首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EcoRI and EcoRV have a very similar active site, as is apparent from a comparison of the structures of their respective protein-DNA complexes. Based on structural and mechanistic data, as well as detailed molecular modelling presented here, a mechanism for the DNA cleavage by these enzymes is suggested in which the attacking water molecule is activated by the phosphate group 3' to the scissile phosphodiester bond, and in which the leaving group is protonated by a water molecule associated with the essential cofactor, Mg2+. The mechanism proposed may also apply to other nucleases.  相似文献   

2.
Mutational analysis of amino acids at the periphery of the EcoRV endonuclease active site suggests that moderate-range electrostatic effects play a significant role in modulating the efficiency of phosphoryl transfer. Asp36 and Lys38 located on minor-groove binding surface loops approach within 7-9 A of the scissile phosphates of the DNA. While the rates of single-site mutations removing the carboxylate or amine moieties at these positions are decreased 10(3)-10(5)-fold compared to that of wild-type EcoRV, we find that double mutants which rebalance the charge improve catalysis by up to 500-fold. Mutational analysis also suggests that catalytic efficiency is influenced by Lys173, which is buried at the base of a deep depression penetrating from a distal surface of the enzyme. The Lys173 amine group lies just 6 A from the amine group of the conserved essential Lys92 side chain in the active site. Kinetic and crystallographic analyses of the EcoRV E45A mutant enzyme further show that the Glu45 carboxylate group facilitates an extensive set of conformational transitions which occur upon DNA binding. The crystal structure of E45A bound to DNA and Mn2+ ions reveals significant conformational alterations in a small alpha-helical portion of the dimer interface located adjacent to the DNA minor groove. This leads to a tertiary reorientation of the two monomers as well as shifting of the key major-groove binding recognition loops. Because the Glu45 side chain does not appear to play a direct structural role in maintaining the active site, these rearrangements may instead originate in an altered electrostatic potential caused by removal of the negative charge. A Mn2+ binding site on the scissile phosphate is also disrupted in the E45A structure such that inner-sphere metal interactions made by the scissile DNA phosphate and conserved Asp90 carboxylate are each replaced with water molecules in the mutant. These findings argue against a proposed role for Asp36 as the general base in EcoRV catalysis, and reveal that the induced-fit conformational changes necessary for active site assembly and metal binding are significantly modulated by the electrostatic potential in this region.  相似文献   

3.
The crystal structure of EcoRV endonuclease has been determined at 2.5 A resolution and that of its complexes with the cognate DNA decamer GGGATATCCC (recognition sequence underlined) and the non-cognate DNA octamer CGAGCTCG at 3.0 A resolution. Two octamer duplexes of the non-cognate DNA, stacked end-to-end, are bound to the dimeric enzyme in B-DNA-like conformations. The protein--DNA interactions of this complex are prototypic for non-specific DNA binding. In contrast, only one cognate decamer duplex is bound and deviates considerably from canonical B-form DNA. Most notably, a kink of approximately 50 degrees is observed at the central TA step with a concomitant compression of the major groove. Base-specific hydrogen bonds between the enzyme and the recognition base pairs occur exclusively in the major groove. These interactions appear highly co-operative as they are all made through one short surface loop comprising residues 182-186. Numerous contacts with the sugar phosphate backbone extending beyond the recognition sequence are observed in both types of complex. However, the total surface area buried on complex formation is > 1800 A2 larger in the case of cognate DNA binding. Two acidic side chains, Asp74 and Asp90, are close to the reactive phosphodiester group in the cognate complex and most probably provide oxygen ligands for binding the essential cofactor Mg2+. An important role is also indicated for Lys92, which together with the two acidic functions appears to be conserved in the otherwise unrelated structure of EcoRI endonuclease. The structural results give new insight into the physical basis of the remarkable sequence specificity of this enzyme.  相似文献   

