首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At inflammatory sites neutrophils are stimulated to produce a variety of toxic agents, yet rarely harm the endothelium across which they migrate. We have recently found that endothelium releases adenosine which, acting via receptors on the surface of human neutrophils, inhibits generation of toxic metabolites by stimulated neutrophils but, paradoxically, promotes chemotaxis. Agents which diminish plasma membrane viscosity affect neutrophil function similarly, possibly by modulating chemoattractant receptor number or affinity. We therefore determined whether adenosine receptor agonists modulate neutrophil function by decreasing membrane viscosity and/or changing the affinity of chemoattractant (N-fMet-Leu-Phe, FMLP) receptors. Surprisingly, 5'-(N-ethylcarboxamido)adenosine (NECA, 10 microM), the most potent agonist at neutrophil adenosine receptors, increased plasma membrane viscosity, as measured by fluorescence anisotropy of the plasma membrane specific probe 1-(4-trimethylaminophenyl)-6-diphenyl-1,3,5-hexatriene (TMA-DPH), in unstimulated neutrophils from a mean microviscosity of 1.67 +/- 0.02 (S.E.) to 1.80 +/- 0.02 (p less than 0.001) while inosine (10 microM), a poor adenosine receptor agonist, had no effect (1.73 +/- 0.04, p = n.s. vs. control, p less than 0.01 vs. NECA). Adenosine receptor agonists increased plasma membrane viscosity in neutrophils with the same order of potency previously seen for inhibition of superoxide anion generation and enhancement of chemotaxis (NECA greater than adenosine = N6-phenylisopropyladenosine). The adenosine receptor antagonist 8-(p-sulfophenyl)theophylline reversed the effect of NECA on plasma membrane viscosity. Unlike other agents which modulate plasma membrane viscosity, NECA (10 microM) did not significantly change the number or affinity of [3H]FMLP binding sites on neutrophils. In contrast to the hypothesis of Yuli et al. these results indicate that occupancy of adenosine receptors on neutrophils increases plasma membrane viscosity without affecting chemoattractant receptor display.  相似文献   

2.
Adenosine is a well known neuromodulator in the central nervous system. As a consequence, adenosine can be beneficial in certain disorders and adenosine receptors will be potential targets for therapy in a variety of diseases. Adenosine receptors are G protein-coupled receptors, and are also expressed in a large variety of cells and tissues. Using these receptors as a paradigm of G protein-coupled receptors, the present review focus on how protein-protein interactions might contribute to neurotransmitter/neuromodulator regulation, based on the fact that accessory proteins impinge on the receptor/G protein interaction and therefore modulate receptor functioning. Besides affecting receptor signaling, these accessory components also play a key role in receptor trafficking, internalization and desensitization, as it will be reviewed here. In conclusion, the finding of an increasing number of adenosine receptors interacting proteins, and specially the molecular and functional integration of these accessory proteins into receptorsomes, will open new perspectives in the understanding of particular disorders where these receptors have been proved to be involved.  相似文献   

3.
A new technique is proposed to estimate the shear modulus (mu) and membrane surface viscosity (eta(m)) of red blood cell (RBC). Theoretical formulae for finding these two parameters are first derived based on the force balance on a RBC in a flow field of low viscosity. Different types of Ektacytometry are then used to measure relevant quantities. The obtained values (mu=6.1 x 10(-6)N/m, eta(m)=8.8 x10 (-7)Ns/m for normal RBC) are consistent with those previously found by micropipette technique and in AC electric field. The present technique is, however, much easier to operate and more advantageous in reflecting the average properties of a large quantity of RBCs, and it is much cheaper to be applied in clinical practice than any other method of measuring the two parameters. The sensitivity of the technique is demonstrated by testing RBCs treated with glutaraldehyde of different concentrations. This technique was demonstrated by the flow chamber.  相似文献   

4.
Piriformospora indica, an endophytic fungus of the Sebacinaceae family, colonises the roots of a wide variety of plant species and promotes their growth, in a manner similar to mycorrhizal fungi. We demonstrate that the fungus also interacts with the non-mycorrhizal host Arabidopsis thaliana. Promotion of root growth was detectable even before noticeable root colonization, and was accompanied by a massive transfer of phosphate from the media to the aerial parts of the seedlings. During the recognition period of both organisms, the message for a receptor kinase with leucine-rich repeats is transiently upregulated. The kinase is located in Triton X-100-insoluble plasma membrane microdomains. Thus, this is one of the earliest events of a plant root in response to a fungus reported to date.  相似文献   

