantified using the activated partial thromboplastin time assay. Results indicated that the clotting times were significantly longer during the dark (activity) period with a peak at 1:00 and a trough at 17:00. Similarly, a variation was found in factor activity levels: prothrombin (II), factor VII and factor X had higher activities during the light span (rest period). The highest activities found at 13:00 and 09:00 were statistically different from the minimum activity levels obtained at 21:00. Factor IX did not show a significant circadian variation.  相似文献   

9.
Transgenic TGR(mREN2)27 (TGR) rats are an animal model of fulminant hypertension characterized by an inverse circadian blood pressure profile. The present study addressed the contribution of nitric oxide (NO) synthesis and baroreflex function to hypertension and the inverse blood pressure pattern. NO synthesis was measured at four different times of day indirectly by excretion of NO metabolites (NOx: NO-2 and NO-3) in the urine of 5- and 11-week-old TGR and Sprague-Dawley (SPRD) controls. Blood pressure, heart rate, and motor activity were recorded in age-matched rats of both strains using an implantable telemetry system. Beat-to-beat recording of blood pressure and pulse interval was performed hourly in 6-week-old animals over 24h. From these data, baroreflex sensitivity (BRS) was calculated by linear regression of spontaneous fluctuations of blood pressure and corresponding changes of pulse interval. Baroreflex sensitivity was lower in prehypertensive TGR rats than in SPRD rats, and the reduction was restricted to the daily resting period. In both strains, NOx excretion showed circadian rhythmicity, with peak values during the activity period at night. Interestingly, excretion of NOx was reduced during the resting period in 5-week-old TGR rats prior to the development of hypertension. Impairment of NO synthesis and baroreflex function precede the development of hypertension in TGR rats. The reduction of both parameters was restricted to the resting period and, therefore, could be involved in the development of the inverse circadian blood pressure profile of TGR rats. (Chronobiology International, 18(2), 215-226, 2001)  相似文献   

10.
Oxidative stress is associated with endothelial dysfunction in heart failure. The goals of this study were to determine whether 1) gene transfer of extracellular superoxide dismutase (ecSOD) reduces levels of superoxide and improves endothelial function in the aorta and mesenteric artery in rats with heart failure, and 2) the heparin-binding domain (HBD) of ecSOD, by which ecSOD binds to cells, is required for protective effects of ecSOD. Seven weeks after coronary ligation, in rats with heart failure and sham-operated rats, we injected adenoviral vectors intravenously that express ecSOD, ecSOD with deletion of the HBD (ecSODDeltaHBD), or a control vector. Four days after injection of viruses, responses to acetylcholine, ADP, and sodium nitroprusside were examined in rings of the aorta and mesenteric artery. ecSOD bound to endothelium and increased SOD activity in the aorta after gene transfer of ecSOD, not ecSODDeltaHBD. Gene transfer of ecSOD, but not ecSODDeltaHBD, reduced levels of superoxide and improved relaxation to acetylcholine and ADP in the aorta and mesenteric artery from rats with heart failure. Improvement of relaxation to acetylcholine in the mesenteric artery from rats with heart failure after gene transfer of ecSOD was mediated in part by hydrogen peroxide. The major finding of this study is that the HBD of ecSOD is necessary for protection against endothelial dysfunction in rats with heart failure. We speculate that a common gene variant in the HBD of ecSOD, which is a risk factor for ischemic heart disease, may be a risk factor for vascular maladaptation and endothelial dysfunction in heart failure.  相似文献   