4.
Etzkorn C  Horton NC 《Biochemistry》2004,43(42):13256-13270
The 2.8 A crystal structure of the type II restriction endonuclease HincII bound to Ca(2+) and cognate DNA containing GTCGAC is presented. The DNA is uncleaved, and one calcium ion is bound per active site, in a position previously described as site I in the related blunt cutting type II restriction endonuclease EcoRV [Horton, N. C., Newberry, K. J., and Perona, J. J. (1998) Proc. Natl. Acad. Sci. U.S.A. 95 (23), 13489-13494], as well as that found in other related enzymes. Unlike the site I metal in EcoRV, but similar to that of PvuII, NgoMIV, BamHI, BglII, and BglI, the observed calcium cation is directly ligated to the pro-S(p) oxygen of the scissile phosphate. A calcium ion-ligated water molecule is well positioned to act as the nucleophile in the phosphodiester bond cleavage reaction, and is within hydrogen bonding distance of the conserved active site lysine (Lys 129), as well as the pro-R(p) oxygen of the phosphate group 3' of the scissile phosphate, suggesting possible roles for these groups in the catalytic mechanism. Kinetic data consistent with an important role for the 3'-phosphate group in DNA cleavage by HincII are presented. The previously observed sodium ion [Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47] persists in the active sites of the Ca(2+)-bound structure; however, kinetic data show little effect on the single-turnover rate of DNA cleavage in the absence of Na(+) ions.  相似文献   

5.
MutH initiates mismatch repair by nicking the transiently unmethylated daughter strand 5' to a GATC sequence. Here, we report crystal structures of MutH complexed with hemimethylated and unmethylated GATC substrates. Both structures contain two Ca2+ ions jointly coordinated by a conserved aspartate and the scissile phosphate, as observed in the restriction endonucleases BamHI and BglI. In the hemimethylated complexes, the active site is more compact and DNA cleavage is more efficient. The Lys residue in the conserved DEK motif coordinates the nucleophilic water in conjunction with the phosphate 3' to the scissile bond; the same Lys is also hydrogen bonded with a carbonyl oxygen in the DNA binding module. We propose that this Lys, which is conserved in many restriction endonucleases and is replaced by Glu or Gln in BamHI and BglII, is a sensor for DNA binding and the linchpin that couples base recognition and DNA cleavage.  相似文献   

6.
Guided by the X-ray structure analysis of a crystalline EcoRV-d(GGGATATCCC) complex (Winkler, in preparation), we have begun to identify functionally important amino acid residues of EcoRV. We show here that Asn70, Asp74, Ser183, Asn185, Thr186, and Asn188 are most likely involved in the binding and/or cleavage of the DNA, because their conservative substitution leads to mutants of no or strongly reduced activity. In addition, C-terminal amino acid residues of EcoRV seem to be important for its activity, since their deletion inactivates the enzyme. Following the identification of three functionally important regions, we have inspected the sequences of other restriction and modification enzymes for homologous regions. It was found that two restriction enzymes that recognize similar sequences as EcoRV (DpnII and HincII), as well as two modification enzymes (M.DpnII and, in a less apparent form, M.EcoRV), have the sequence motif -SerGlyXXXAsnIleXSer- in common, which in EcoRV contains the essential Ser183 and Asn188 residues. Furthermore, the C-terminal region, shown to be essential for EcoRV, is highly homologous to a similar region in the restriction endonuclease SmaI. On the basis of these findings we propose that these restriction enzymes and to a certain extent also some of their corresponding modification enzymes interact with DNA in a similar manner.  相似文献   

