首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7-10(-4) M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+ and inhibited by ATPase inhibitors such as N,N'-dicylclohexyl-carbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphroylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K+ gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

2.
3.
4.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7 · 10?4 M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ > Rb+ > Cs+ > Na+ > Li+ and is inhibited by ATPase inhibitors such as N,N′-dicylclohexylcarbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphorylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K? gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive skin with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

5.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

6.
Calcium transport in membrane vesicles of Bacillus subtilis.   总被引:4,自引:3,他引:1       下载免费PDF全文
Right-side-out membrane vesicles of Bacillus subtilis W23 grown on tryptone-citrate medium accumulated Ca2+ under aerobic conditions in the presence of a suitable electron donor. Ca2+ uptake was an electrogenic process which was completely inhibited by carbonyl cyanide m-chlorophenylhydrazone or valinomycin and not by nigericin. This electrogenic uptake of calcium was strongly dependent on the presence of phosphate and magnesium ions. The system had a low affinity for Ca2+. The kinetic constants in membrane vesicles were Km = 310 microM Ca2+ and Vmax = 16 nmol/mg of protein per min. B. subtilis also possesses a Ca2+ extrusion system. Right-side-out-oriented membrane vesicles accumulated Ca2+ upon the artificial imposition of a pH-gradient, inside acid. This system had a high affinity for Ca2+; Km = 17 microM Ca2+ and Vmax = 3.3 nmol/mg of protein per min. Also, a membrane potential, inside positive, drove Ca2+ transport via this Ca2+ extrusion system. Evidence for a Ca2+ extrusion system was also supplied by studies of inside-out-oriented membrane vesicles in which Ca2+ uptake was energized by respiratory chain-linked oxidation of NADH or ascorbate-phenazine methosulfate. Both components of the proton motive force, the pH gradient and the membrane potential, drove Ca2+ transport via the Ca2+ extrusion system, indicating a proton-calcium antiport system with a H+ to Ca2+ stoichiometry larger than 2. The kinetic parameters of this Ca2+ extrusion system in inside-out-oriented membranes were Km = 25 microM and Vmax = 0.7 nmol/mg of protein per min.  相似文献   

7.
8.
Membrane vesicles isolated from Bacillus subtilis W23 catalyze active transport of the C4 dicarboxylic acids L-malate, fumarate, and succinate under aerobic conditions in the presence of the electron donor reduced beta-nicotinamide adenine dinucleotide or the non-physiological electron donor system ascorbate-phenazine methosulfate. The dicarboxylic acids are accumulated in unmodified form. Inhibitors of the respiratory chain, sulfhydryl reagents, and uncoupling agents inhibit the accumulation of the dicarboxylic acids. The affinity constants for transport of L-malate, fumarate, and succinate are 13.5, 7.5, and 4.3 muM, respectively; these values are severalfold lower than those reported previously for whole cells. Active transport of these dicarboxylic acids occurs via one highly specific transport system as is indicated by the following observations. (i) Each dicarboxylic acid inhibits the transport of the other two dicarboxylic acids competitively. (ii) The affinity constants determined for the inhibitory action are very similar to those determined for the transport process. (iii) Each dicarboxylic acid exchanges rapidly with a previously accumulated dicarboxylic acid. (iv) Other metabolically and structurally related compounds do not inhibit transport of these dicarboxylic acids significantly, except for L-aspartate and L-glutamate. However, transport of these dicarboxylic amino acids is mediated by independent system because membrane vesicles from B. subtilis 60346, lacking functional dicarboxylic amino acid transport activity, accumulate the C4 dicarboxylic acids at even higher rates than vesicles from B. subtilis W 23. (v) A constant ratio exists between the initial rates of transport of L-malate, fumarate, and succinate in all membrane vesicle preparations isolated from cells grown on various media. This high-affinity dicarboxylic acid transport system seems to be present constitutively in B. subtilis W23.  相似文献   

