首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Below-ground translocated carbon (C) released as rhizodeposits is an important driver for microbial mobilization of nitrogen (N) for plants. We investigated how a limited substrate supply due to reduced photoassimilation alters the allocation of recently assimilated C in plant and soil pools under legume and non-legume species.

Methods

A non-legume (Lolium perenne) and a legume (Medicago sativa) were labelled with 15N before the plants were clipped or shaded, and labelled twice with 13CO2 thereafter. Ten days after clipping and shading, the 15N and 13C in shoots, roots, soil, dissolved organic nitrogen (DON) and carbon (DOC) and in microbial biomass, as well as the 13C in soil CO2 were analyzed.

Results

After clipping, about 50 % more 13C was allocated to regrowing shoots, resulting in a lower translocation to roots compared to the unclipped control. Clipping also reduced the total soil CO2 efflux under both species and the 13C recovery of soil CO2 under L. perenne. The 15N recovery increased in the shoots of M. sativa after clipping, because storage compounds were remobilized from the roots and/or the N uptake from the soil increased. After shading, the assimilated 13C was preferentially retained in the shoots of both species. This caused a decreased 13C recovery in the roots of M. sativa. Similarly, the total soil CO2 efflux under M. sativa decreased more than 50 % after shading. The 15N recovery in plant and soil pools showed that shading has no effect on the N uptake and N remobilization for L. perenne, but, the 15N recovery increased in the shoot of M. sativa.

Conclusions

The experiment showed that the dominating effect on C and N allocation after clipping is the need of C and N for shoot regrowth, whereas the dominating effect after shading is the reduced substrate supply for growth and respiration. Only slight differences could be observed between L. perenne and M. sativa in the C and N distribution after clipping or shading.  相似文献   

2.
During vegetative regrowth of Medicago sativa L., soil N, symbiotically fixed N2 and N reserves meet the nitrogen requirements for shoot regrowth. Experiments with nodulated or non-nodulated plants were carried out to investigate the changes in N flows originating from the different N sources and in xylem transport of amino acids during regrowth. Exogenous N uptake, N2 fixation and endogenous N remobilization were estimated by 15N labelling and amino acids in xylem sap were analysed. Removal of shoots resulted in great declines of exogenous N flows derived either from N2 or from NH4NO3 during the first week of regrowth, thereafter recovery increased linearly. Mineral N uptake as well as N2 fixation occurred mainly between the 10th and 18th day after removal of shoots while exogenous N assimilation in intact plants remained at a steady level. Nitrogen remobilization rates in defoliated plants increased by at least three to five-fold, especially during the first 10 days following shoot removal. Compared to control plants, contents of amino acids in xylem sap, during the first 10 days of regrowth, were reduced by about 72% and 82% in NH4NO3 grown and in N2 fixing plants, respectively. Asparagine was the main amino acid transported in xylem sap of both treated plants. Its relative contents during this period significantly decreased from 75% to 59% and from 67% to 36% respectively in non-nodulated plants and in nodulated ones. This decline was accompanied by compensatory increase in the relative contents of aspartate and glutamine.  相似文献   

3.
The contribution of carbon and nitrogen reserves to regrowth following shoot removal has been studied in the past. However, important gaps remain in understanding the effect of shoot cutting on nodule performance and its relevance during regrowth. In this study, isotopic labelling was conducted at root and canopy levels with both 15N2 and 13C‐depleted CO2 on exclusively nitrogen‐fixing alfalfa plants. As expected, our results indicate that the roots were the main sink organs before shoots were removed. Seven days after regrowth the carbon and nitrogen stored in the roots was invested in shoot biomass formation and partitioned to the nodules. The large depletion in nodule carbohydrate availability suggests that root‐derived carbon compounds were delivered towards nodules in order to sustain respiratory activity. In addition to the limited carbohydrate availability, the upregulation of nodule peroxidases showed that oxidative stress was also involved during poor nodule performance. Fourteen days after cutting, and as a consequence of the stimulated photosynthetic and N2‐fixing machinery, availability of Cnew and Nnew strongly diminished in the plants due to their replacement by C and N assimilated during the post‐labelling period. In summary, our study indicated that during the first week of regrowth, root‐derived C and N remobilization did not overcome C‐ and N‐limitation in nodules and leaves. However, 14 days after cutting, leaf and nodule performance were re‐established.  相似文献   