11.
The existence of temporal variation in biliary excretion has been demonstrated for dibromosulfophthalein and ampicillin (AMP). This study was performed to investigate if the 24h rhythm of active AMP biliary secretion could be attributed to circadian rhythms in the capacity and/or binding affinity of the active secretion mechanism. In this study, 12 Sprague-Dawley rats, housed under a 12h light/12h dark environment, were used. Each rat four lh infusions of incremental doses of AMP during either the active (24: 00 group) or rest phase (12: 00 group) under pentobarbital anesthesia. High doses of AMP were administered to saturate the biliary secretion of AMP via the anion carrier system. Bile and plasma were collected at steady stale for each infusion and analyzed by a microbiological assay. The systemic clearance of AMP was increased approximately twofold during the active phase (24: 00 group) compared to the resting phase (12: 00 group). Plots of bile excretion rate versus plasma concentration indicated saturation of the anion carrier system. Analysis of the data using the Michaelis-Menten model revealed no significant difference in the binding affinity (1/Km) of the biliary anion carrier system between the 12: 00 and 24: 00 groups. However, the maximum AMP excretion rate attained in the bile (maximum transport or Vmax) showed a 50% increase during the active phase, thus implicating a day-night variation in transport capacity of the anionic pathway. Therefore, temporal variation in the capacity of the secretory mechanisms is a determinant contributor to the proposed circadian rhythm observed in the biliary elimination of AMP.  相似文献   

12.
In this study, we aimed to investigate the adaptation of blood pressure (BP), heart rate (HR), and locomotor activity (LA) circadian rhythms to light cycle shift in transgenic rats with a deficit in brain angiotensin [TGR(ASrAOGEN)]. BP, HR, and LA were measured by telemetry. After baseline recordings (bLD), the light cycle was inverted by prolonging the light by 12 h and thereafter the dark period by 12 h, resulting in inverted dark-light (DL) or light-dark (LD) cycles. Toward that end, a 24-h dark was maintained for 14 days (free-running conditions). When light cycle was changed from bLD to DL, the acrophases (peak time of curve fitting) of BP, HR, and LA shifted to the new dark period in both SD and TGR(ASrAOGEN) rats. However, the readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. The LA acrophases changed similarly in both strains. When light cycle was changed from DL to LD by prolonging the dark period by 12 h, the reentrainment of BP and LA occurred faster than the previous shift in both strains. The readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. In free-running conditions, the circadian rhythms of the investigated parameters adapted in TGR(ASrAOGEN) and SD rats in a similar manner. These results demonstrate that the brain RAS plays an important role in mediating the effects of light cycle shifts on the circadian variation of BP and HR. The adaptive behavior of cardiovascular circadian rhythms depends on the initial direction of light-dark changes.  相似文献   

13.
This work analyzed the diurnal variation of general activity and plasmatic levels of melatonin and corticosterone in pigeons submitted to a 12:00:12:00 h light-dark cycle (lights on at 6:00 a.m.) or to constant light. In both conditions pigeons were observed in 5-min sessions at times 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00 and 24:00 h during two successive days. Behavior was video taped in the home cages for posterior categorization and quantification. Radioimmunoassays were used to evaluate plasmatic levels of melatonin and corticosterone. Blood samples were obtained at the times of behavioral observation. In the light-dark condition the results showed day-night variation of general activity (p < 0.001) and a robust diurnal rhythm of plasmatic melatonin (p < 0.001). Both of these variations as well as the oscillatory secretion of corticosterone disappeared under constant light condition. The parallel changes in general activity and blunting of melatonin rhythm secretion in constant light condition agree with previous evidences that melatonin may regulate behavioral oscillations in the pigeon. The present data are related to the proposition that the timing system in pigeons may involve neuroendocrine relations characterized by interactions between blood born signalization by melatonin and corticosterone.  相似文献   

14.
TGR(mREN2)27 (TGR) rats are transgenic animals with an additional mouse renin gene, which leads to overactivity of the renin-angiotensin system. Adult TGR rats are characterized by fulminant hypertension, hypertensive end-organ damage, and an inverse circadian blood pressure pattern. To study the ontogenetic development of cardiovascular circadian rhythms, telemetric blood pressure transmitters were implanted in male Sprague-Dawley (SPRD, n = 5) and heterozygous, transgenic TGR rats before 5 weeks of age. The TGR received either drinking water or enalapril 10 mg/L in drinking water (n = 5 per group). Drug intake was measured throughout the study by computerized monitoring of drinking volume. Circadian patterns in blood pressure and heart rate were analyzed from 5 to 11 weeks of age. In the first week after transmitter implantation, blood pressure did not differ among SPRD, untreated, and enalapril-treated TGR rats. In parallel with the rise in blood pressure of untreated TGR rats, a continuous delay of the circadian acrophase (time of fitted blood pressure maximum) was observed, leading to a complete reversal of the rhythm in blood pressure at an age of 8 weeks. Enalapril reduced blood pressure at night, but was less effective during the day, presumably due to the drinking pattern of the animals, which ingested about 90% of their daily water intake during the nocturnal activity period. After discontinuation of treatment, blood pressure returned almost immediately to values found in untreated TGR rats. In conclusion, the inverse circadian blood pressure profile in TGR rats develops in parallel with the increase in blood pressure. Direct effects of the brain renin-angiotensin system may be involved in the disturbed circadian rhythmicity in TGR(mREN2)27 rats.  相似文献   

