首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Localization of the phosphorylations of polyomavirus large T antigen.   总被引:11,自引:10,他引:1  
Polyomavirus large T antigen is phosphorylated on both serine and threonine residues at a ratio of approximately 6 to 1. This phosphorylation could be resolved into a series of nine Staphylococcus aureus V8 phosphopeptides. All of these were found in an N-terminal chymotryptic fragment with a molecular weight of 57,000. A C-terminal formic acid fragment of 50,000-molecular-weight lacked phosphate. Therefore, unlike simian virus 40 large T antigen, polyomavirus large T antigen has no significant C-terminal phosphorylation. Limited V8 and hydroxylamine cleavage showed that the phosphorylations can be localized to two different portions of the molecule. A significant fraction of the phosphate was localized in the N-terminal portion of the molecule before residue 183. Within this region V8 peptides 4, 8, and 9 represented phosphorylations that were more proximal, while peptides 1, 2, and 3 included more distal phosphorylations. None of these phosphorylations appeared analogous to those of simian virus 40 large T antigen. V8 phosphopeptides 5 and 7 were more distal and could be distinguished in biological experiments from the N-terminal phosphorylations. Formic acid mapping suggested that much, if not all, of this phosphorylation is located between residues 257 and 285.  相似文献   

2.
Mapping of phosphorylation sites in polyomavirus large T antigen.   总被引:10,自引:8,他引:2       下载免费PDF全文
The phosphorylation sites of polyomavirus large T antigen from infected or transformed cells were investigated. Tryptic digestion of large T antigen from infected, 32Pi-labeled cells revealed seven major phosphopeptides. Five of these were phosphorylated only at serine residues, and two were phosphorylated at serine and threonine residues. The overall ratio of phosphoserine to phosphothreonine was 6:1. The transformed cell line B4 expressed two polyomavirus-specific phosphoproteins: large T antigen, which was only weakly phosphorylated, and a truncated form of large T antigen of 34,000 molecular weight which was heavily phosphorylated. Both showed phosphorylation patterns similar to that of large T antigen from infected cells. Peptide analyses of large T antigens encoded by the deletion mutants dl8 and dl23 or of specific fragments of wild-type large T antigen indicated that the phosphorylation sites are located in an amino-terminal region upstream of residue 194. The amino acid composition of the phosphopeptides as revealed by differential labeling with various amino acids indicated that several phosphopeptides contain overlapping sequences and that all phosphorylation sites are located in four tryptic peptides derived from a region between Met71 and Arg191. Two of the potential phosphorylation sites were identified as Ser81 and Thr187. The possible role of this modification of large T antigen is discussed.  相似文献   

3.
Myc oncoproteins are phosphorylated by casein kinase II.   总被引:43,自引:11,他引:32       下载免费PDF全文
Casein kinase II (CK-II) is a ubiquitous protein kinase, localized to both nucleus and cytoplasm, with strong specificity for serine residues positioned within clusters of acidic amino acids. We have found that a number of nuclear oncoproteins share a CK-II phosphorylation sequence motif, including Myc, Myb, Fos, E1a and SV40 T antigen. In this paper we show that cellular myc-encoded proteins, derived from avian and human cells, can serve as substrates for phosphorylation by purified CK-II in vitro and that this phosphorylation is reversible. One- and two-dimensional mapping experiments demonstrate that the major phosphopeptides from in vivo phosphorylated Myc correspond to the phosphopeptides produced from Myc phosphorylated in vitro by CK-II. In addition, synthetic peptides with sequences corresponding to putative CK-II phosphorylation sites in Myc are subject to multiple, highly efficient phosphorylations by CK-II, and can act as competitive inhibitors of CK-II phosphorylation of Myc in vitro. We have used such peptides to map the phosphorylated regions in Myc and have located major CK-II phosphorylations within the central highly acidic domain and within a region proximal to the C terminus. Our results, along with previous studies on myc deletion mutants, show that Myc is phosphorylated by CK-II, or a kinase with similar specificity, in regions of functional importance. Since CK-II can be rapidly activated after mitogen treatment we postulate that CK-II mediated phosphorylation of Myc plays a role in signal transduction to the nucleus.  相似文献   