4.
Distribution of net assimilated C in meadow fescue (Fectuca pratensi L.) was followed before and after cutting of the shoots. Plants were continuously labelled in a growth chamber with 14C-labelled CO2 in the atmosphere from seedling to cutting and with 13C-labelled CO2 in the atmosphere during regrowth after the cutting. Labelled C, both 14C and 13C, was determined at the end of the two growth periods in shoots, crowns, roots, soil and rhizosphere respiration. Distribution of net assimilated C followed almost the same pattern at the end of the two growth periods, i.e. at the end of the 14C- and the 13C-labelling periods. Shoots retained 71–73% of net assimilated C while 9% was detected in the roots and 11–14% was released from the roots, determined as labelled C in soil and as rhizosphere respiration. At the end of the 2nd growth period, after cutting and regrowth, 21% of the residual plant 14C at cutting (14C in crowns and roots) was found in the new shoot biomass. A minor part of the residual plant 14C, 12%, was lost from the plants. The decreases in 14C in crowns and roots during the regrowth period suggest that 14C in both crowns and roots was translocated to new shoot tissue. Approximately half of the total root C at the end of the regrowth period after cutting was 13C-labelled C and thus represents new root growth. Root death after cutting could not be determined in this experiment, since the decline in root 14C during the regrowth period may also be assigned to root respiration, root exudation and translocation to the shoots. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

5.
Nodul{macron}ted alfalfa plants were grown hydroponically. Inorder to quantify N2 fixation and remobilization of N reservesduring regrowth the plants were pulse-chase-labelled with 15N.Starch and ethanol-soluble sugar contents were analysed to examinechanges associated with those of N compounds. Shoot removalcaused a severe decline in N2 fixation and starch reserves within6 d after cutting. The tap root was the major storage site formetabolizable carbohydrate compounds used for regrowth; initiallyits starch content decreased and after 14 d started to recoverreaching 50% of the initial value on day 24. Recovery of N2fixation followed the same pattern as shoot regrowth. Afteran initial decline during the first 10 d following shoot removal,the N2 fixation, leaf area and shoot dry weight increased sorapidly that their levels on day 24 exceeded initial values.Distribution of 15N within the plant clearly showed that a significantamount of endogenous nitrogen in the roots was used by regrowingshoots. The greatest use of N reserves (about 80% of N incrementin the regrowing shoot) occurred during the first 10 d and thencompensated for the low N2 fixation. The distribution of N derivedeither from fixation or from reserves of source organs (taproots and lateral roots) clearly showed that shoots are thestronger sink for nitrogen during regrowth. In non-defoliatedplants, the tap roots and stems were weak sinks for N from reserves.By contrast, relative distribution within the plant of N assimilatedin nodules was unaffected by defoliation treatment. Key words: Medicago sativa L., N2 fixation, N remobilization, N2 partitioning, regrowth  相似文献   

6.
Although it is well established that carbon reserves contributeto shoot regrowth of leguminous forage species, little informationis available on nitrogen reserves except in Medicaqo sativaL. and Trifolium subterraneum L. In this study, reserves werelabelled with 15N to demonstrate the mobilization of endogenousnitrogen from roots and stolons to regrowing leaves and newstolons during 24 d of regrowth in white clover (Thfolium repensL.). About 55% and 70%, respectively, of the nitrogen contentsof these organs were mobilized to support the regrowth of leaves.During the first 6 d, nitrogen in regrowing leaves came mainlyfrom N reserves of organs remaining after defoliation. Afterthese first 6 d of regrowth, most of the shoot nitrogen wasderived from exogenous nitrogen taken up while the contributionof nitrogen reserves decreased. After defoliation, the buffer-solubleprotein content of roots and stolons decreased by 32% duringthe first 6 d of regrowth. To identify putative vegetative storageproteins, soluble proteins were separated using SDS-PAGE ortwo-dimensional electrophoresis. One protein of 17.3 kDa instolons and two proteins of 15 kDa in roots seemed to behaveas vegetative storage proteins. These three polypeptides, initiallyfound at high concentrations, decreased in relative abundanceto a large extent during early regrowth and then were accumulatedagain in roots and stolons once normal growth was re-established. Key words: White clover, regrowth, 15N-labelled, vegetative storage proteins, electrophoresis  相似文献   