7.
8.
Horton NC  Perona JJ 《Biochemistry》2004,43(22):6841-6857
Four crystal structures of EcoRV endonuclease mutants K92A and K38A provide new insight into the mechanism of DNA bending and the structural basis for metal-dependent phosphodiester bond cleavage. The removal of a key active site positive charge in the uncleaved K92A-DNA-M(2+) substrate complex results in binding of a sodium ion in the position of the amine nitrogen, suggesting a key role for a positive charge at this position in stabilizing the sharp DNA bend prior to cleavage. By contrast, two structures of K38A cocrystallized with DNA and Mn(2+) ions in different lattice environments reveal cleaved product complexes featuring a common, novel conformation of the scissile phosphate group as compared to all previous EcoRV structures. In these structures, the released 5'-phosphate and 3'-OH groups remain in close juxtaposition with each other and with two Mn(2+) ions that bridge the conserved active site carboxylates. The scissile phosphates are found midway between their positions in the prereactive substrate and postreactive product complexes of the wild-type enzyme. Mn(2+) ions occupy two of the three sites previously described in the prereactive complexes and are plausibly positioned to generate the nucleophilic hydroxide ion, to compensate for the incipient additional negative charge in the transition state, and to ionize a second water for protonation of the 3'-oxyanion. Reconciliation of these findings with earlier X-ray and fluorescence studies suggests a novel mechanism in which a single initially bound metal ion in a third distinct site undergoes a shift in position together with movement of the scissile phosphate deeper into the active site cleft. This reconfigures the local environment to permit binding of the second metal ion followed by movement toward the pentacovalent transition state. The new mechanism suggested here embodies key features of previously proposed two- and three-metal catalytic models, and offers a view of the stereochemical pathway that integrates much of the copious structural and functional data that are available from exhaustive studies in many laboratories.  相似文献   

9.
The type-II restriction endonucleases generally do not share appreciable amino acid sequence homology. The crystal structures of restriction endonucleases EcoRI and BamHI have shown these enzymes to possess striking 3D-structural resemblance, i.e., they have a similar overall fold and similar active sites, though they possess <23% sequence identity. Structural superimposition of EcoRI, BamHI, EcoRV, and PvuII based on active site residues led to sequence alignments which showed nine possible sequence motifs. EcoRV and PvuII show a more similar pattern than EcoRI and BamHI suggesting that they belong to a different subgroup. The motifs are characterized by charged and/or hydrophobic residues. From other studies on the structure of these endonucleases, three of the motifs could be implicated in DNA binding, three in forming the active site and one in dimer formation. However, the motifs were not identifiable by regular sequence alignment methods. It is found that motif IX in BamHI is formed by reverse sequence order and the motif IX in PvuII is formed from the symmetry related monomer of the dimer. The inter-motif distance is also quite different in these cases. Of the nine motifs, motif III has been earlier identified as containing the PD motif involving one of the active site residues. These motifs were used in a modified profile analysis procedure to identify similar regions in eight other endonuclease sequences for which structures are not known.  相似文献   

10.
PI- Pfu I and PI- Pfu II from Pyrococcus furiosus are homing endonucleases, as shown in the accompanying paper. These two endonucleases are produced by protein splicing from the precursor protein including ribonucleotide reductase (RNR). We show here that both enzymes specifically interact with their substrate DNA and distort the DNA strands by 73 degrees and 67 degrees, respectively. They have two copies of the amino acid sequence motif LAGLIDADG, which is present in the majority of homing endonucleases and provides some of the catalytic residues necessary for DNA cleavage activity. Site-specific mutagenesis studies showed that two acidic residues in the motifs, Asp149 and Glu250 in PI- Pfu I, and Asp156 and Asp249 in PI- Pfu II, were critical for catalysis. The third residues of the active site triads, as predicted from the structure of PI- Sce I, were Asn225 in PI- Pfu I and Lys224 in PI- Pfu II. Substitution of Asn225 in PI- Pfu I by Ala did not affect catalysis. The cleavage activity of PI- Pfu II was 50-fold decreased by the substitution of Ala for Lys224. The binding affinity of the mutant protein for the substrate DNA also decreased 6-fold. The Lys in PI- Pfu II may play a direct or indirect role in catalysis of the endonuclease activity.  相似文献   