4.
The state of phosphorylation and the relationship of various subclasses of simian virus 40 large T antigen (large T) differing in DNA-binding activity, degree of oligomerization, age, and subcellular distribution were investigated. Young large T (continuously labeled for 4 h late in infection) comprised about 20% of the total cellular large T. It was phosphorylated to a low degree and existed primarily in a monomeric form, sedimenting at 5S. More than 50% of this fraction bound to simian virus 40 DNA, preferentially to origin-containing sequences. Old large T (continuously labeled for 17 h, followed by a 4-h chase) represented the majority of the population. It was highly phosphorylated and predominantly in an oligomeric form, sedimenting at 15S to 23S. Only 10 to 20% of this fraction bound to simian virus 40 DNA. Another subclass of large T which was extracted from nuclei with 0.5 M salt resembled newly synthesized molecules in all properties tested; it was phosphorylated to a low degree, sedimented at 5S, and bound to viral DNA with high efficiency (greater than 70%). Two-dimensional phosphopeptide analysis of the individual subclasses revealed two distinct phosphorylation patterns, one characteristic for young, monomeric, and DNA-binding large T, the other for old, oligomeric, and non-DNA-binding large T. All sites previously identified in unfractionated large T (K.H. Scheidtmann et al., J. Virol. 44:116-133, 1982) were also phosphorylated in the various subclasses, but to different degrees. Peptide maps of the DNA-binding fraction, the 5S form, and the nuclear high-salt fraction showed two prominent phosphopeptides not previously characterized. Both peptides were derived from the amino-terminal region of large T, presumably involved in origin binding, and probably represent partially phosphorylated intermediates of known phosphopeptides. Our data show that the DNA-binding activity, age, and oligomerization of large T correlate with distinct states of phosphorylation. We propose that differential phosphorylation might play a role in the interaction of large T with DNA.  相似文献   

5.
Prosolin is a major cytosolic phosphoprotein of proliferating normal PBL. Treatment of growing PBL with phorbol ester (12-O-tetradecanoylphorbol-13-acetate (TPA)) or calcium ionophore (A23187) for 1 h caused phosphorylation of prosolin with the production of up to four prominent phosphorylated forms differing in degree of phosphorylation and/or two-dimensional electrophoretic mobility (peptides B to E). Formation of these phosphopeptides coincided with rapid down-regulation of DNA synthesis. A23187 was particularly effective in inducing phosphorylation of the more highly phosphorylated peptides D and E, suggesting the existence of a (Ca2+)-activated mechanism in their phosphorylation. The T cell leukemia cell lines Jurkat, HuT-78, CCRF-CEM, and Molt-4 showed reduced to absent ability to phosphorylate prosolin peptides rapidly in response to A23187 and also showed diminished down-regulation of DNA synthesis. In leukemic cells treated with both TPA and A23187, peptides B and C were rapidly phosphorylated, but the phosphorylation of peptides D and E seen in normal PBL remained deficient. The T cell leukemic cells appear to have intact a TPA-activated mechanism for phosphorylating prosolin peptides B and C, but share an impairment of a specific Ca2(+)-activated mechanism, possibly a Ca2(+)-dependent protein kinase, required for phosphorylation of prosolin phosphopeptides D and E. The degree of rapid down-regulation of DNA synthesis was correlated with degree of phosphorylation of peptide E in PBL and in three of four T cell leukemic cell lines. Thus, rapid phosphorylation of prosolin may mediate responses to TPA and A23187 in normal proliferating PBL, including down-regulation of DNA synthesis. A deficiency of this pathway in leukemic T cells may impede their response to physiologic growth regulatory signals utilizing this pathway and contribute to unrestrained cell growth.  相似文献   