7.
The impact of different defoliation intensities on the ability of Lotus tenuis plants to regrowth, mobilise nutrients and to associate with native AM fungi and Rhizobium in a saline‐sodic soil was investigated. After 70 days, plants were subjected to 0, 25, 50, 75 and 100% defoliation and shoot regrowth was assessed at the end of subsequent 35 days. Compared to non‐defoliated plants, low or moderate defoliation up to 75% did not affect shoot regrowth. However, 100% treatment affected shoot regrowth and the clipped plants were not able to compensate the growth attained by non‐defoliated plants. Root growth was more affected by defoliation than shoot growth. P and N concentrations in shoots and roots increased with increasing defoliation while Na+ concentration in shoots of non‐defoliated and moderately defoliated plants was similar. Non‐defoliated and moderately defoliated plants prevented increases of Na+ concentration in shoots through both reducing Na+ uptake and Na+ transport to shoots by accumulating Na+ in roots. At high defoliation, the salinity tolerance mechanism is altered and Na+ concentration in shoots was higher than in roots. Reduction in the photosynthetic capacity induced by defoliation neither changed the root length colonised by AM fungi nor arbuscular colonisation but decreased the vesicular colonisation. Spore density did not change, but hyphal density and Rhizobium nodules increased with defoliation. The strategy of the AM symbiont consists in investing most of the C resources to preferentially retain arbuscular colonisation as well as inoculum density in the soil.  相似文献   

8.
Nitrate reduction in roots and shoots of 7-day-old barley seedlings, and 9-day-old corn seedlings was investigated. The N-depleted seedlings were transferred for 24 h or 48 h of continuous light to a mixed nitrogen medium containing both nitrate and ammonium. Total nitrate reduction was determined by 15N incorporation from 15NO3, translocation of reduced 15N from the roots to the shoots was estimated with reduced 15N from 15NH4+ assimilation as tracer, and the translocation from the shoots to the roots was measured on plants grown with a split root system. A model was proposed to calculate the nitrate reduction by roots from these data. For both species, the induction phase was characterized by a high contribution of the roots which accounted for 65% of the whole plant nitrate reduction in barley, and for 70% in corn. However, during the second period of the experiment, once this induction process was finished, roots only accounted for 20% of the whole plant nitrate reduction in barley seedlings, and for 27% in corn. This reversal in nitrate reduction localization was due to both increased shoot reduction and decreased root reduction. The pattern of N exchanges between the organs showed that the cycling of reduced N through the plant was important for both species. In particular, the downward transport of reduced N increased while nitrate assimilation in roots decreased. As a result, when induction was achieved, the N feeding of the roots appeared to be highly dependent on translocation from the leaves.  相似文献   

