首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
Synopsis Characteristics of perch were studied in 4 recently acidified lakes in southern Finland. The densities of the populations were 0–250 ha–1 compared with 1400–3300 ha–1 in two circumneutral reference lakes. The perch were close to extinction in one acidic lake and dominated by 7 year old fish in two other acidic lakes, suggesting decreased reproduction. Individual fecundity was not reduced by the acidity, but high mortality (close to 100%) of eggs in two acidic lakes indicated recruitment failure. In one of the acidified lakes reproduction had continued resulting in a population dominated by younger fish. However, increased egg mortality, low density, and the resulting high growth rate of perch in this lake were considered to be consequences of the acidity. These findings are the first documentation on the possible decrease of fish populations in Finland due to acid precipitation.  相似文献   

2.
How many fish populations in Finland are affected by acid precipitation?   总被引:2,自引:0,他引:2  
Synopsis The number of fish populations affected or lost from small lakes in southern and central Finland due to acid precipitation is estimated. Tolerance limits (pH and labile aluminum) of common fish species were obtained from a fish status survey of 80 lakes. These tolerance values were used to estimate the proportion of affected lakes from the water chemistry data of 783 statistically selected lakes. The proportion of anthropogenically acidified lakes was estimated by calculating pre-acidification pH and aluminum concentrations of the lakes, using a steady-state model based on water chemistry. The number of fish populations for which acidification has affected growth or population structure was estimated at between 2200 and 4400. Out of these, the number of fish populations that have disappeared due to acid precipitation would be about 1000–2000. Almost 60% of the affected or lost populations are roach, Rutilus rutilus, the most sensitive of the common fish species in small lakes in southern and central Finland. Less than 15% of the damaged population is European perch, Perca fluviatilis, the most common species. This is due to the substantially higher tolerance of perch to acidified water in comparison with roach.  相似文献   

3.
Test fishing with multimesh gillnets was performed in 103 acidified Swedish lakes before and 2–4 years after liming. In a subset of 39 lakes additional test fishing was carried out 5–9 years after liming. Taking into account the sampling biases due to differences between water temperature and number of nets used on different sampling occasions, an increase of the total CPUE, the number of species caught and recruitment of dominating species was evident after liming. Decreased recruitment was found for perch (Perca fluviatilis) at a pH below 5.2 and for roach (Rutilus rutilus) at a pH below 6.1. During the acidification phase and 2–4 years after liming acid-tolerant perch dominated the lakes, but when a longer time had elapsed after liming species dominance shifted and acid-sensitive planktivorous species increased in CPUE while perch decreased.  相似文献   

4.
Martti Rask 《Hydrobiologia》1983,101(1-2):139-143
Growth patterns and food composition of perch, Perca fluviatilis L., was studied in two small forest lake populations in southern Finland. Size and morphometry of the lakes and physical and chemical properties of water are similar. There is a clear difference in the growth rates of perch between the two lakes. The difference in growth is highly significant in all age groups. In the first lake there is a perch population of 2 000 (1750 ind · ha–1) adult fishes. In the second lake there is a small population of pike, that keeps the perch population down: 200 adult perch (530 ind · ha-1). The main food items of perch are crustacean zooplankton, Asellus aquaticus L. and Trichoptera larvae in the first lake and zooplankton, Odonata larvae, Ephemeroptera larvae and Heteroptera in the second.It is concluded that the main reason for the growth difference of studied perch populations is the different population density. There are also differences in species composition of bottom fauna of the lakes, maybe owing to the floating Sphagnum peat moss vegetation in the second lake. This can also affect the growth difference between the two populations of perch.  相似文献   

5.
Changes in the fish community structure and habitat use were followed after the introduction of pikeperch (Stizostedion lucioperca) to the roach-dominated Lake Gjersjøen. Quantitative echosounding showed that the density of juvenile roach (Rutilus rutilus) was dramatically reduced in pelagic areas, from 12 000–15 000 fish/ha to 250 fish/ha, while total fish density remained unchanged in littoral areas. At the same time, the habitat segregation between different size groups of roach was altered as larger roach utilized the pelagic zone after pikeperch introduction. The loss of the pelagic refuge for juvenile roach increased the availability of juvenile roach to littoral predators, notably perch. In littoral areas, the fish community changed from one dominated by roach (> 95%) to one dominated by perch (> 50%).  相似文献   