6.
The phosphorylation pattern of simian virus 40 (SV40) large tumor (T) antigen purified from insect cells infected with a recombinant baculovirus was compared with that reported previously for T antigen from SV40-infected monkey cells. The specific activity of metabolic phosphate labeling of baculovirus T antigen was reduced, and the phosphopeptide map of the baculovirus protein, while qualitatively similar to that of lytic T, revealed several quantitative differences. The most striking difference was the prominence in the baculovirus map of peptides containing phosphothreonine 124. These peptides are known to arise from other phosphopeptides upon dephosphorylation of neighboring serines, suggesting that baculovirus T may be underphosphorylated at these serines and perhaps other sites. Functional assays used to further investigate the phosphorylation state of the baculovirus protein included SV40 DNA binding after enzymatic dephosphorylation with alkaline phosphatase and after phosphorylation by a murine homolog of cdc2 protein kinase. The results imply that baculovirus T antigen is underphosphorylated, in particular at those serine residues whose phosphorylation is responsible for down regulation of DNA-binding activity at site II in the core origin of DNA replication. In contrast, no evidence for a functionally significant underphosphorylation at threonine 124 could be found.  相似文献   

7.
The phosphorylation sites of simian virus 40 large T antigen were determined within the primary structure of the molecule. Exhaustive digestion of 32P-labeled large T antigen with trypsin generated six major phosphopeptides which could be separated in a newly developed isobutyric acid-containing chromatography system. By partial tryptic digestion, large T antigen was cleaved into an amino-terminal fragment of 17,000 daltons and overlapping fragments from the carboxy-terminal region ranging in size between 71,000 and 13,000 daltons. The location of the phosphopeptides was then determined by fingerprint analyses of individual fragments. Their physical properties were analyzed by sizing on polyacrylamide gels and by sequential digestion and peptide mapping; their amino acid composition was determined by differential labeling with various amino acids. The amino-terminal 17,000-dalton fragment gave rise to only one phosphopeptide (phosphopeptide 3) that contained half of the phosphate label incorporated into large T antigen. It contained phosphoserine and phosphothreonine sites, all of which were clustered within a small segment between Cys105 and Lys127. This segment contained five serines and two threonines. Among these, Ser106, Ser123, and Thr124 were identified as phosphorylated residues; in addition, either one or both of Ser111 and Ser112 were phosphorylated. The neighboring residues, Ser123 and Thr124, were found in three different phosphorylation states in that either Ser123 or Thr124 or both were phosphorylated. Phosphopeptides 1, 2, 4, 5, and 6 were all derived from a single fragment extending 26,000 daltons upstream from the carboxy terminus of large T antigen. Phosphopeptide 6 was identical with the previously determined phosphothreonine peptide phosphorylated at Thr701. Phosphopeptides 1, 2, 4, and 5 contained only serine-bound phosphate. Phosphopeptides 1, 2, and 4 represented overlapping peptides, all of which were phosphorylated at Ser639 located next to a cluster of six acidic residues. In phosphopeptide 5, a large peptide ranging from Asn653 to Arg691, at least two of seven serines were phosphorylated. Thus, large T antigen contains at least eight phosphorylation sites. Their clustering within two separate regions might correlate with structural and functional domains of this protein.  相似文献   

8.
At least three distinct forms of polyoma virus tumor antigens were isolated from productively infected and transformed hamster cells by immunoprecipitation with anti-T serum. These proteins had approximate molecular weights of 105,000 (large T antigen), 63,000 (middle T antigen), and 20,000 (small T antigen) as estimated by acrylamide gel electrophoresis. An examination of the appearance of these antigens in polyoma-infected mouse cells showed that all three polypeptides were synthesized maximally at approximately the same time after infection. Analysis of the methionine-containing tryptic peptides of these proteins indicated that the large, middle, and small forms of polyoma T antigens contained five similar or identical peptides. In addition, the 63,000- and 20,000-dalton antigens contained two other methionine peptides absent from the large T-antigen species. Other methionine peptides were found only in the large or middle T-antigen forms. These results and results obtained previously suggested that the three T-antigen species have the same NH2-terminal end regions but different COOH termini. A model is presented describing the synthesis of these polypeptides from different regions of the polyoma virus genome.  相似文献   