5.
R. R. Dubreuil  G. B. Bouck 《Protoplasma》1988,143(2-3):150-164
Summary Surface isolates or membrane skeletons from surface isolates can maintain the cell and surface form characteristic of euglenoids. We now report that the plasma membrane alone obtained by trypsin or urea digestion of surface isolates can also maintain surface form, but the membrane skeleton is able to produce striking changes in membrane organization. Trypsin digests microtubules, the membrane skeleton and partially digests the major integral membrane protein from surface isolates but does not alter the paracrystalline plasma membrane interior. Extraction of surface isolates with 4M urea leaves an insoluble plasma membrane and a subset of proteins arranged perpendicularly to the membrane surface. To resolve further the relationship between the plasma membrane and the membrane skeleton we have perturbed membrane organization by extraction of surface isolates with NaOH and find that readdition of the extract followed by neutralization restored important features of the membrane skeleton and caused patching of the membrane interior. Biochemically, the reassembled membrane skeleton consisted of 80 and 86 kD polypeptides and other less abundant proteins, and structurally the reassembled membrane skeleton was about the same thickness as the native membrane skeleton. Reassembly of the membrane skeleton appeared to be saturatable in that addition of an excess of extract had no effect on the thickness of the membrane skeletal layer. When the 80 kD protein was depleted from the reassembly mixture by affinity chromatography using Sepharose-bound monoclonal antibodies, the amount of 86 kD protein bound was significantly reduced, suggesting a dependance of 86 kD protein on 80 kD binding. A urea soluble fraction enriched in the 80 and 86 kD proteins was added to alkali-stripped membranes and 170 Å filaments were formed perpendicularly to the membrane surface. From the sum of these experiments we suggest that a) the native amorphous membrane skeleton ofEuglena may consist of a framework of 80 and 86 kD filaments arranged in a brush-like layer, b) the framework can direct plasma membrane organization, but once determined, membrane form remains stable to urea and trypsin but not to alkali, and c) new surface growth can in theory occur as an expansion of the brush-like layer by direct intercalation of filaments enriched in or consisting wholly of 80 and 86 kD proteins.Abbreviations BSA bovine serum albumin - ELISA enzyme linked immunosorbant assay - EF ectoplasmic fracture face - IMPs intramembrane particles - PF protoplasmic fracture face This work was supported by a University of Illinois Fellowship to RRD and NSF grant DCB-8602793 to GBB.  相似文献   

6.
Basic cell penetrating peptides are tools for molecular cellular internalization of nonmembrane permeable molecules. Their uptake mechanisms involve energy-dependent and energy-independent pathways such as endocytosis, direct translocation or physical endocytosis. These mechanisms are ruled by both, the peptides physicochemical properties and structure and by the membrane lipids characteristics and organization. Herein we used plasma membrane spheres and membrane models to study the membrane perturbations induced by three arginine-rich cell penetrating peptides. Nona-arginine (R9) and the amphipathic peptide RWRRWWRRW (RW9) induced positive membrane curvature in the form of buds and membrane tubes. Membranous tubes underwent rolling resulting in formation of multilamellar membrane particles at the surface of the plasma membrane spheres. The amphipathic peptides RW9 and RRWRRWWRRWWRRWRR (RW16) provoked lipid and membrane associated protein domain separation as well as changes in membrane fluidity and cholesterol redistribution. These data suggest that membrane domains separation and the formation of multilamellar membranous particles would be involved in arginine-rich cell penetrating peptides internalization.  相似文献   

7.
In Schizosaccharomyces pombe, Cd2+ shares the same uphill uptake system with Zn2+. Both heavy metals inhibited growth, respiration, H+/glucose uptake, and glucose-induced proton extrusion, Cd2+ being a 10–15-fold stronger inhibitor. In contrast, both had a similar effect on the plasma membrane H+-ATPase, enhancing its affinity for ATP and reducing the rate of ATP splitting. Cd2+ caused protracted strong fluidization of the plasma membrane of energized cells, whereas deenergized cells, phosphatidylcholine liposomes, and plasma membrane fragments, either purified or incorporated into the liposomes, exhibited only a short initial fluidization. Zn2+, which caused only a marginal membrane fluidization, suppressed the fluidizing action of Cd2+. The fluidizing effect of both heavy metals on liposomes was reduced by the presence of plasma membrane fragments in the liposome membrane. At 50 μM, Cd2+ brought about loss K+ (18 K+/1 Cd2+) from energized, but not from deenergized cells since Cd2+ must first accumulate in the cells before causing a detectable effect. A simple membrane disruption by external Cd2+ is, therefore, unlikely to be the main mechanism of cadmium-induced potassium loss in intact cells. Zn2+ had virtually no effect below 1 mM concentration, and it again weakened the K+-releasing effect of Cd2+. Cd2+ caused a strong loss of K+ also from K+-containing liposomes, probably because of a direct interaction with liposome phospholipids. Incorporation of plasma membrane fragments into the liposomes reduced the K+ loss sixfold. Received: 13 November 1995 / Accepted: 31 January 1996  相似文献   