6.
We examined relationships among perch population variable parameters in two types of lakes, lakes with perch (P-lakes, n?=?15) and lakes with perch and roach (PR-lakes, n?=?10) using redundancy analysis (RDA) to relate population variables to environmental factors. Effects from environmental factors were tested for significance by means of permutation tests (Monte Carlo). Three factors, pH, altitude and fraction of roach (by number) in the gill net catches, explaining 47.9% of the variation, had significant effects on perch population variables. The significance of pH was improved by partialing out the effect of conductivity and roach. Similarly, the significance of altitude was improved by partialing out the effect of pH and roach, and the significance of roach was improved by partialing out the effect of pH and altitude. When the fraction of pike in the catch was included in the analysis, the effect of roach was not significant and vice-versa, as roach and pike fractions were correlated with each other. The effect of pike was significant when roach was not included, but the effect was not as strong as the effect of roach. A biplot was constructed by plotting population variables on the first and second RDA axis, with arrows showing five selected environmental factors. Growth of 3+ to 5+ perch was positively related to pH and altitude, perch catch per unit effort was negatively related to pH and altitude, and age specific perch weight was negatively related to fraction of roach. The relationship between growth of 2+ perch and pH was not as strong as the relationship between pH and the growth of older perch. Moreover, the growth of 2+ perch was negatively related to the fraction of roach, probably due to competition between young zooplankton feeding perch and roach.  相似文献   

7.
Horizontal and vertical heterogeneity as a result of size‐structured processes are important factors influencing indirect effects in food webs. In a whole‐lake experiment covering 5 years, we added the intermediate consumer roach (Rutilus rutilus) to two out of four lakes previously inhabited by the omnivorous top predator perch (Perca fluviatilis). We focused our study on the direct consumption effect of roach presence on zooplankton (and indirectly phytoplankton) versus the indirect effect of roach on zooplankton (and phytoplankton) mediated via effects on perch reproductive performance. The patterns in zooplankton and phytoplankton abundances were examined in relation to population density of roach and perch including young‐of‐the‐year (YOY) perch in the light of non‐equilibrium dynamics. The presence of roach resulted in changed seasonal dynamics of zooplankton with generally lower biomasses in May–June and higher biomasses in July–August in roach lakes compared to control lakes. Roach presence affected perch recruitment negatively and densities of YOY perch were on average higher in control lakes than in treatment lakes. In years when perch recruitment did not differ between lakes as a result of experimental addition of perch eggs, total zooplankton biomass was lower in treatment lakes than in control lakes. Phytoplankton biomass showed a tendency to increase in roach lakes compared to control lakes. Within treatment variation in response variables was related to differences in lake morphometry in treatment lakes. Analyses of the trophic dynamics of each lake separately showed strong cascading effects of both roach and YOY perch abundance on zooplankton and phytoplankton dynamics. Consideration of the long transients in the dynamics of top predators (fish) in aquatic systems that are related to their long life span involving ontogenetic niche shifts is essential for making relevant interpretations of experimental perturbations. This conclusion is further reinforced by the circumstance that the intrinsic dynamics of fish populations may in many cases involve high amplitude dynamics with long time lags.  相似文献   

8.
Horppila  Jukka  Kairesalo  Timo 《Hydrobiologia》1992,(1):323-331
Lake Vesijärvi, southern Finland, suffered sewere eutrophication by sewage effluent from the city of Lahti during the 1960's and the early 1970's. The municipal sewage loading was diverted from the lake in 1976 and the lake started to recover. However, in the 1980's blue-green algal blooms increased again and the recovery of the lake faded. Enclosure experiments demonstrated that high roach (Rutilus rutilus) biomass is one of the key factors in the fading recovery of the lake. In this study, the influence of roach and another cyprinid fish species (bleak, Alburnus alburnus) to planktonic algal productivity and biomass in Lake Vesijärvi was examined. Enclosure experiments in the field showed the impacts of planktivorous bleak on water quality; in an enclosure with a density of 1 fish m–2 average daily algal production (1370 mg C m–2) and chlorophyll-a concentration (50–90 µg 1–1) were more than twice that in an enclosure without fish. Laboratory experiments showed that the availability of planktonic food affects the foraging behaviour of roach and consequently the internal nutrient loading from the sediment into the water. Roach caused the highest phosphorus loading and turbidity when there was no zooplanktonic food available in the water. The possible interactions between planktivorous and omnivorous fish species are discussed.  相似文献   

