首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pipette aspiration technique was proposed for the measurement of nonlinear mechanical properties of arteries under biaxial stretching. A cross-shaped specimen of porcine thoracic aorta whose principal axes corresponded with the axial and circumferential directions of the aortic walls was excised. The intraluminal surface of the specimen was aspirated with a circular cross-sectioned glass pipette while the specimen was stretching in the axial and circumferential directions in 10% increments. The elastic modulus agreed with the incremental elastic modulus obtained through a conventional pressure-diameter test of the same specimen to within an error of 30% at a circumferential stretch ratio below 1.3 and an axial stretch ratio of 1.0, 1.1 or 1.2, which represent lower range of physiological stretch ratios for the porcine aorta. A rectangular cross-sectioned pipette was utilized to measure anisotropic properties of the specimen under biaxial stretching. When aspirated with such a pipette, the specimens' elastic properties along the length of the rectangular pipette cross section can be neglected. The elastic modulus was found to increase rapidly when the specimen was stretched in the direction of the pipette's width. Thus, pipette aspiration should have many advantages such as well measurement of the local nonlinear and anisotropic mechanical properties of blood vessel walls.  相似文献   

2.
Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 A resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme "acyl pocket". The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold ( k i (W197I) = 16 +/- 2 mM (-1) h (-1)), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 A); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a "D-type" esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon ( k i = 42 or 80 mM (-1) h (-1), respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.  相似文献   

3.
Silk fibroin is a biocompatible and biodegradable material, which can be used in surgery and tissue engineering. To improve the cell adhesion on fibroin surface, gelatin can be added to the items made of fibroin. This work compares the mechanical properties of films and three-dimensional scaffolds made of fibroin and fibroin with gelatin. The addition of 30% gelatin to the fibroin scaffold does not change its microstructure or swelling. The addition of gelatin decreases the mechanical properties of films (decreases the Young’s modulus, the maximum strain and elongation) but increases the shear modulus of the scaffolds.  相似文献   

4.
A novel computational approach is proposed to investigate the shear modulus of graphene nanostructures. In this approach, the factors that affect the shear modulus of graphene structures are analysed using an integrated artificial intelligence (AI) cluster comprising molecular dynamics (MD) and gene expression programming. The MD-based-AI approach has the ability to formulate the explicit relationship of shear modulus graphene nanostructure with respect to aspect ratio, temperature, number of atomic planes and vacancy defects. In addition, the shear modulus of graphene predicted using an integrated MD-based-AI model is in good agreement with that of experimental results obtained from the literature. The sensitivity and parametric analysis were further conducted to find out specific influence and variation of each of the input system parameters on the shear modulus of two graphene structures. It was found that the number of defects has the most dominating influence on the shear modulus of graphene nanostructure.  相似文献   

5.
The annulus fibrosus (AF) of the intervertebral disk undergoes large and multidirectional stresses and strains. Uniaxial tensile tests are limited for measuring AF material properties, because freely contracting edges can prevent fiber stretch and are not representative of in situ boundary conditions. The objectives of this study were to measure human AF biaxial tensile mechanics and to apply and validate a constitutive model to determine material properties. Biaxial tensile tests were performed on samples oriented along the circumferential–axial and the radial–axial directions. Data were fit to a structurally motivated anisotropic hyperelastic model composed of isotropic extra-fibrillar matrix, nonlinear fibers, and fiber–matrix interactions (FMI) normal to the fibers. The validated model was used to simulate shear and uniaxial tensile behavior, to investigate AF structure–function, and to quantify the effect of degeneration. The biaxial stress–strain response was described well by the model (R 2?>?0.9). The model showed that the parameters for fiber nonlinearity and the normal FMI correlated with degeneration, resulting in an elongated toe-region and lower stiffness with degeneration. The model simulations in shear and uniaxial tension successfully matched previously published circumferential direction Young’s modulus, provided an explanation for the low values in previously published axial direction Young’s modulus, and was able to simulate shear mechanics. The normal FMI were important contributors to stress and changed with degeneration, therefore, their microstructural and compositional source should be investigated. Finally, the biaxial mechanical data and constitutive model can be incorporated into a disk finite element model to provide improved quantification of disk mechanics.  相似文献   

6.
Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe’s principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.  相似文献   

7.
Elastic properties of oxidized cholesterol bilayers in n-octane and membrane solvent free were studied by measuring Young modulus E perpendicular in the direction perpendicular to the membrane plane as a function of concentration of calcium ions. Interaction between calcium ions and solvent free bilayers resulted in a significant increases of Young modulus E perpendicular in the concentration range 20-40 mmol/l Ca2+. It is suggested that the hardening of the membrane is caused by some structural changes in the hydrophobic region of the membrane.  相似文献   