11.
A set of DNA duplexes with repeated EcoRII, EcoRI and AluI restriction endonuclease recognition sites in which EcoRII scissile phosphodiester bonds were replaced by phosphoramide or uncleavable pyrophosphate bonds have been synthesized. Endonuclease EcoRII was found not to cleave the substrate at the phosphoramide bond. The substrates containing non-nydrolysable pyrophosphate or phosphoramide bonds in one of the chains of EcoRII recognition sites were used to show that this enzyme is able to catalyze single-strand scissions. These scissions occur both in dA- and dT-containing chains of the recognition site. Endonuclease EcoRII interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of the other. Synthesized DNA-duplexes are cleaved specifically by EcoRI and AluI endonucleases, this cleavage being retarded if the modified bonds are in the recognition site (EcoRI) or flank it (AluI). For EcoRII and AluI this effect is more pronounced in the case of substrates with pyrophosphate bonds than with the phosphoramide ones.  相似文献   

12.
Mizuuchi K  Nobbs TJ  Halford SE  Adzuma K  Qin J 《Biochemistry》1999,38(14):4640-4648
A new method was developed for tracking the stereochemical path of enzymatic cleavage of DNA. DNA with a phosphorothioate of known chirality at the scissile bond is cleaved by the enzyme in H218O. The cleavage produces a DNA molecule with the 5'-[16O,18O, S]-thiophosphoryl group, whose chirality depends on whether the cleavage reaction proceeds by a single-step hydrolysis mechanism or by a two-step mechanism involving a protein-DNA covalent intermediate. To determine this chirality, the cleaved DNA is joined to an oligonucleotide by DNA ligase. Given the strict stereochemistry of the DNA ligase reaction, determined here, the original chirality of the phosphorothioate dictates whether the 18O is retained or lost in the ligation product, which can be determined by mass spectrometry. This method has advantages over previous methods in that it is not restricted to particular DNA sequences, requires substantially less material, and avoids purification of the products at intermediate stages in the procedure. The method was validated by confirming that DNA cleavage by the EcoRI restriction endonuclease causes inversion of configuration at the scissile phosphate. It was then applied to the reactions of the SfiI and HpaII endonucleases and the MuA transposase. In all three cases, DNA cleavage proceeded with inversion of configuration, indicating direct hydrolysis of the phosphodiester bond by water as opposed to a reaction involving a covalent enzyme-DNA intermediate.  相似文献   

13.
To characterise the pH dependence of phosphodiester hydrolysis by the EcoRV endonuclease in the presence of Mn2+, single turnover reactions on a 12 bp DNA substrate were examined by stopped-flow and quench-flow methods between pH 6.0 and 8.5. At each pH value, the apparent rate constants for phosphodiester hydrolysis increased hyperbolically with the concentration of MnCl2, thus allowing values to be determined for the intrinsic rate constant at saturation with Mn2+ and the equilibrium dissociation constant for Mn2+. The equilibrium constants showed no systematic variation across the pH range tested, while the rate constants increased steeply with increasing pH up to an asymptote above pH 7.5. At low pH conditions, the gradient of a plot of log (rate constant) against pH approached a value of 2. DNA cleavage by EcoRV thus requires the de-protonation of two acidic groups. To determine whether aspartate 36 is one of the groups, mutants of EcoRV were made with other amino acid residues at position 36. Glutamate caused a partial loss of activity, while all other replacements gave near-zero activities. In contrast to wild-type EcoRV, the mutant with glutamate required the de-protonation of only one acidic group for DNA cleavage. A mechanism for EcoRV is proposed in which the water molecule that hydrolyses the phosphodiester bond is de-protonated by two Bronsted bases, probably the ionised forms of aspartate 36 and glutamate 45.  相似文献   