9.
This study examined gill anomalies of two common freshwater fish species, roach Rutilus rutilus and perch Perca fluviatilis , collected over five seasons in 1989–1990 from four lakes in central Finland. The lakes differed both in water quality and in fish parasite species composition. Particular attention was paid to the differences in chloride cell proliferation. Gill anomalies were generally more common and abundant in roach than in perch. Chloride cell proliferation was the most frequent histological change in roach but was that least often found in perch. Most of the changes were systemic and light in severity. In perch an unidentified lesion of noncellular eosinophilic inclusions in an enlarged epithelium was also recorded. There was a marked pattern in the severity of histological changes in perch when comparing those from the natural Lake Peurunka to those from three 'altered' lakes. Gills of perch from Lake Peurunka possessed more alterations in all the recorded parameters. In roach, a significant differences were detected in chloride cell and epithelial proliferation: these were greater in Lake Peurunka and 'polluted' Lake Vatia. In perch, all histological changes were significantly more frequent at the end of autumn 1989 when compared to other seasons. In roach, increased frequencies of all gill changes were noted in winter and spring samples. Tissue reactions to parasites were either only localized or absent. The systemic gill alterations in freshwater fish may reflect the soft nature and low winter temperature of Finnish fresh waters, in which chemical imbalances, such as acid peaks, may induce more dramatic changes in fish tissues than in harder waters.  相似文献   

10.
In autumn 1986, six small lakes at different stages of acidification were stocked with one-summer-old whitefish, Coregonus pallasi Valenciennes 1848, in order to see whether whitefish stocking would be a suitable method for the mitigation of acidification effects. In two of the lakes the introduction was a complete failure: the whitefish did not survive, evidently due to high acidity and high aluminium concentrations of the lake waters. In one of the most acidified lakes (pH 4.3–4.8, Allab 29–125 g 1–1) and in two less acidic lakes (pH 5.0–5.2 and 5.4–6.4), introduction was successful. Three years after the introduction, the mean weights of the fish in those three lakes were 580, 250 and 360 g respectively, with the weight and also the condition factor of stocked whitefish being highest in the most acidified lake. In that lake there were few or no fish present during the introduction, whereas in the less acid lakes there were dense populations of perch and therefore a potential interspecific competition for food. Different availability of food in the lakes was presumed to be the main reason for the growth differences. Plasma Na+ and Cl concentrations of whitefish were lower in the acidic lakes than in the lake with pH around 6 three years after stocking. This suggests that, despite the good growth and highest condition factor of whitefish in the most acid lake, the fish still experienced some acid stress.  相似文献   

11.
Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.  相似文献   

12.
Synopsis Most of the lakes in The Netherlands are turbid and without vegetation. This is regarded as the result of increasing eutrophication within the last decades. Under these conditions common bream, roach, and white bream are the most common cyprinids. In six shallow (1–3 m), wind exposed lakes the abundance of common bream and roach was linked to the abundance of pikeperch; bream dominated when pikeperch was abundant, but when the latter species was rare, roach was dominant and the biomass of bream was reduced. The biomass of white bream was always relatively low. In lake Tjeukemeer the distribution of roach < 20 cm fork length (FL) and bream was also related to the distribution of pikeperch. Only roach > 20 cm FL managed to coexist with pikeperch in the open water area, whereas roach < 20 cm was confined to the littoral zone where pikeperch was nearly absent. Bream occurred mainly in the open water and avoided the littoral zone where it competed with roach. White bream occupied an intermediate position, occurring in relatively low density both in the littoral zone and in open water. The importance of predation and competition in determining the distribution and abundance of roach and common bream in the eutrophic lakes of The Netherlands is discussed.  相似文献   