9.
The simian virus 40 (SV40) large T antigen was immunoprecipitated from extracts of infected monkey cells and cleaved with trypsin under conditions of mild proteolysis. The digestion generated fragments from the NH2-terminal region of T antigen which were released from the immunoprecipitates. Pulse-chase experiments showed that most of the newly made T antigen (form A) generated an NH2-terminal fragment of 17 kDa in size, whereas most of the T antigen that had aged in the cell (form C) generated a fragment of 20 kDa. An intermediate form of T antigen (form B), which generated an 18.5- kDa NH2-terminal fragment, was produced in part from form A and was converted to form C during the chase. Phosphate-labeling experiments showed that form C was the species of T antigen that incorporated the most 32P radioactivity at the NH2-terminal region, although some label was also incorporated into forms A and B. In vitro dephosphorylation of gel-purified 18.5- and 20-kDa fragments labeled with [35S]methionine increased the electrophoretic mobility of the fragments to that of 17 kDa. This signified that phosphorylation of the NH2-terminal fragments was directly responsible for their aberrant behavior in acrylamide gels. Although peptide maps of the methionine-labeled tryptic peptides of the 17-, 18.5-, and 20-kDa fragments were very similar to one another, maps of the 32P-labeled tryptic Pronase E peptides of these fragments contained qualitative and quantitative differences. Analysis of the labeled phosphoamino acids of various peptides from these fragments indicated that the 20-kDa fragment was highly phosphorylated at Ser 123 and Thr 124, whereas the 17- and 18.5-kDa fragments were mostly unphosphorylated at these sites. These experiments indicated that T antigen is phosphorylated at the NH2-terminal region in a specific stepwise process and, therefore, that this post-translational modification of T antigen is tightly regulated.  相似文献   

10.
While the p34cdc2 kinase is considered to be a critical regulator of mitosis, its function has not yet been directly linked to one of the key events during the onset of mitosis: nuclear envelope breakdown. Here we show that a major structural protein of the nuclear envelope, lamin B2, is phosphorylated by p34cdc2. Results from two-dimensional phosphopeptide mapping experiments demonstrate that the p34cdc2-specific phosphopeptides represent both mitotic and interphase specific phosphorylations of lamin B2 and include the major interphase phosphorylation site. In mitotic cells we detected two distinct forms of lamin B2 which differ in electrophoretic mobility and in degree of phosphorylation. The phosphorylation pattern of lamin B2 generated in vitro by p34cdc2 was more closely related to the less phosphorylated mitotic lamin B2, suggesting that another kinase(s) in addition to p34cdc2 is involved in generating the mitotic phosphorylation pattern. In addition, we show that treatment of interphase cells with okadaic acid, a potent phosphatase inhibitor, leads to the acquisition of mitosis-specific phosphopeptides and can reversibly increase the detergent-solubility of lamin B2. However, the M-phase-like phosphorylation of lamin B2 in itself is not sufficient to induce its disassembly from the nuclear lamina suggesting that an additional event(s) besides phosphorylation is required.  相似文献   

11.
The phosphorylation sites of simian virus 40 (SV40) large tumor (T) antigens have been extensively studied in productive infection of monkey cells. In this study, we analyzed the phosphorylation sites of large T antigen from SV40-infected nonpermissive mouse cells by partial proteolysis fingerprints and analysis of the phosphoamino acids present in the resulting fragments. The wild-type virus and deletion mutants (dl1263, dl1265, dl2194, and dl2198) were used for infection. On the basis of our results and published data (M. Schwyzer, R. Weil, and H. Zuber, J. Biol. Chem. 225:5627-5634, 1980), a cleavage map of large T antigen was established. It was reported that at least four sites of phosphorylation were present. The amino-terminal part of the molecule contained both phosphoserine and phosphothreonine. One phosphothreonine residue was located in the prolinerich C-terminal end of the molecule at position 701 or 708. On the basis of the concensus as to the amino acid sequence surrounding the recognition sites for protein kinases, it was possible to more precisely locate this phosphothreonine at residue 701. Moreover, the C-terminal part of the molecule contained phosphoserine at a more internal position. In addition, this study firmly established the presence of a phosphothreonine in the N-terminal part of large T antigen. In conclusion, it was shown that the location of phosphorylation sites of large T antigen produced by nonpermissive mouse cells infected by SV40 is strikingly similar to that reported by other groups for large T antigen produced by SV40-infected permissive cells.  相似文献   