8.
The material behavior of ligament is determined by its constituents, their organization and their interaction with each other. To elucidate the origins of the multiaxial material behavior of ligaments, we investigated ligament response to shear loading under both quasi-static and rate-dependent loading conditions. Stress relaxation tests demonstrated that the tissue was highly viscoelastic in shear, with peak loads dropping over 40% during 30 min of stress relaxation. The stress relaxation response was unaffected by three decades of change in shear strain rate (1.3, 13 and 130%/s). A novel parameter estimation technique was developed to determine material coefficients that best described the experimental response of each test specimen to shear. The experimentally measured clamp displacements and reaction forces from the simple shear tests were used with a nonlinear optimization strategy based around function evaluations from a finite element program. A transversely isotropic material with an exponential matrix strain energy provided an excellent fit to experimental load-displacement curves. The shear modulus of human MCL showed a significant increase with increasing shear strain (p<0.001), reaching a maximum of 1.72+/-0.4871 MPa. The results obtained from this study suggest that viscoelasticity in shear does not likely result from fluid flow. Gradual loading of transversely oriented microstructural features such as intermolecular collagen crosslinks or collagen-proteoglycan crosslinking may be responsible for the stiffening response under shear loading.  相似文献   

9.
Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from abionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a DigitalImage Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared bycarefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electronmicroscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designedfixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digitalimage correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing variedat different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structuralanisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elasticmodulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc-cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane’s elastic modulus,we considered thePoisson’s ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.Theresult reveals the Poisson’s ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.  相似文献   

10.
Finite simple shear test characteristics like specimen geometry and boundary conditions could affect the deformation homogeneity during the test. In order to ensure that the parameters of constitutive equations obtained from finite simple shear tests are appropriate, the deformation homogeneity of the specimen during simple-shear test should be examined. The Fourier transform moiré method (FTM) was used to examine the deformation uniformity of a porcine skin specimen in a finite simple shear test. The effects of clamping prestrain (0.15 and 0.3 engineering strain) and specimen geometry (5x5, 5x3.75, and 5x2.5cm) were investigated. These effects include in-plane deformation altered by clamping prestrain, slippage between specimen and clamps, and out-of-plane deformation. The experimental results showed that the wide specimen had more severe deformation alteration by clamping prestrain and was easier to slip out of the clamps when the shear angle is large. Furthermore, in all test configurations, the out-of-plane deformation is significant when the shear angle is large, and a narrow specimen is prone to have out-of-plane deformation. This study may provide guidelines for the selection of specimen aspect ratio and clamping prestrain when studying the material response of soft tissues under simple-shear tests.  相似文献   

11.
Damage accumulation plays a key role in weakening bones prior to complete fracture and in stimulating bone remodeling. The goal of this study was to characterize the degradation in the mechanical properties of cortical bone following a compressive overload. Longitudinally oriented, low-aspect ratio specimens (n=24) of bovine cortical bone were mechanically tested using an overload-hold-reload protocol. No modulus reductions greater than 5% were observed following overload magnitudes less than 0.73% strain. For each specimen, changes in strength and Poisson's ratio were greater (p=0.02) than that in modulus by 10.8- and 26.6-fold, respectively, indicating that, for the specimen configuration used in this study, longitudinal elastic modulus is one of the least sensitive properties to a compressive overload. Residual strains were also proportionately greater by 6.4-fold (p=0.01) in the transverse than axial direction. These results suggest that efforts to relate microcrack density and morphology to changes in compressive mechanical properties of cortical bone may benefit from considering alternative parameters to modulus reductions.  相似文献   

12.
The role of the periodontal ligament (PDL) is to support the tooth during function and resist external forces applied to it. The dominant vertical component of these forces is associated with shear in the PDL. Little information, however, is available on the dynamic behavior of the PDL in shear. Therefore, the present study was designed to determine the dynamic shear properties of the PDL in the porcine molar (n=10). From dissected mandibles transverse sections of the mesial root of the first molar were obtained at the apical and coronal levels and used for dynamic shear tests. Shear strain (0.5%, 1.0%, and 1.5%) was applied in superoinferior direction parallel to the root axis with a wide range of frequencies (0.01-100 Hz). The dynamic complex and storage moduli increased significantly with the loading frequency, the dynamic loss modulus showed only a small increase. The dynamic elasticity was significantly larger in the coronal region than in the apical region although the dynamic viscosity was similar in both regions. The present results suggest that non-linearities, compression/shear coupling, and intrinsic viscoelasticity affect the shear material behavior of the PDL, which might have important implications for load transmission from tooth to bone and vice versa.  相似文献   