13.
Summary Densities of the cladoceran, Holopedium gibberum, were manipulated in 18 enclosures containing juvenile (age 0+) yellow perch (Perca flavescens) and mean-lake densities of other zooplankton. In enclosures, where nearlake densities of all zooplankton species including Holopedium were maintained, young-of-the-year perch grew significantly heavier and longer than in experimental enclosures where Holopedium was excluded. Holopedium comprised between 15–45% of the diet (wet weight) of perch in the first 2 weeks of July in the control treatment (Holopedium at or near ambient lake densities) and only 3–7% of total biomass ingested in the experimental treatment (Holopedium density selectively reduced). Predation on Holopedium decreased dramatically after the 2nd week of July in the control treatment after which Chaoborus, chironomids, and Sida became dominant prey items (by weight) of juvenile perch. These findings suggest that growth and survivorship of age 0+ perch in Precambrian Shield lakes may be coupled to Holopedium abundance. Thus, utilization of Holopedium by young-of-the-year yellow perch may affect recruitment of this species since overwintering survivorship, range of accessible prey sizes or species, and vulnerability of juvenile perch to predation by larger fish depend on body size, which is reduced when Holopedium is excluded from the diet.  相似文献   

14.
Population structure, density and reproductive potential of perch (Perca fluviatilis L.) from 4 acidified lakes in a river system in Southern Norway were investigated. The upper 3 lakes were most affected by acidification and the number of perch caught per unit effort indicate three-fold increase in density from the upper Gjerstadvann to the lower Brøbørvann. Low density of perch in the upper lakes is explained by; 1) Abnormal mortality occurring in episodes due to acidification, probably caused by aluminium toxicity at pH = 5.2–5.4. 2). Acid water (pH ≤ 5.0) during spawning and development of eggs and larvae, resulting in recruitment failure. Juvenile mortality of perch may depend on the density of the parental stock. In the 3 upper lakes, the density of adult perch probably was too low to produce significant juvenile mortality, and in these lakes the recruitment probably depended more on the May water quality. Improved water quality increases egg hatching and survival and also benefits zooplankton production, the main food for perch during the first summer. Low population density has reduced competition for food and thus improved growth of perch in the 3 upper lakes compared to the lower lake. The perch in Brøbørvann mature at higher age and have lower individual fecundity than perch in Gjerstadvann, an effect of both slower growth and lower length specific fecundity in Brøbørvann. In Gjerstadvann, the perch therefore have a higher reproductive potential relative to the stock density, and may, when the water quality is good enough, give rise to strong year-classes and more frequent year-class fluctuations than perch in the less acid Brøbørvann.  相似文献   

15.
Perch population characteristics of small lakes were examined with a special reference to lakes which have acidified recently due to atmospheric deposition of air pollutants. The population density and biomass of perch were higher in an acid (pH 4.5) clear water lake with low aluminium concentration than in recently acidified (pH 4.3–4.7) clear water lakes with higher aluminium levels. The structure of perch population in an acid (pH 4.4) humic lake was similar to recently acidified clear water lakes. The population density and the biomass of perch were significantly higher in 6 lakes with pH>5.0 than in 6 lakes of pH<5.0 whereas the mean age and length at a given age were higher in the more acid lakes.  相似文献   

16.
A severe oxygen deficit induced a fish kill in the eutrophicated two-basin Lake Äimäjärvi in southern Finland during winter 2002–2003, resulting in cascading effects on the lower trophic levels of the lake. Pikeperch disappeared from the lake and bleak and white bream decreased to low numbers. The recovery of the populations of other species started immediately when strong year-classes of roach and perch appeared in summer 2003 and onwards. A sharp increase in the growth of perch and roach was recorded, and perch became the dominant fish species during 2004–2006. Consequent responses after the fish kill included increased Secchi depth, expansion of submerged macrophytes, decreased nutrient concentrations and reduction of Cyanophyta from the more eutrophic northern basin of the lake, and a temporary increase in the size of Daphnia in the early summer 2003. However, the ecosystem of the lake returned gradually to the earlier structure and level of eutrophication. Bluegreen algae have returned since 2005, the water has become more turbid, macrophytes declined in 2007 and the fish community was again dominated by small cyprinid fishes in 2008.  相似文献   