12.
Human progesterone receptors (PR) exist as two independent naturally occurring steroid-binding forms of approximately 120 kDa (B-receptors) and 94 kDa (A-receptors). Both are phosphorylated in hormone-untreated T47Dco breast cancer cells. Hormone treatment leads to receptor transformation and an increased phosphorylation state: the 32P-labeling intensity is 3-5 times higher after progestin treatment and 8-10 times higher after RU 486 treatment. Only serine residues are phosphorylated. To determine whether there are unique phosphorylation sites in transformed nuclear PR, we analyzed the phosphopeptides of untransformed and transformed A- and B-receptors by tryptic cleavage and reverse-phase high pressure liquid chromatography. Untransformed A- and B-receptors share at least five common phosphopeptides, and a sixth is unique to B. Following transformation by either R5020 or RU 486, A-receptors generate at least six and B-receptors seven phosphopeptides. Compared with untransformed PR, there are at least two different phosphopeptides in transformed nuclear PR. Cyanogen bromide cleavage of transformed nuclear A-receptors, which lack the proximal 165 amino-terminal residues of the 933 amino acid B-receptors, produces two large fragments of approximately 43 and 19 kDa. These fragments contain all of the 32P label and comprise amino acids 165-595. Cleavage of transformed B-receptors also produces peptides of 43 and 19 kDa plus an additional 36-kDa fragment corresponding to residues 1-165. No 32P-labeled low molecular mass peptides are detected. Thus, all the hormone-dependent phosphoserine residues produced in nuclei are located in the first 595 amino acids of human PR, representing the amino terminus and 28 residues of the DNA-binding domain.  相似文献   

13.
With the murine retinoblastoma (RB) cDNA, a series of RB mutants were expressed in COS-1 cells and the pRB products were assessed for their ability (i) to bind to large T antigen (large T), (ii) to become modified by phosphorylation, and (iii) to localize in the nucleus. All point mutations and deletions introduced into regions previously defined as contributing to binding to large T abolished pRB-large T complex formation and prevented hyperphosphorylation of the RB protein. In contrast, a series of deletions 5' to these sites did not interfere with binding to large T. While some of the 5' deletion mutants were clearly phosphorylated in a cell cycle-dependent manner, one, delta Pvu, failed to be phosphorylated depsite binding to large T. pRB with mutations created at three putative p34cdc2 phosphorylation sites in the N-terminal region behaved similarly to wild-type pRB, whereas the construct delta P5-6-7-8, mutated at four serine residues C terminal to the large T-binding site, failed to become hyperphosphorylated despite retaining the ability to bind large T. All of the mutants described were also found to localize in the nucleus. These results demonstrate that the domains in pRB responsible for binding to large T are distinct from those recognized by the relevant pRB-specific kinase(s) and/or those which contain cell cycle-dependent phosphorylation sites. Furthermore, these data are consistent with a model in which cell cycle-dependent phosphorylation of pRB requires complex formation with other cellular proteins.  相似文献   

14.
Simian virus 40 (SV40) large tumor antigen (T antigen) exists in multiple molecular forms, some of which are separable by zone velocity sedimentation of soluble extracts from infected monkey cells. Three subclasses of this antigen from SV40-infected monkey cells have been separated and characterized: the 5S, 7S, and 14S forms. Newly synthesized T antigen occurs primarily in the 5S form. Chemical cross-linking provided evidence that the 14S form is primarily a tetramer, whereas the 5S and 7S forms could not be cross-linked into oligomers. The DNA-binding properties of each subclass were investigated after immunopurification. The affinities of the three forms for SV40 DNA and for a synthetic 19-base-pair sequence from binding site I are very similar (equilibrium dissociation constant [KD], 0.3 to 0.4 nM). The specific activity of DNA binding was greatest for the 5S and 7S subclasses and least for the 14S subclass. Moreover, the specific activity of the 5S and 7S subclasses increased sharply at about 40 h after infection, whereas the activity of the 14S subclass was maintained at a constant low level throughout infection. A model relating oligomerization and DNA binding of T antigen in infected cells is presented.  相似文献   