8.
Muscle proteins were labeled by incubating isolated frog sartorius muscles with [3H]- or [14C]phenylalanine. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis of plasma membrane fractions revealed a major protein band with an apparent molecular weight of approx. 96 000. Radioactivity in this band showed a clearly delineated decrease, relative to other bands, when previously labeled muscles were induced to contract either by electrical stimulation or by increasing the influx of Ca2+ from the incubation medium. It is postulated that a Ca2+-activated neutral protease may account for this decrease in labeled membrane protein.  相似文献   

9.
The influence of the sub-endothelial basement membrane (BM) on the adhesion and migration of leukocytes is not well-defined. We therefore investigated the behaviour of human neutrophils on purified BM proteins and on BM deposited by short- or long-term cultures of endothelial cells (EC). The adhesion, but not migration velocities, of neutrophils activated with interleukin-8 was dependent on the coating concentrations of purified collagen, laminin or fibronectin. In contrast, adhesion was similar on matrices deposited by 3-day or 20-day cultures of EC, but neutrophils migrated more slowly on the distinct BM that formed over 20 days. In addition, while adhesion on all surfaces was greatly reduced when neutrophils were treated with antibody against β2-integrins, antibody against β1-integrins only inhibited adhesion to the 20-day BM. Thus, the native BM has distinct effects on integrin usage and migration by neutrophils, which are not reproduced by purified proteins or matrix deposited early during endothelial culture.  相似文献   

10.
Experimental evidence suggests that the cell membrane is a highly organized structure that is compartmentalized by the underlying membrane cytoskeleton (MSK). The interaction between the cell membrane and the cytoskeleton led to the “picket-fence” model, which was proposed to explain certain aspects of membrane compartmentalization. This model assumes that the MSK hinders and confines the motion of receptors and lipids to compartments in the membrane. However, the impact of the MSK on receptor clustering, aggregation, and downstream signaling remains unclear. For example, some evidence suggests that the MSK enhances dimerization, while other evidence suggests decreased dimerization and signaling. Herein, we use computational Monte Carlo simulations to examine the effects of MSK density and receptor concentration on receptor dimerization and clustering. Preliminary results suggest that the MSK may have the potential to induce receptor clustering, which is a function of both picket-fence density and receptor concentration.  相似文献   

11.
The undulatory excitations (flickering) of human and camel erythrocytes were evaluated by employing the previously used flicker spectroscopy and by local measurements of the autocorrelation function K (t) of the cell thickness fluctuations using a dynamic image processing technique. By fitting theoretical and experimental flicker spectra relative values of the bending elastic modulus K c of the membrane and of the cytoplasmic viscosity were obtained. The effects of shape changes were monitored by simultaneous measurement of the average light intensity I 0 passing the cells and by phase contrast microscopic observation of the cells. Evaluation of the cellular excitations in terms of the quasi-spherical model yielded values of K c /R inf0 sup3 and · R 0 (R 0=equivalent sphere radius) and allowed us to account (1) for volume changes, (2) for effects of surface tension and spontaneous curvature and (3) for the non-exponential decay of K (t). From the long time decay of K (t) we obtained an upper limit of the bending elastic modulus of normal cells of K c = 2–3 · 10–19 Nm which is an order of magnitude larger than the value found by reflection interference contrast microscopy (RICT, K c , = 3.4 · 10–20 Nm, Zilker et al. 1987) but considerably lower than expected for a bilayer containing 50% cholesterol (K c = 5 · 10–19 Nm, Duwe et al. 1989). The major part of the paper deals with long time measurements (order of hours) of variations of the apparent K c and values of single cells (and their reversibility) caused (1) by osmotic volume changes, (2) by discocytestomatocyte transitions induced by albumin and triflouperazine, (3) by discocyte-echinocyte transitions induced by expansion of the lipid/protein bilayer (by incubation with lipid vesicles) and by ATP-depletion in physiological NaCI solution, (4), by coupling or decoupling of bilayer and cytoskeleton using wheat germ agglutinin or erythrocytes with elliptocytosis and (5) by cross-linking the cytoskeleton using diamide. These experiments showed: (1) K c and are minimal at physiological osmolarity and temperature and well controlled over a large range of these parameters. (2) Echinocyte formation does not markedly alter the apparent membrane bending stiffness. (3) During swelling the cell may undergo a transient discocyte-stomatocyte transition. (4) Strong increases of the apparent K c and after cup-formation or strong swelling and deflation are due to the effect of shear elasticity and surface tension. Our major conclusions are: (1) The erythrocyte membrane exhibits a shear free deformation regime which requires ATP for its maintenance. (2) Shape transitions may be caused by relative area changes either of the two monolayers of the lipid/protein bilayer (corresponding to the bilayer coupling hypothesis) or of the bilayer and the cytoskeleton where the latter mechanism appears to be more frequent. (3) The low bending stiffness and the shear free deformation regime are explained in terms of a slight excess area of the lipid bilayer leading to a pre-undulated surface profile. Freeze fracture electron microscopy studies provide direct evidence for a pre-undulated bilayer with an undulation wavelength of approximately 100 nm. Offprint requests to: E. Sackmann  相似文献   