13.
The epicardial coronary arteries experience significant torsion in the axial direction due to changes in the shape of the heart during the cardiac cycle. The objective of this study was to determine the torsional mechanical properties of the coronary arteries under various circumferential and longitudinal loadings. The coronary artery was treated as a two-layer composite vessel consisting of intima-medial and adventitial layers, and the shear modulus of each layer was determined. Eight porcine hearts were obtained at a local abattoir, and their right coronary and left anterior descending arteries were isolated and tested in vitro with a triaxial torsion machine (inflation, longitudinal stretch, and circumferential twist). After the intact vessel was tested, the adventitia was dissected away, leaving an intact media that was then tested under identical triaxial loading conditions. We proposed a biomechanical analysis to compute the shear modulus of the adventitia from the measured shear moduli of the intact vessel and the media. To validate our predictions, we used four additional hearts in which the shear modulus of the adventitia was measured after dissection of media. Our results show that the shear modulus does not depend on the shear stress or strain but varies linearly with circumferential and longitudinal stresses and in a nonlinear way with the corresponding strains. Furthermore, we found that the shear modulus of the adventitia is larger than that of the intact vessel, which is larger than the vessel media. These results may have important implications for baroreceptor sensitivity, circulation of the vasa vasorum, and coronary dissection.  相似文献   

14.
The structural, elastic, elastic anisotropy and electronic properties of ferroelectric SbSI and paraelectric SbSI, SbSeI and SbTeI crystals were computed using the local density approximation with first-principle calculations, based on density functional theory. The independent elastic constants of SbXI compounds were computed and the results reveal that they are mechanically stable. Some polycrystalline quantities such as bulk modulus, shear modulus, acoustic velocities, Young’s modulus, Poisson’s ratio, elastic anisotropy and elastic Debye temperatures of these compounds were derived from computed elastic constants. Energy band structures show that these compounds have an indirect band gap. The electronic charge distribution and partial density of states of SbXI compounds indicate that the Sb-X bond is typically covalent with a strong hybridization as well as Sb-I compounds that have strong ionic character. The results obtained were compared with experimentally measured values and other theoretical data.  相似文献   

15.
Determining accurate density-mechanical property relationships for trabecular bone is critical for correct characterization of this important structure-function relation. When testing any excised specimen of trabecular bone, an unavoidable experimental artifact originates from the sides of the specimen where peripheral trabeculae lose their vertical load-bearing capacity due to interruption of connectivity, a phenomenon denoted here as the 'side-artifact'. We sought in this study to quantify the magnitude of such side-artifact errors in modulus measurement and to do so as a function of the trabecular architecture and specimen size. Using parametric computational analysis of high-resolution micro-CT-based finite-element models of cores of elderly human vertebral trabecular bone, a specimen-specific correction factor for the side-artifact was quantified as the ratio of the side-artifact-free apparent modulus (Etrue) to the apparent modulus that would be measured in a typical experiment (Emeasured). We found that the width over which the peripheral trabeculae were mostly unloaded was between 0.19 and 0.58 mm. The side-artifact led to an underestimation error in Etrue of over 50% in some specimens, having a mean (+/-SD) of 27+/-11%. There was a trend for the correction factor to linearly increase as volume fraction decreased (p=0.001) and as mean trabecular separation increased (p<0.001). Further analysis indicated that the error increased substantially as specimen size decreased. Two methods used for correcting for the side-artifact were both successful in bringing Emeasured into statistical agreement with Etrue. These findings have important implications for the interpretation of almost all literature data on trabecular bone mechanical properties since they indicate that such properties need to be adjusted to eliminate the substantial effects of side-artifacts in order to provide more accurate estimates of in situ behavior.  相似文献   

16.
A direct correlation exists between the level of histone H4 hyperacetylation induced by sodium butyrate and the extent to which nucleosomes lose their compact shape and become elongated (62.0% of the particles have a length/width ratio over 1.6; overall mean in the length/width ratio = 1.83 +/- 0.48) when bound to electron microscope specimen grids at low ionic strength (1mM EDTA, 10mM Tris, pH 8.0). A marked proportion of elongated core particles is also observed in the naturally occurring hyperacetylated chicken testis chromatin undergoing spermatogenesis when analyzed at low ionic strength (36.8% of the particles have a length/width ratio over 1.6). Core particles of elongated shape (length/width ratio over 1.6) generated under low ionic strength conditions are absent in the hypoacetylated chicken erythrocyte chromatin and represent only 2.3% of the untreated Hela S3 cell core particles containing a low proportion of hyperacetylated histones. The marked differences between control and hyperacetylated core particles are absent if the particles are bound to the carbon support film in the presence of 0.2 M NaCl, 6mM MgCl2 and 10mM Tris pH 8.0, conditions known to stabilize nucleosomes. A survey of the published work on histone hyperacetylation together with the present results indicate that histone hyperacetylation does not produce any marked disruption of the core particle 'per se', but that it decreases intranucleosomal stabilizing forces as judged by the lowered stability of the hyperacetylated core particle under conditions of shearing stress such as cationic competition by the carbon support film of the EM grid for DNA binding.  相似文献   