15.
Polyomavirus large T antigen (large T) is a highly phosphorylated protein that can be separated by proteolysis into two domains that have independent function. A cluster of phosphorylation sites was found in the protease-sensitive region connecting the N-terminal and C-terminal domains. Edman degradation of 32P-labeled protein identified serines 267, 271, and 274 and threonine 278 as sites of phosphorylation. Analysis of site-directed mutants confirmed directly that residues 271, 274, and 278 were phosphorylated. Threonine 278, shown here to be phosphorylated by cyclin/cyclin-dependent kinase activity, is required for viral DNA replication in either the full-length large T or C-terminal domain context. The serine phosphorylations are unimportant in the C-terminal domain context even though their mutations activates viral DNA replication in full-length large T. This finding suggests that these sites may function in relating the two domains to each other. Although the phosphorylation sites were involved in viral DNA replication, none was important for the ability of large T to drive cellular DNA replication as measured by bromodeoxyuridine incorporation, and they did not affect large T interactions with the Rb tumor suppressor family.  相似文献   

16.
Four commercially available immobilized metal ion affinity chromatography (IMAC) methods for phosphopeptide enrichment were compared using small volumes and concentrations of phosphopeptide mixtures with or without extra-added bovine serum albumin (BSA) nonphosphorylated peptides. Addition of abundant tryptic BSA peptides to the phosphopeptide mixture increases the demand for selective IMAC capture. While SwellGel gallium Discs, IPAC Metal Chelating Resin, and ZipTipMC Pipette Tips allow for the possibility of enriching phosphopeptides, the Gyrolab MALDI IMAC1 also presents the possibility of verifying existing phosphopeptides after a dephosphorylation step. Phosphate-containing peptides are identified through a mass shift between phosphorylated and dephosphorylated spectra of 80 Da (or multiples of 80 Da). This verification is useful if the degree of phosphorylation is low in the sample or if the ionization is unfavorable, which often is the case for phosphopeptides. A peptide mixture in which phosphorylated serine, threonine, and tyrosine were represented was diluted in steps and thereafter enriched using the four different IMAC methods prior to analyses with matrix assisted laser desorption/ionization mass spectrometry. The enrichment of phosphopeptides using SwellGel Gallium Discs or Gyrolab MALDI IMAC1 was not significantly affected by the addition of abundant BSA peptides added to the sample mixture, and the achieved detection limits using these techniques were also the lowest. All four of the included phosphopeptides were detected by MALDI-MS only after enrichment using the Gyrolab MALDI IMAC1 compact disc (CD) and detection down to low femtomole levels was possible. Furthermore, selectivity, reproducibility, and detection for a number of other phosphopeptides using the IMAC CD are reported herein. For example, two phosphopeptides sent out in a worldwide survey performed by the Proteomics Research Group (PRG03) of the Association of Biomolecular Resource Facilities (ABRF) were detected and verified by means of the 80 Da mass shift achieved by on-column dephosphorylation.  相似文献   

17.
Immortal human fibroblasts, SVts8 cells, which express a heat-labile SV40 large T antigen, induces a senescence-like phenomenon in response to upward shift in temperature. Cells with arrested division show strong induction of senescence-associated beta-galactosidase. We examined how p53 and pRB are involved in this phenomenon since they are major targets of the T antigen. Transfection of cells with plasmids encoding the wild-type T antigen or human papilloma virus type 16 E6/E7 proteins completely abolished the arrest in cell division, a plasmid encoding the E6 protein suppressed it markedly, while a plasmid encoding E7 had no effect. Plasmids encoding dominant-negative p53 mutants also suppressed the arrest in cell division to various degrees. Upon temperature shift, p21 mRNA was upregulated 10-fold in SVts8 cells, but only slightly in clones expressing the wild-type T antigen or dominant-negative p53 mutants. These data demonstrate that p53 plays a major role in this senescence-like phenomenon.  相似文献   