14.
Endonuclease EcoRII is one of a group of type II restriction enzymes, including Nael, Narl, BspMI, HpaII, and SacII, that require binding of an enhancer sequence to cleave DNA. Comparison of the EcoRII amino-acid sequence with the amino-acid consensus motifs that differentiate between recombinase families uncovered similarity between a 29 amino-acid sequence in the carboxyl end of EcoRII and the motif defining the integrase family of recombinases. This similarity implied that EcoRII tyrosine 308 should be involved in catalyzing hydrolysis of the scissile bond. Site-directed mutagenesis was used to mutate Tyr308 to Phe. The phenylalanine-substituted enzyme could not cleave T5 DNA under conditions in which wild-type enzyme completely cleaved this DNA. The Tyr308 to Phe mutation abolished cleavage activity but not specific binding to DNA. No evidence was found for the existence during the cleavage reaction of a covalent linkage between Tyr308 and DNA.  相似文献   

15.
Endonuclease I is a 149 amino acid protein of bacteriophage T7 that is a Holliday junction-resolving enzyme, i.e. a four-way junction-selective nuclease. We have performed a systematic mutagenesis study of this protein, whereby all acidic amino acids have been individually replaced by other residues, mainly alanine. Out of 21 acidic residues, five (Glu20, Glu35, Glu65, Asp55 and Asp74) are essential. Replacement of these residues by other amino acids leads to a protein that is inactive in the cleavage of DNA junctions, but which nevertheless binds selectively to DNA junctions. The remaining 16 acidic residues can be replaced without loss of activity. The five critical amino acids are located within one section of the primary sequence. It is rather likely that their function is to bind one or more metal ions that coordinate the water molecule that brings about hydrolysis of the phosphodiester bond. We have also constructed a mutant of endonuclease I that lacks nine amino acids (six of which are arginine or lysine) at the C-terminus. Unlike the acidic point mutants, the C-terminal truncation is unable to bind to DNA junctions. It is therefore likely that the basic C-terminus is an important element in binding to the DNA junction.  相似文献   

16.
The M.EcoRV DNA methyltransferase recognizes GATATC sites. It is related to EcoDam, which methylates GATC sites. The DNA binding domain of M.EcoRV is similar to that of EcoDam suggesting a similar mechanism of DNA recognition. We show that amino acid residue Lys11 of M.EcoRV is involved in recognition of Gua1 and Arg128 contacts the Gua in base pair 6. These residues correspond to Lys9 and Arg124 in EcoDam, which recognize the Gua residues in both strands of the Dam recognition sequence, indicating that M.EcoRV and EcoDam make similar contacts to outermost base pairs of their recognition sequences and M.EcoRV recognizes its target site as an expanded GATC site. In contrast to EcoDam, M.EcoRV considerably bends the DNA (59+/-4 degrees) suggesting indirect readout of the AT-rich inner sequence. Recognition of an expanded target site by DNA bending is a new principle for changing DNA recognition specificity of proteins during molecular evolution. R128A is inefficient in DNA bending and binding, whereas K11A bends DNA with relaxed sequence specificity. These results suggest a temporal order of the formation of protein-DNA contacts in which the Gua6-Arg128 contact forms early followed by DNA bending and, finally, the formation of the Lys11-Gua1 contact.  相似文献   

17.
King et al. (King, K., Benkovic, S. J., and Modrich, P. (1989) 264, 11807-11815) have shown that Glu-111 is required for DNA cleavage by EcoRI endonuclease and have suggested that this residue is required for activation of the cleavage center upon specific recognition. We have substituted Gln or Asp for Glu-111 by oligonucleotide-directed mutagenesis. First and second strand cleavage rate constants are reduced by a factor of more than 10(4) by the Gln-111 substitution. However, these rate constants are enhanced 9-fold when pH is increased from 7.6 to 8.5, which enhances strand cleavage at EcoRI sites by wild type endonuclease to a similar degree. The specific affinity of Gln-111 endonuclease for EcoRI sites is 1000 times greater than that of wild type enzyme reflecting a decrease in the rate constant governing specific complex dissociation. In contrast to Gln-111 endonuclease, the equilibrium specific affinity of Asp-111 endonuclease for the EcoRI sequence is similar to that of wild type enzyme, and first and second strand cleavage rate constants are reduced only 100-fold relative to wild type enzyme. These results suggest that a negative charge on residue 111 is required for strand cleavage and are consistent with participation of Glu-111 in activation of the DNA cleavage center, with energy associated with specific sequence recognition driving this process.  相似文献   