12.
Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid–protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease.  相似文献   

13.
Zhang Y  Lv Z  Chen J  Chen Q  Quan Y  Kong L  Zhang H  Li S  Zheng Q  Chen J  Nie Z  Wang J  Jin Y  Wu X 《Proteomics》2008,8(20):4178-4185
We have developed a novel baculovirus surface display (BVSD) system for the isolation of membrane proteins. We expressed a reporter gene that encoded hemagglutinin gene fused in frame with the signal peptide and transmembrane domain of the baculovirus gp64 protein, which is displayed on the surface of BmNPV virions. The expression of this fusion protein on the virion envelope allowed us to develop two methods for isolating membrane proteins. In the first method, we isolated proteins directly from the envelope of budding BmNPV virions. In the second method, we isolated proteins from cellular membranes that had disintegrated due to viral egress. We isolated 6756 proteins. Of these, 1883 have sequence similarities to membrane proteins and 1550 proteins are homologous to known membrane proteins. This study indicates that membrane proteins can be effectively isolated using our BVSD system. Using an analogous method, membrane proteins can be isolated from other eukaryotic organisms, including human beings, by employing a host cell-specific budding virus.  相似文献   

14.
Eastern white pine (Pinus strobus L.) seedlings were grown in controlled environment growth cabinets and fumigated with 0.4 and 1.6 g m–3 hydrogen fluoride for 2–28 days. Plasma membranes were isolated from needles of treated and control seedlings and their chemical composition and ATPase activity examined to determine early effects of hydrogen fluoride action. In plants treated for 2 days with both fluoride levels, ratios of plasma membrane free sterols:phospholipids and sterols:proteins were drastically higher than ratios in control plants. Seedlings treated with hydrogen fluoride for 8 days contained plasma membranes with elevated phospholipid:protein and sterol:protein ratios and their plasma membrane ATPase activity was higher than that of control plants. Prolonged, 28-day hydrogen fluoride treatment with 1.6 g m–3 level was the only treatment which produced a drastic inhibition of plasma membrane ATPase activity. During the initial stages of hydrogen fluoride treatment, treated cells did not show alterations of ultrastructure which were previously shown in cells of plants treated with soil applied sodium fluoride. The results of the present study indicate that the plasma membranes may be among the initial sites of hydrogen fluoride injury to plants as well as initial sites of defense reaction.  相似文献   

15.
Allosteric modulation of receptors has physiological not just pharmacological significance. Thus, the chemical context in which an agonist signal is received can have a major impact on the nature of the physiological response by modifying receptor sensitivity and/or maximal activity-even the nature of the signalling response. In addition, recognising that an endogenous activator is the allosteric modulator of a known receptor, rather than the agonist of a novel receptor, has the potential to solve, in dramatic fashion, key physiological questions. What is an allosteric modulator and why are allosteric effects on receptors so diverse and frequently complex? What is the scope of allosteric effects? Can the existence of endogenous modulators be predicted from a receptor's amino acid sequence? How should screening for endogenous allosteric modulators be undertaken? These questions form the framework of this mini-review on physiological and structural aspects of receptor allostery.  相似文献   