9.
Calcium transport was investigated in membrane vesicles prepared from the oral bacterium Streptococcus sanguis. Procedures were devised for the preparation of membrane vesicles capable of accumulating 45Ca2+. Uptake was ATP dependent and did not require a proton motive force. Calcium transport in these vesicles was compared with 45Ca2+ accumulation in membrane vesicles from Streptococcus faecalis and Escherichia coli. The data support the existence of an ATP-driven calcium pump in S. sanguis similar to that in S. faecalis. This pump, which catalyzes uptake into membrane vesicles, would be responsible for extrusion of calcium from intact cells.  相似文献   

10.
11.
The presence of plasmid gene cadB did not affect Cd2+ accumulation, whereas plasmid gene cadA reduced Cd2+ accumulation by whole cells but not by membrane vesicles. Membrane vesicle studies indicated that Cd2+ uptake occurred via the Mn2+ transport system which was energized by the membrane electrical potential. Mn2+ and Cd2+ were competitive inhibitors of each other's transport, with Km's of 0.95 microM Mn2+ and 0.2 microM Cd2+. The kinetic parameters were nearly identical with vesicles prepared from sensitive and resistant cells, indicating that the cadA-encoded Cd2+ efflux system was inoperative in membrane vesicle preparations. Experiments with energy-inhibited cells indicated that the cadB gene product may bind Cd2+.  相似文献   

12.
Characteristics of succinate transport were determined in basolateral and brush-border membrane vesicles (BLMV and BBMV, respectively) isolated in parallel from rabbit renal cortex. The uptake of succinate was markedly stimulated by the imposition of an inwardly directed Na+ gradient, showing an "overshoot" phenomenon in both membrane preparations. The stimulation of succinate uptake by an inwardly directed Na+ gradient was not significantly affected by pH clamp or inhibition of Na(+)-H+ exchange. The Na(+)-dependent and -independent succinate uptakes were not stimulated by an outwardly directed pH gradient. The Na dependence of succinate uptake exhibited sigmoidal kinetics, with Hill coefficients of 2.17 and 2.38 in BLMV and BBMV, respectively. The Na(+)-dependent succinate uptake by BLMV and BBMV was stimulated by a valinomycin-induced inside-negative potential. The Na(+)-dependent succinate uptake by BLMV and BBMV followed a simple Michaelis-Menten kinetics, with an apparent Km of 22.20 +/- 4.08 and 71.52 +/- 0.14 microM and a Vmax of 39.0 +/- 3.72 and 70.20 +/- 0.96 nmol/(mg.min), respectively. The substrate specificity and the inhibitor sensitivity of the succinate transport system appeared to be very similar in both membranes. These results indicate that both the renal brush-border and basolateral membranes possess the Na(+)-dependent dicarboxylate transport system with very similar properties but with different substrate affinity and transport capacity.  相似文献   

13.
The transport of L-proline was studied in brush-border membrane vesicles isolated from the kidneys of newborn rats. In contrast with the rapid initial uptake with an 'overshoot' observed in adult vesicles, uptake by the newborn vesicle was slow, showed no 'overshoot', and proline continued to accumulate at a time when the adult vesicle had already equilibrated. L-Proline transport in the newborn rat occurs by Na+-dependent and independent mechanisms. There appeared to be essentially no uptake by anti-luminal vesicles isolated from newborn rat kidney. These observations may help to explain the prolinuria that occurs in the newborn animal.  相似文献   