9.
The aim of this work was to examine the response of wheat plants to a doubling of the atmospheric CO2 concentration on: (1) carbon and nitrogen partitioning in the plant; (2) carbon release by the roots; and (3) the subsequent N uptake by the plants. The experiment was performed in controlled laboratory conditions by exposing fast-growing spring wheat plants, during 28 days, to a 14CO2 concentration of 350 or 700 L L–1 at two levels of soil nitrogen fertilization. Doubling CO2 availability increased total plant production by 34% for both N treatment. In the N-fertilized soil, the CO2 enrichment resulted in an increase in dry mass production of 41% in the shoots and 23% in the roots; without N fertilization this figure was 33% and 37%, respectively. In the N-fertilized soil, the CO2 increase enhanced the total N uptake by 14% and lowered the N concentration in the shoots by 23%. The N concentration in the roots was unchanged. In the N-fertilized soil, doubling CO2 availability increased N uptake by 32% but did not change the N concentrations, in either shoots or roots. The CO2 enrichment increased total root-derived carbon by 12% with N fertilization, and by 24% without N fertilization. Between 85 and 90% of the total root derived-14C came from respiration, leaving only 10 to 15% in the soil as organic 14C. However, when total root-derived 14C was expressed as a function of root dry weight, these differences were only slightly significant. Thus, it appears that the enhanced carbon release from the living roots in response to increased atmospheric CO2, is not due to a modification of the activity of the roots, but is a result of the increased size of the root system. The increase of root dry mass also resulted in a stimulation of the soil N mineralization related to the doubling atmospheric CO2 concentration. The discussion is focused on the interactions between the carbon and nitrogen allocation, especially to the root system, and the implications for the acquisition of nutrients by plants in response to CO2 increase.Abbreviations N soil fertilization without nitrogen - N soil fertilization with nitrogen  相似文献   

10.
Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) were leaf-labelled with 15N enriched urea during one growing season. N transfer to grasses (Lolium perenne L. and xfestulolium), white clover, red clover, lucerne, birdsfoot trefoil (Lotus corniculatus L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.), salad burnet (Sanguisorba minor L.) and caraway (Carum carvi L.) was assessed. Neighbouring plants contained greater amounts of N derived from white clover (4.8?g?m-2) compared with red clover (2.2?g?m-2) and lucerne (1.1?g?m-2). Grasses having fibrous roots received greater amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40?kg?N ha-1 to neighbouring plants. Below-ground N transfer from legumes to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland.  相似文献   

11.
An efficient large-scale clonal propagation protocol has been described for Withania somnifera (L.) Dunal, a valuable medicinal plant, using cotyledonary nodes derived from axenic seedlings. Murashige and Skoog’s (Physiol Plant 15:473–497, 1962) (MS) medium supplemented with 1.0 mg l?1 N 6-benzyladenine (BA) was found to be optimum for production of multiple shoots (100 % shoot proliferation frequency and 16.93 shoots per explant). Successive shoot cultures were established by repeatedly sub-culturing the original cotyledonary node on a fresh medium after each harvest of newly formed shoots. Multiple shoot proliferation was also achieved from nodal segments derived from in vitro raised shoots on MS medium augmented with 1.0 mg l?1 BA. Regenerated shoots were best rooted (95.2 %, 38.7 roots per shoot) in half-strength MS medium supplemented with 1.0 mg l?1 indole-3-butyric acid. The plantlets were successfully acclimated and established in soil. Random amplified polymorphic DNA and inter-simple sequence repeats analysis revealed a homogeneous amplification profile for all micropropagated plants analyzed validating the genetic fidelity of the in vitro regenerated plants.  相似文献   

12.
The contribution of nitrogen reserves to regrowth following defoliation was studied in white clover plants (Trifolium repens cv. Huia). This was found to be closely linked to the morphological pattern of development of the aerial parts during the same period. Low temperature (6 degrees C) and short day exposure (8 h photoperiod) were used to induce dwarf development, i.e. to increase branching rate and to enhance new sites of leaf production during a period of regrowth. Treated plants exhibited a large reduction in leaf area and a large increase in leaf pool size for the first 10 d of a subsequent regrowth under standard culture conditions (16 h daylight; 22/18 degrees C day/night). The contribution of nitrogen from storage compounds in organs remaining after defoliation (sources) to regrowing tissues (sinks) was assessed by 15N pulse-chase labelling during regrowth following shoot removal. The mobilization of nitrogen reserves from storage tissues of regrowing clover was closely linked to the pattern of differentiation of the newly developed organs. It appeared that regrowth was supported less by endogenous N for the first 10 d after defoliation in treated plants, compared with control plants grown continuously in standard conditions. It is assumed that dwarf plants exhibit a lower dependence upon the mobilization of soluble proteins previously accumulated in roots and uncut stolons. The relationship between leaf development rate and N-uptake recovery following defoliation is discussed.  相似文献   