17.
Habitat utilization and the life history of browntrout Salmo trutta and Arctic charr Salvelinus alpinus were investigated in fivesympatric populations and five allopatric brown troutpopulations in Høylandet catchment, a atmosphaericlow deposition area in Mid Norway. There was asignificant inverse correlation in abundance ofepibenthic Arctic charr and brown trout in theselakes, indicating that the latter species is dominant.The largest numbers of sympatric brown trout andArctic charr were caught in epibenthic habitat. In twolakes, brown trout to some extent also occurredpelagically, while pelagic individuals of Arctic charrwere found in all five lakes. The main food items forboth epibenthic and pelagic brown trout wereterrestrial surface insects and chironomid pupae.Zooplankton was the primary food item for Arctic charrin both habitats. Although the age distribution wasvery different in the populations, neither speciesseem to suffer from recruitment failure. There was nosignificant difference in survival rates betweensympatric populations of brown trout and Arctic charr.We found a significant inverse correlation betweenepibenthic catches of brown trout and the mean weightof 4+ fish, the most abundant age group. However, ifusing weight data for three-year-old fish, no suchrelationship was found for Arctic charr. Brown troutand Arctic charr reached asymptotic lengths of197–364 mm and 259–321 mm, respectively. Both speciestypically reached sexual maturity at age 2–3, and nomaturation-induced mortality was evident. We concludethat fish populations in Høylandet lakes areregulated throughout their lifes by inter- andintraspecific competition.  相似文献   

18.
Four small, acidified boreal lakes, all sustaining populations of perch Perca fluviatilis, roach Rutilus rutilus and pike Esox lucius, were studied in four successive years. Three lakes were moderately acidified (mean pH of 5·61-5·83), while the fourth was more acidic (mean pH of 5·16) and had a sparse population of R. rutilus. Perca fluviatilis density was higher in this lake (1004 ha(-1)) than in the other three (355-717 ha(-1)), where R. rutilus dominated in terms of numbers (981-2185 ha(-1)). Large, potentially predatory, P. fluviatilis were most abundant in the lake with clearest water, and these seemed to have a negative effect on P. fluviatilis density. Perca fluviatilis mean mass was negatively correlated with R. rutilus biomass and was highest in the most acidic lake with the sparse R. rutilus and the highest P. fluviatilis density. Perca fluviatilis mass correlated positively with pH in two lakes (with the highest fish biomass), suggesting that low pH affected P. fluviatilis mass negatively. Perca fluviatilis growth correlated positively with summer (July to August) air temperature in the lake with sparse R. rutilus, thus differing from P. fluviatilis and R. rutilus growth in the other three lakes. The mean age of P. fluviatilis was generally lower than that of R. rutilus and was lowest in the two lakes with the highest fish biomass, indicating that adult mortality was affected by density-induced factors.  相似文献   

19.
137Cs concentrations in perch Perca fluviatilis , pike Esox lucius and roach Rutilus rutilus obtained from lakes of different size and water quality in an area which received about 10–67 kBq m−2137Cs, were compared with environmental data. Radiocaesium concentrations were highest in pike, and were about two to three times higher in the pike and perch than in the roach. The largest perch had about four times more 137Cs than the smallest ones, but the activities in the pike and roach were independent of fish size. All of the water quality parameters examined correlated with 137Cs concentrations in the fish, but the concentrations of 137Cs in the bottom sediment did not. l37Cs fallout and water retention time in lakes showed a positive correlation with fish 137Cs, while the size of the catchment area, phosphorus content of the water, water colour, pH and electrical conductivity showed a negative one. Thus there was more 137Cs in the fish from the oligotrophic lakes than from the eutrophic ones, from the less humic lakes than from the more humic ones, from the more acid than from the less acid ones and from the lakes containing less potassium than from those containing more potassium. The depth, area and volume of the lake did not affect radiocaesium in the fish. Regression equations are presented for predicting 137Cs in fish on the basis of environmental data. Fallout, total phosphorus and pH together had the highest influence in multiple regression models but were less significant in the roach than in the perch and pike.  相似文献   

20.
In this study some comparative data on the growth rate and year class composition of roach in two Cheshire meres (Rostherne and Tatton) are given. The populations are characterised by year class instability and high growth rates, both of which are most extreme in Tatton Mere. The growth of roach in Tatton Mere is the highest yet recorded from Britain.
The concurrence of two (1969, 1973) strong year classes in both lakes, suggests that climate is an important factor which conditions year class strength. However, although there is some correlation between year class strength and the water temperature index (>14° C) the ultimate cause of year class variability remains obscure. There is no evidence to suggest that year class failure is due to parasitic infestation by Ligula intestinalis or to predation by perch upon roach fry. Year class failure may be due to the mortality of eggs related to the time of spawning. The observed difference in growth rate between the two populations may be attributed to a difference in density caused by the disparity of year class representation in Rostherne Mere and Tatton Mere. However, despite these differences, the net biomass achieved (36–39 kg ha−1) may be similar in both lakes. Superimposed on the effects of density an influence of temperature is noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号