18.
Analysis of the crystal structure of HIV-1 integrase reveals a cluster of lysine residues near the active site. Using site-directed mutagenesis and photo-crosslinking we find that Lys156 and Lys159 are critical for the functional interaction of integrase with viral DNA. Mutation of Lys156 or Lys159 to glutamate led to a loss of both 3' processing and strand transfer activities in vitro while maintaining the ability to interact with nonspecific DNA and support disintegration. However, mutation of both residues to glutamate produced a synergistic effect eliminating nearly all nonspecific DNA interaction and disintegration activity. In addition, virus containing either of these changes was replication-defective at the step of integration. Photo-crosslinking, using 5-iododeoxyuracil-substituted oligonucleotides, suggests that Lys159 interacts at the N7 position of the conserved deoxyadenosine adjacent to the scissile phosphodiester bond of viral DNA. Sequence conservation throughout retroviral integrases and certain bacterial transposases (e.g. Tn10/IS10) supports the premise that within those families of polynucleotidyl transferases, these residues are strategic for DNA interaction.  相似文献   

19.
Ser10 and Lys13 found near the active site tyrosine of Escherichia coli DNA topoisomerase I are conserved among the type IA topoisomerases. Site-directed mutagenesis of these two residues to Ala reduced the relaxation and DNA cleavage activity, with a more severe effect from the Lys13 mutation. Changing Ser10 to Thr or Lys13 to Arg also resulted in loss of DNA cleavage and relaxation activity of the enzyme. In simulations of the open form of the topoisomerase–DNA complex, Lys13 interacts directly with Glu9 (proposed to be important in the catalytic mechanism). This interaction is removed in the K13A mutant, suggesting the importance of lysine as either a proton donor or a stabilizing cation during strand cleavage, while the Lys to Arg mutation significantly distorts catalytic residues. Ser10 forms a direct hydrogen bond with a phosphate group near the active site and is involved in direct binding of the DNA substrate; this interaction is disturbed in the S10A and S10T mutants. This combination of a lysine and a serine residue conserved in the active site of type IA topoisomerases may be required for correct positioning of the scissile phosphate and coordination of catalytic residues relative to each other so that DNA cleavage and subsequent strand passage can take place.  相似文献   

20.
Liu J  Déclais AC  Lilley DM 《Biochemistry》2006,45(12):3934-3942
The chemical mechanism of phosphodiester bond hydrolysis catalyzed by a junction-resolving enzyme has been investigated. Endonuclease I of phage T7 is a member of the nuclease superfamily of proteins that include many restriction enzymes, and the structure of the active site is very similar to that of BglI in particular. It contains three acidic amino acids that coordinate two divalent metal ions. Using mass spectrometry we have shown that endonuclease I catalyzes the breakage of the P-O3' bond, in common with restriction enzymes. We have found that the pH dependence of the hydrolysis reaction is log-linear, with a gradient of 0.9. Substitution of the scissile phosphate by an electrically neutral methylphosphonate significantly impairs the rate of bond cleavage. However, the introduction of chirally pure methylphosphonate groups shows that the effect of substitution of the proS oxygen atom is much greater than that for the proR. This is consistent with our current model of the structure of the DNA bound in the active site of endonuclease I, where the proS oxygen atom is coordinated directly to both metal ions as it is in BglI. The activity is also very sensitive to repositioning of the carboxylate groups of Asp 55 and Glu 65 in the active site, although some restoration of activity in endonuclease I E65D was observed in the presence of Mn2+ ions. A mechanism of hydrolysis consistent with all of these data is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号