13.
Nitrate Assimilation during Vegetative Regrowth of Alfalfa   总被引:5,自引:4,他引:1       下载免费PDF全文
Vance CP  Heichel GH 《Plant physiology》1981,68(5):1052-1057
Dry matter accumulation, nitrate reductase activity of various organs, nitrate accumulation, nitrogen derived from nitrate, and nitrogen content were studied during 17 days of vegetative regrowth of harvested (detopped) alfalfa (Medicago sativa L.). Seedlings were grown in the glasshouse and treated with 0, 40, and 80 kilograms N per hectare applied as K15NO3 to determine whether reduced nitrogenase activity after shoot harvest limited vegetative regrowth. The role of nodules in reducing NO3 during this period of low nitrogenase activity was also investigated.  相似文献   

14.
Leys, used for grazing or production of forage to be conserved as silage or hay, are very important crops in northern areas. In order to measure the N2 fixation in leys of varying ages and during different parts of the season, detailed measurements were taken of yield, N2 fixation and the amounts of N remaining in the field after harvesting red clover (Trifolium pratense L.)-grass leys at a site in northern Sweden, where they are generally harvested twice per growing season. Entire plants, including stubble and roots, were sampled at the time of first and second harvest and, in addition, at the end of the growing season in three neighbouring fields, carrying a first, a second and a third year ley, respectively. N2 fixation was measured by both 15N isotope dilution (ID) and 15N natural abundance (NA) methods. The proportion of clover dry matter (DM) in the stands increased from the first to the second harvest, but the grasses dominated throughout the entire season, especially below ground. The N concentrations, in both herbage and whole plants, were about twice as high in the clover as in the grasses. Seasonal variations in N concentrations were minor, and total N contents followed the same trends as DM. The clover acquired nearly all of its N from N2 fixation: the proportion of N in clover herbage derived from N2 fixation was often >0.8 throughout the season. The variations in the amounts of N2 fixed during the course of the season corresponded well to the seasonal changes in clover biomass. Amounts of fixed N2 allocated to clover herbage during the whole season were in the range 4 to 6 g N m−2 in this unusually rainy year. Calculations of daily N allocation rates to herbage showed that N uptake rates were similar, and high, in grasses during May–June and July–August, while N2 fixation rates in clover were about 10-fold as high in July–August as in May–June, reflecting the need for N in clover growth. The proportion of N remaining in clover stubble and roots after the first and second harvests was about 60 and 25%, respectively, while about 60% of the N in grasses remained in stubble and roots after both harvests. The considerable amounts of biomass and N that were left in field after harvesting red clover-grass leys are important for re-growth of the plants and provide substantial N fertilization for the next crop in the crop rotation.  相似文献   

15.
《Aquatic Botany》1986,23(4):309-320
Direct evidence of heterotrophic dinitrogen fixation associated with the emergent aquatic angiosperm, Typha latifolia L., was obtained through the exposure of actively growing plants to 15N2 gas for 7 days in a gas-tight exposure vessel. Highest enrichments of 15N were found in roots/rhizomes and leaf bases. Slight enrichments were also found in the leaves due to translocation from the roots, rhizomes and leaf bases. Total fixed 15N values were 71.8 μg for the plant and 49.1 μg for the soil.Plants growing in silica sand, which received a nutrient solution containing combined nitrogen, exhibited higher enrichments and fixed 86% more 15N after exposure to 15N2 gas than plants which received a nutrient solution lacking combined nitrogen. It is hypothesized that the concentration of combined nitrogen added was insufficient to repress nitrogen fixation and resulted in an increase in nitrogen fixation by associated microorganisms.Propane was used to trace the loss and movement of gases from the 15N2 vessel and between the upper leaf chamber and the lower root chamber. Gas was rapidly exchanged between the upper and lower chambers through the leaves and roots of T. latifolia. Further investigations showed that propane moved at a rate of 1223 μmol day−1 from the leaves to the roots and 2652 μmol day−1 from the roots to the leaves. These data demonstrated that gases diffuse rapidly through the plant body of T. latifolia.  相似文献   