15.
The day-night variation of food intake and alkaline phosphatase (AP) activity was studied in the duodenum of rats neonatally treated with monosodium glutamate (MSG) and saline-treated (control) rats. The animals were kept under light-dark conditions (light phase from 09:00 h to 21:00 h) with free access to food. AP activity was cytophotometrically analyzed in the brush-border of enterocytes separated from the tip, middle and cryptal part of the villi every 6 h over a 24-hour period. In comparison with the controls, MSG-treated rats consumed about 40% less food during the dark period and their 24-hour food intake was thus significantly lowered (P<0.001). On the other hand, the nocturnal feeding habit showed a similar pattern: food consumption was high during the night (65% vs. 75%) and the lowest consumption was found during the light phase (35% vs. 25%) in MSG-treated and control rats, respectively. In agreement with the rhythm of food intake, the highest AP activity was observed during the dark phase and was lowest during the light phase in both groups of animals. These significant day-night variations showed nearly the same pattern in the enterocytes of all observed parts along the villus axis. In comparison with the controls, a permanent increase of AP activity was observed in neonatal MSG-treated rats. This increase was more expressive during the dark phase of the day in the cryptal (P<0.001) and middle part of the villus (P<0.01). From the viewpoint of feeding, this enzyme in MSG-treated rats was enhanced in an inverse relation to the amount of food eaten i.e. despite sustained hypophagia the mean AP activity in the enterocytes along the villus axis was higher than in the control animals during all investigated periods. The present results suggest that the increased AP activity in MSG-treated rats is probably not a consequence of actual day-night eating perturbations but could be a component of a more general effect of MSG. This information contributes to better understanding of the function of intestinal AP and its relation to day-night feeding changes especially in connection with the MSG syndrome.  相似文献   

16.
Treatment with pertussis toxin (PTX) which eliminates the activity of G(i) proteins effectively reduces blood pressure (BP) and vascular resistance in spontaneously hypertensive rats (SHR). In this study we have compared the functional characteristics of isolated arteries from SHR with and without PTX-treatment (10 microg/kg i.v., 48 h before the experiment). Rings of thoracic aorta, superior mesenteric artery and main pulmonary artery were studied under isometric conditions to measure the reactivity of these vessels to receptor agonists and to transmural electrical stimuli. We have found that the treatment of SHR with PTX had no effect on endothelium-dependent relaxation of thoracic aorta induced by acetylcholine. In PTX-treated SHR, the maximum contraction of mesenteric artery to exogenous noradrenaline was reduced and the dose-response curve to cumulative concentration of noradrenaline was shifted to the right. Similarly, a reduction in the magnitude of neurogenic contractions elicited by electrical stimulation of perivascular nerves was observed in the mesenteric artery from PTX-treated SHR. PTX treatment of SHR also abolished the potentiating effect of angiotensin II on neurogenic contractions of the main pulmonary artery. These results indicate that PTX treatment markedly diminishes the effectiveness of adrenergic stimuli in vasculature of SHR. This could importantly affect BP regulation in genetic hypertension.  相似文献   