17.
An analysis of the unconfined compression of articular cartilage   总被引:7,自引:0,他引:7  
Analytical solutions have been obtained for the internal deformation and fluid-flow fields and the externally observable creep, stress relaxation, and constant strain-rate behaviors which occur during the unconfined compression of a cylindrical specimen of a fluid-filled, porous, elastic solid, such as articular cartilage, between smooth, impermeable plates. Instantaneously, the "biphasic" continuum deforms without change in volume and behaves like an incompressible elastic solid of the same shear modulus. Radial fluid flow then allows the internal fluid pressure to equilibrate with the external environment. The equilibrium response is controlled by the Young's modulus and Poisson's ratio of the solid matrix.  相似文献   

18.
A numerical method is proposed to assess the role of random microstructure on the effective Young’s modulus of a two-phase biopolymer composite material. An Ising model coupled to a Monte Carlo (MC) technique is used to generate virtual microstructures representing realistic starch–zein blends having random microstructure. The motivation here was to generate virtual microstructures that can be used in a numerical model to allow a continuous variation of both phase fraction and interface length. From the Pair Correlation Function (PCF), the minimum requirement for the Representative Volume Element (RVE) is established based on geometrical considerations. Finite element analysis allowed the prediction of the effective Young’s modulus as function of the phase ratio for the studied microstructures. The predicted trend is found close to that of Confocal Laser Scanning Microscopy (CLSM) microstructures of starch-based blends used as a case study. The comparison between the predicted results and the most popular analytical expressions points out that only the Hashin–Shrickman bounds are the most close bounds to the evolution of the effective Young’s modulus as function of second phase ratio.When implementing the intrinsic properties of starch and zein and considering virtual microstructures, analytical and numerical models exhibit the same trend. However, the comparison with the 3-p bending results suggests instead, a non-linear trend that can be inferred to the presence of imperfect starch–zein interface properties.  相似文献   

19.
Dasgupta A  Das D  Das PK 《Biochimie》2005,87(12):7353-1119
The catalytic efficiency of trypsin was estimated in cationic reverse micelles as a function of the concentration of water-pool components and aggregate size to determine their independent influence on enzyme activity. The variation in the aggregate size/water-pool size was achieved by changing both the W0 (mole ratio of water to surfactant) and the headgroup area of surfactant through introduction of hydroxyethyl groups at the polar head. The local molar concentrations of water present inside the water-pool ([H2O]wp) of different cationic reverse micelles across varying W0 was estimated using a modified phenyl cation-trapping protocol. The [H2O]wp in cationic reverse micelles (surfactant/isooctane/n-hexanol/water) increases with W0 and attains the molarity of normal water beyond W0=40 irrespective of the nature of headgroup. Concurrently, the catalytic activity of trypsin compartmentalized within the water-pool increases with the increase in [H2O]wp upto an optimal W0=40 in organized solutions of any surfactant. The aggregate size (determined by static light scattering) also increases expectedly with W0 and noticeably with the area of the surfactant headgroup at similar W0. Since the enzyme activity rises both with the increase in water-pool size and [H2O]wp, trypsin's efficiency was compared with these two parameters across reverse micelles of varying surfactant headgroup size at similar W0 to determine their probable independent influence in regulating the enzyme activity. Noticeably, the efficiency of trypsin rises two to ninefold in spite of the [H2O]wp being distinctly lower in case of hydroxyethyl group substituted surfactants compared to cetyltrimethylammonium bromide w/o microemulsions at similar W0. Thus, the influence of the aggregate size possibly plays an important role alongwith the [H2O]wp in modulating the enzyme activity.  相似文献   

20.
A technique is established which allows an effective torsional shear modulus to be determined for long bones, while remaining nondestructive to whole bone specimens. Strain gages are bonded to the diaphysis of the bone. Strains are then recorded under pure torsional loads. Theoretical stress predictions are combined with experimental strain recordings to arrive at a modulus value. Shear modulus calculations for four canine radii are reported using theoretical stress predictions from circular, elliptical and finite element models of the transverse bone geometry. The effective shear modulus, obtained from an average of the shear moduli determined at strain gage locations, serves to average the heterogeneous shear modulus distribution over the cross section. The shear modulus obtained is that associated with the "circumferential" direction in transverse planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号