16.
Nitrate reduction in roots and shoots and exchange of reduced N between organs were quantitatively estimated in intact 13-d-old seedlings of two-row barley (Hordeum vulgare L. cv. Daisengold) using the 15N-incorporation model (A. Gojon et al. (1986) Plant Physiol. 82, 254–260), except that NH + 4 was replaced by NO - 2 . N-depleted seedlings were exposed to media containing both nitrate (1.8 mM) and nitrite (0.2 mM) under a light-dark cycle of 12:12 h at 20°C; the media contained different amounts of 15N labeling. Experiments were started either immediately after the beginning (expt. 1) or immediately prior to the end (expt. 2) of the light period, and plants were sampled subsequently at each light-dark transition throughout 36 h. The plants effectively utilized 15NO - 3 and accumulated it as reduced 15N, predominantly in the shoots. Accumulation of reduced 15N in both experiments was nearly the same at the end of the experiment but the accumulation pattern in roots and shoots during each 12-h period differed greatly depending on time and the light conditions. In expt. 1, the roots accounted for 31% (light), 58% (dark), and 9% (light) of nitrate reduction by the whole plants, while in expt. 2 the contributions of the root were 82% (dark), 20% (light), and 29% (dark), during each of the three 12-h periods. Xylem transport of nitrate drastically decreased in the dark, but that of reduced N rather increased. The downward translocation of reduced 15N increased while nitrate reduction in the root decreased, whereas upward translocation decreased while nitrate reduction in the shoot increased. We conclude that the cycling of reduced N through the plant is important for N feeding of each organ, and that the transport system of reduced N by way of xylem and phloem, as well as nitrate reduction by root and shoot, can be modulated in response to the relative magnitude of reduced-N demands by the root and shoot, with the one or the other predominating under different circumstances.Symbols Anl accumulation of reduced 15N from 15NO - 3 in 14NO - 3 -fed roots of divided root system - Ar accumulation in root of reduced 15N from 15NO - 3 - As accumulation in shoot of reduced 15N from 15NO - 3 - Rr 15NO - 3 reduction in root - Rs 15NO - 3 reduction in shoot - Tp translocation to root of shoot-reduced 15N from 15NO - 3 in phloem - Tx translocation to shoot of root-reduced 15N from 15NO - 3 in xylem  相似文献   

17.
An experiment is described in which the magnitude of N transferred from damaged white clover roots to perennial ryegrass was determined, using 15N labelling of the grass plant. There was no effect on the growth and N-fixation of the clover plants after removing part of the root system. The 15N data suggested that N had been acquired by all grass plants, even in plants grown alone with no further N supplied after labelling. However, after quantifying the mobile and stored N pools of the grass plants it was evident that significant transfer of N from clover to grass only took place from damaged clover roots. Dilution of the atom% 15N in the roots of the grass plants grown alone, and in association with undamaged clover roots, was explained by remobilisation of N within the plant.  相似文献   