17.
Sex differences in the degree of high blood pressure have been described in several forms of experimental animal models of hypertension. However, the influence of sex on angiotensin II-induced hypertension has not been studied. In the present study, we investigated and compared the effects of chronic angiotensin II treatment on blood pressure and vascular function in male and female rats. Chronic treatment with angiotensin II (0.7 mg/kg daily for 10 d) significantly raised arterial blood pressure in male but not female Sprague-Dawley rats; it upregulated the NAD(P)H oxidase gp67 phox subunit in the aorta of male but not female rats; and it exaggerated the vasoconstrictor responses to norepinephrine and serotonin in the mesenteric vascular bed (MVB) of male but not female rats. Vasodilator responses to acetylcholine (ACh) but not papaverine (PPV) or isoprenaline (ISO) were reduced in the MVB of angiotensin II-treated male but not female rats. ACh, but not PPV or ISO dilatory responses were potentiated in the MVB of angiotensin II-treated female rats. The present findings demonstrate that exogenous angiotensin II upregulates aortic NAD(P)H oxidase gp67 phox subunit, and induces hypertension and mesenteric vascular dysfunction only in male rats.  相似文献   

18.
一氧化氮改变肾性高血压大鼠主动脉功能   总被引:19,自引:1,他引:18  
Guo YM  Zhu XN  Pan JY 《生理学报》2000,52(3):243-246
探讨一氧化氮(NO)对二肾一夹(2K1C)肾性高血压大鼠主动脉功能的影响。实验分为5组:假手术、2K1C、卡托普利(captopril)、NAME(Nω-Nitro-L-arginine methyl ester)和精氨酸组。结果显示:在2K1C组,大鼠手术后4周的平均动脉压显著升高,主动脉对4Ch的舒张反应明显减弱,对苯肾上腺素收缩反应明显增强,主动脉壁环鸟苷酸(cGMP)含量显著减少。卡托谱利  相似文献   

19.
Catheters were placed in the jugular vein and femoral artery of male Sprague-Dawley rats and connected to a specially designed perfusor for continuous constant infusion of 0.9% NaCl and a syringe to perform simultaneous and intermittent blood collections. This permitted continuous 24-h study of renal hemodynamics, estimated by inulin (Cin) and p-amino-hippuric acid (CPAH) clearances; Cin represents glomerular filtration rate and CPAH renal plasma flow. Animals were individually housed in metabolism cages in a controlled environment with light/dark 12:12 h. Urine was collected every 4 h (12:00, 16:00, 20:00, 24:00, 04:00, and 08:00) and blood sampled at the midpoint of urine collection periods. Urine and plasma sodium, potassium, inulin, and PAH were spectrophotometrically assessed. During continuous infusion of isotonic saline, Cin exhibited circadian changes with large decrease between 12:00 and 20:00 h (0.9 ± 0.2 ml/min) and acrophase at 00:30 h. Rhythmicity in CPAH was similar with the minimum between 16:00 and 20:00 h (2.5 ± 0.3 ml/min) and peak between 00:00 and 04:00 h (acrophase at 00:25 h). Water and electrolyte excretion were also circadian rhythmic with a similar nighttime enhancement and daytime minimum. Such circadian changes persisted during continuous 0.9% NaCl infusion for several consecutive days. The unanesthetized, unrestrained rat model enables investigations in renal chronopharmacology and chronotoxicology.  相似文献   

20.
Atrial natriuretic factor inhibits adenylate cyclase activity   总被引:7,自引:0,他引:7  
The synthetic atrial natriuretic factor (ANF) (8- 33AA ) inhibited adenylate cyclase activity in aorta washed particles, mesenteric artery, and renal artery homogenates in a concentration dependent manner with an apparent Ki between 0.1 to 1nM . The extent of inhibition of adenylate cyclase by ANF varied from tissue to tissue. The adenylate cyclase from mesenteric artery and renal artery was inhibited to a greater extent as compared to that from aorta. ANF was also able to inhibit the stimulatory effects of hormones on adenylate cyclase activity and of agents such as F- and forskolin which activate adenylate cyclase by receptor- independent mechanism. In addition, ANF showed an additive effect with the inhibitory response of angiotensin II on adenylate cyclase from rat aorta. These studies for the first time demonstrate that ANF is an inhibitor of adenylate cyclase of several systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号