16.
Adenosine and its metabolite, inosine, have been described as molecules that participate in regulation of inflammatory response. The aim of this study was to investigate the effect of adenosine and inosine in a mouse model of carrageenan-induced pleurisy as well as the participation of adenosine receptors in this response. Injection of carrageenan into the pleural cavity induced an acute inflammatory response characterized by leukocyte migration, pleural exudation, and increased release of interleukin-1β and tumor necrosis factor-α in pleural exudates. The treatment with adenosine (0.3–100 mg/kg, i.p.) and inosine (0.1–300 mg/kg, i.p.) 30 min before carrageenan injection reduced significantly all these parameters analyzed. Our results also demonstrated that A2A and A2B receptors seem to mediate the adenosine and inosine effects observed, since pretreatment with selective antagonists of adenosine A2A (ZM241385) and A2B (alloxazine) receptors, reverted the inhibitory effects of adenosine and inosine in pleural inflammation. The involvement of A2 receptors was reinforced with adenosine receptor agonist CGS21680 treatment, since its anti-inflammatory effects were reversed completely and partially with ZM241385 and alloxazine injection, respectively. Moreover, the combined treatment with subeffective dose of adenosine (0.3 mg/kg) and inosine (1.0 mg/kg) induced a synergistic anti-inflammatory effect. Thus, based on these findings, we propose that inosine contributes with adenosine to exert anti-inflammatory effects in pleural inflammation, reinforcing the notion that endogenous nucleosides play an important role in controlling inflammatory diseases. This effect is likely mediated by the activation of adenosine A2 subtype receptors and inhibition of production or release of pro-inflammatory cytokines.  相似文献   

17.
Summary An NADH-ferricyanide reductase activity resistant to inactivation by cytochemical procedures was examined during decidualization of rat endometrium. Resistant activity was restricted to plasma membranes, distal elements of the Golgi apparatus, and discoid cisternae and cytoplasmic vesicles of decidual cells of endometrium of the pseudopregnant rat on days 3, 4, 5, 7, and 9, after mating. The procedure reduced or eliminated any evidence of NADH-ferricyanide reductase activity from other cellular components such as endoplasmic reticulum, nuclei, and mitochondria. The observations of the glutaraldehyde-resistant reductase in both plasma membranes and discoid cisternae may indicate a role for the latter in the biosynthesis of plasma membranes during decidualization when massive cell proliferation and membrane biosynthesis occur. The origin of the discoid cisternae is tentatively ascribed to the mature faces of the Golgi apparatus.Work supported in part by a grant from the NIH CA1880101 to D.J.M.  相似文献   

18.
Suga S  Imagawa S  Maeshima M 《Planta》2001,212(2):294-304
Plant aquaporins occur in multiple isoforms and are distributed in both plasma membrane and tonoplast. We cloned cDNAs for plasma-membrane aquaporins (PAQ1, 1b, 1c, 2, 2b, and 2c) of radish (Raphanus sativus L.). The amino acid sequences of the PAQs showed on average 63% sequence identity. Their sequences were 23% identical to those of tonoplast aquaporins (γ- and δ-VM23). A comprehensive investigation of the aquaporin mRNAs, including VM23, in seedlings, plants, flowers and seeds of radish showed a marked accumulation of all the mRNAs in hypocotyls and growing taproots. In other organs, the mRNA level of each isoform varied according to the organ. In petals, stamens, pistils and sepals of flowers, the levels of PAQ1, 1b, 1c and γ-VM23 mRNAs were high, and mRNAs of all aquaporins except for δ-VM23 were detected at high levels in pericarps. The protein levels of aquaporins on the basis of the membrane protein were determined by immunoblotting. Proteins PAQ1 and VM23 were detected in every organ except for the mature petiole. The PAQ2 protein level was especially high in green cotyledons and leaves, but was extremely low in seedling cotyledons and hypocotyls. Proteins PAQ1, PAQ2 and VM23 were highly accumulated in growing pericarps, but not in the immature seeds. These results indicate that the gene expression of the aquaporin isoforms was individually regulated in an organ- and tissue-specific manner, and that the amounts of aquaporin protein, especially PAQ2, are regulated in certain tissues at the translational level and by the rate of protein turnover. Received: 10 February 2000 / Accepted: 30 June 2000  相似文献   

19.
The plasma membrane from Dictyostelium discoideum was routinely purified 35-fold by an improved technique using beads coated with positively charged polymers. Cells were attached to the beads and bare regions between the cells were neutralized with a polyanion. The neutralization decreased contamination of the bare regions by intracellular proteins released when cells were disrupted to leave behind beads coated by plasma membrane. The neutralization increased the purification as measured by membrane-bound 125I-labeled concanavalin A. Contamination by markers for various intracellular components was markedly decreased. Various bare-site neutralization reagents were evaluated and gave different results depending upon their charge density and molecular weight. The pH of the neutralization was critical. The optimum pH for cell attachment to beads, 5.0, had little effect as regards bare-site neutralization. A new procedure is given that optimizes the essential features for the plasma membrane isolation on beads.  相似文献   

20.
Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including γ-glutamyl transpeptidase, 5′-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号