18.
Hormone-dependent phosphorylation of the avian progesterone receptor   总被引:4,自引:0,他引:4  
Progesterone receptors are phosphoproteins, in which phosphorylation has been proposed as a control mechanism for some stages of hormone action. Progesterone administration was shown to increase phosphorylation of the receptor from both cytosol and nuclear extracts of whole cells. We have analyzed the receptor phosphopeptides generated by chemical and proteolytic cleavage to assess the number of phosphorylation sites and their approximate location in the receptor. Progesterone receptor was labeled in situ in the presence or absence of hormone in medium containing [32P] orthophosphate, isolated by immunoprecipitation, and then digested with several proteases. The resulting 32P-labeled peptides were resolved by either two-dimensional electrophoresis:chromatography or by reverse-phase high performance liquid chromatography. Multiple phosphopeptides (3-6) were detected after cleavage with trypsin, chymotrypsin, or V8 protease. Major increases in phosphorylation occurred at existing sites since after hormone treatment no new phosphopeptides were found. Individual phosphopeptides showed variable increases in phosphorylation of 1.5-5-fold. The A and B receptor forms showed identical phosphorylation patterns, indicating similar processing in vivo. The phosphopeptide pattern for receptor in nuclear extracts resembled that of cytosol receptor. Chemical cleavage was used to assess the distribution of phosphorylation sites. Cyanogen bromide produced a large 40-kDa polypeptide which contained all of the phosphorylation sites and comprised the residues 129-449. Hydroxylamine was used to cleave a unique bond, Asn-372-Gly-373, in the 40-kDa polypeptide. All of the phosphorylation sites were located on the amino-terminal side of the cleavage. Thus, all of the phosphorylation sites were localized to a specific region (Met-129 to Asn-372) of the progesterone receptor that does not include either the DNA or steroid binding domains.  相似文献   

19.
The cellular phosphoprotein p53 is presumably involved in simian virus 40 (SV40)-induced transformation. We have monitored changes in the state of phosphorylation of p53 from normal versus SV40-infected or -transformed cells. In normal cells, p 53 was hardly phosphorylated. Upon infection or transformation, a quantitative and qualitative increase in p53 phosphorylation was observed as revealed by two-dimensional phosphopeptide analysis. This increase was dependent on a functional large T antigen. In rat cells, enhanced phosphorylation of p53 resulted in conversion to a second, electrophoretically distinct form. In cells transformed with transformation-defective mutants, phosphorylation of p53 was reduced and conversion to form 2 was inefficient. These data suggest (i) that SV40 large T antigen induces or activates a protein kinase, one substrate of which is p53, (ii) that transformation-defective mutants are impaired in kinase induction, and (iii) that either a certain phosphorylation state of p53 or the SV40-induced kinase is critical for efficient transformation.  相似文献   

20.
The Csk Homologous Kinase (CHK) has been shown to have an enzymatic activity similar to the tyrosine kinase Csk in that it down-regulates Src family kinase activity by causing phosphorylation of the Src C-terminal tyrosine residue. In megakaryocytic Mo7e cells, CHK associates with a specific phosphotyrosine juxtamembrane sequence of the SCF/KL-activated c-Kit receptor. Here, we show that in Mo7e cells, the major Src family kinase activity is p53/56(Lyn). Studies using immobilized c-Kit phosphopeptides show that Lyn is able to specifically associate with the tyrosine-phosphorylated juxtamembrane 568Y*VY*IDPT sequence of c-Kit which has previously been shown to associate with CHK. In cells over-expressing CHK by means of a recombinant vaccinia virus, we observed an elimination of the SCF/KL-stimulated Lyn kinase peak of activity observed at 2-5 minutes in cells infected with the helper T7-expressing vaccinia virus by itself. Examination of total tyrosine phosphorylation by Western blotting showed that over-expression of CHK resulted in a reduction in the levels of tyrosine phosphorylations in the range of 50-60 kDa, but had no apparent effect on c-Kit autophosphorylation. Taken together, these findings show that CHK is able to down-regulate SCF/KL-stimulated Lyn activity in megakaryocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号