14.
15.
Membrane vesicles, isolated from osmotic lysates of Azotobacter vinelandii spheroplasts in Tris-acetate buffer, rapidly accumulate calcium in the presence of an oxidizable substrate. The addition of D-lactate to vesicles increases the rate of calcium uptake by 34-fold; L-malate, NADH, NADPH, and reduced phenazine methosulfate are nearly as effective as lactate. The intravesicular calcium pool which accumulates under these conditions is rapidly discharged by isotopic exchange or in the presence of respiratory inhibitors, uncouplers, or EGTA. The uptake rates for calcium follow Michaelis-Menten kinetics yielding a Km of 48 microM and a V max of 45 nmoles/min/mg membrane protein. Initial rates of EGTA-induced calcium efflux also follow saturation kinetics, giving a V max identical to that for calcium entry; but the Km for exodus is 14 mM, assuming that free calcium accumulates in vesicles. The difference in the affinity of calcium for the entry and exit processes observed during respiration is sufficient to account for the estimated 150-fold calcium concentration gradient achieved under steady-state conditions. The uptake system is specific for calcium as opposed to other cations, but zinc and lanthanum are effective competitors. Calcium uptake is blocked when electron is inhibited by exposure of vesicles to p-chlormercuriphenylsulfonate, hydroxyquinoline-N-oxide, or cyanide, or under anoxic conditions. Divalent cation ionophores (A23187 and X537A) and proton ionophores (CCP and gramicidin D) also block calcium transport effectively. The electrogenic potassium ionophore valinomycin has no effect on lactate-dependent calcium uptake in the presence of potassium; but ionophores which induce electroneutral exchange of protons for sodium or potassium (monensin and nigericin, respectively) did block calcium transport in the presence of the appropriate cation. The fluorescence intensity of quinacrine (an amine probe) in the presence of A. vinelandii membrane vesicles is reduced by 25% on addition of lactate; the quenching is blocked by CCP. This indicates that a pH gradient (inside acid) is developed across the vesicle membrane during lactate oxidation. These results indicate that these membrane preparations contain vesicles of inverted topology (with respect to the intact cell) and suggest that calcium transport occurs by means of electroneutral calcium/proton antiport.  相似文献   

16.
17.
Summary This review describes the uptake of L-glutamate by well-characterized preparations of renal brush border (luminal) and baso-lateral membrane vesicles derived from the plasma membrane of the polar proximal tubular cell. L-glutamate is taken up against its concentration gradient, from both sides, by co-transport systems in which the movement of the amino acid into the cell is coupled to the influx of Na+ and efflux of K+ down their respective electrochemical gradients. The presence of these ion gradient-energized systems, specific for L-glutamate, may account for the exceedingly high intracellular concentration of this metabolically important amino acid in the renal tubule.  相似文献   

18.
19.
20.
Glutamine transport by rat basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Glutamine, a neutral amino acid, is unlike most amino acids, has two amine moieties which underlies its importance as a nitrogen transporter and a carrier of ammonia from the periphery to visceral organs. The gastrointestinal tract utilizes glutamine as a respiratory substrate. The intestinal tract receives glutamine from the luminal side and from the arterial side through the basolateral membranes of the enterocyte. This study characterizes the transport of glutamine by basolateral membrane vesicles of the rat. Basolateral membranes were prepared by a well validated technique of separation on a percoll density gradient. Membrane preparations were enriched with Na+/K+-ATPase and showed no 'overshoot' phenomena with glucose under sodium-gradient conditions. Glutamine uptake represented transport into the intravesicular space as evident by an osmolality study. Glutamine uptake was temperature sensitive and driven by an inwardly directed sodium gradient as evident by transient accumulation of glutamine above the equilibrium values. Kinetics of glutamine uptake under both sodium and potassium gradients at glutamine concentrations between 0.01 and 0.6 mM showed saturable processes with Vmax of 0.39 +/- 0.008 and 0.34 +/- 0.05 nmol/mg protein per 15 s for both sodium-dependent and sodium-independent processes, respectively. Km values were 0.2 +/- 0.01 and 0.55 +/- 0.01 mM, respectively. pH optimum for glutamine uptake was 7.5. Imposition of negative membrane potential by valinomycin and anion substitution studies enhanced the sodium-dependent uptake of glutamine suggesting an electrogenic process, whereas the sodium-independent uptake was not enhanced suggesting an electroneutral process. Other neutral amino acids inhibited the initial uptake of glutamine under both sodium-dependent and sodium-independent conditions. We conclude that glutamine uptake by basolateral membranes occurs by carrier-mediated sodium-dependent and sodium-independent processes. Both processes exhibit saturation kinetics and are inhibited by neutral amino acids. The sodium-dependent pathway is electrogenic whereas the sodium-independent pathway is electroneutral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号