18.
Global warming will increase heat waves, but effects of abrupt heat stress on shoot–root interactions have rarely been studied in heat-tolerant species, and abrupt heat-stress effects on root N uptake and shoot C flux to roots and soil remains uncertain. We investigated effects of a high-temperature event on shoot vs. root growth and function, including transfer of shoot C to roots and soil and uptake and translocation of soil N by roots in the warm-season drought-tolerant C4 prairie grass, Andropogon gerardii. We heated plants in the lab and field (lab = 5.5 days at daytime of 30 + 5 or 10 °C; field = 5 days at ambient (up to 32 °C daytime) vs. ambient +10 °C). Heating had small or no effects on photosynthesis, stomatal conductance, leaf water potential, and shoot mass, but increased root mass and decreased root respiration and exudation per g. 13C-labeling indicated that heating increased transfer of recently-fixed C from shoot to roots and soil (the latter likely via increased fine-root turnover). Heating decreased efficiency of N uptake by roots (uptake/g root), but did not affect total N uptake or the transfer of labeled soil 15N to shoots. Though heating increased soil temperature in the lab, it did not do so in the field (10 cm depth); yet results were similar for lab and field. Hence, acute heating affected roots more than shoots in this stress-tolerant species, increasing root mass and C loss to soil, but decreasing function per g root, and some of these effects were likely independent of direct effects from soil heating.  相似文献   

19.
《Aquatic Botany》1987,27(2):127-138
Greenhouse and growth chamber studies were conducted to evaluate growth and N utilization by Typha latifolia L. in flooded organic soil under varying temperatures and rates of N additions. Elevation of temperature from 10 to 25°C increased shoot biomass yields by 275%. Root biomass yields were lowest at 10°C and increased linearly as a function of temperature. Shoot/root ratios were low (0.72–0.82) at lower temperatures (10–15°C) and ratios increased by about three times at higher temperatures (20–30°C). Biomass yields were increased by addition of N fertilizers, while the shoot/root ratios were directly related to plant-available N present in the soil.Fertilizer 15N uptake (expressed as % of applied N) by the whole plant was 5.3% at 10°C, 37.5% at 20°C and at 30°C decreased to 20.8%. Fertilizer N accumulation in shoots was 2.1–29.8% of applied N, while roots accumulated 3.2–7.7%. Under greenhouse conditions, N uptake by T. latifolia was found to increase with increased rate of N application. Fertilizer N uptake by both shoots and roots was in the range of 61–77%. Plants cultured in growth chambers were affected by low light conditions resulting in poor growth and low fertilizer 15N uptake, as compared to plants grown under greenhouse conditions. Added fertilizer N was the major source of N during the early part of the growing season, while soil organic N was the major and perhaps the sole source of N during the latter part of the growing season.  相似文献   

20.
Dinitrogen fixation in white clover (Trifolium repens L.) grown in pure stand and mixture with perennial ryegrass (Lolium perenne L.) was determined in the field using 15N isotope dilution and harvest of the shoots. The apparent transfer of clover N to perennial ryegrass was simultaneously assessed. The soil was labelled either by immobilizing 15N in organic matter prior to establishment of the sward or by using the conventional labelling procedure in which 15N fertilizer is added after sward establishment. Immobilization of 15N in the soil organic matter has not previously been used in studies of N2 fixation in grass/clover pastures. However, this approach was a successful means of labelling, since the 15N enrichment only declined at a very slow rate during the experiment. After the second production year only 10–16% of the applied 15N was recovered in the harvested herbage. The two labelling methods gave, nonetheless, a similar estimate of the percentage of clover N derived from N2 fixation. In pure stand clover, 75–94% of the N was derived from N2 fixation and in the mixture 85–97%. The dry matter yield of the clover in mixture as percentage of total dry matter yield was relatively high and increased from 59% in the first to 65% in the second production year. The average daily N2 fixation rate in the mixture-grown clover varied from less than 0.5 kg N ha−1 day−1 in autumn to more than 2.6 kg N ha−1 day−1 in June. For clover in pure stand the average N2 fixation rate was greater and varied between 0.5 and 3.3 kg N ha−1 day−1, but with the same seasonal pattern as for clover in mixture. The amount of N fixed in the mixture was 23, 187 and 177 kg N ha−1 in the seeding, first and second production year, respectively, whereas pure stand clover fixed 28, 262 and 211 kg N ha−1 in the three years. The apparent transfer of clover N to grass was negligible in the seeding year, but clover N deposited in the rhizosphere or released by turnover of stolons, roots and nodules, contributed 19 and 28 kg N ha−1 to the grass in the first and second production year, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号