首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several pathways to neural cell death are involved in ischemic stroke, and all require monovalent or divalent cation influx, implicating non-selective cation (NC) channels. NC channels are also likely to be involved in the dysfunction of vascular endothelial cells that leads to formation of edema following cerebral ischemia. Two newly described NC channels have emerged as potential participants in ischemic stroke, the acid sensing ion channel (ASIC), and the sulfonylurea receptor-1 (SUR1)-regulated NC(Ca-ATP) channel. Non-specific blockers of NC channels, including pinokalant (LOE 908 MS) and rimonabant (SR141716A), have beneficial effects in rodent models of ischemic stroke. Evidence is accumulating that NC channels formed by members of the transient receptor potential (TRP) family are also up-regulated in ischemic stroke and may play a direct role in calcium-mediated neuronal death. The nascent field of NC channels, including TRP channels, in ischemic stroke is poised to provide novel mechanistic insights and therapeutic strategies for this often devastating human condition.  相似文献   

2.
3.
A patch-clamp study under high hydrostatic pressure was performed by transferring cells or membrane patches into a pressure vessel (Heinemann, S. H., W. Stühmer, and F. Conti, 1987, Proceedings of the National Academy of Sciences, 84:3229-3233). Whole-cell Na currents as well as Ca currents were measured at pressures up to 40 MPa (approximately 400 atm; 1 MPa = 9.87 atm) in bovine adrenal chromaffin cells. Ca currents were found to be independent of pressure within experimental resolution. The mean amplitude and the gating kinetics of Na currents were affected by less than 20% at 10 MPa. This lack of a pronounced effect is surprising since the high-pressure nervous syndrome (HPNS), a disorder at high pressures known to result from impaired nervous transmission, manifests itself at pressures as low as 5 MPa. The results show that ion channels involved in transmission cannot be implicated in HPNS. However, when exocytosis was studied at high pressure by monitoring the cell capacitance (Neher, E., and A. Marty, 1982, Proceedings of the National Academy of Sciences, 79:6712-6716), more drastic effects were seen. The degranulation evoked by dialyzing the cell with 1 microM free Ca2+ could be slowed by a factor of 2 by application of 10 MPa. The same effect was observed for the degranulation of rat peritoneal mast cells stimulated with 40 microM of the GTP analogue GTP-gamma-S. According to these results, the process of exocytosis is the most likely site at which hydrostatic pressure can act to produce nervous disorders. Furthermore, we demonstrate that pressure can be a useful tool in the investigation of other cellular responses, since we were able to separate different steps occurring during exocytosis owing to their different activation volumes.  相似文献   

4.
Ion channels are proteins with a hole down their middle that control a vast range of biological function in health and disease. Selectivity is an important biological function determined by the open channel, which does not change conformation on the biological time scale. The challenge is to predict the function—the current of ions of different types and concentrations through a variety of channels—from structure, given fundamental physical laws. Walls of ion channels, like active sites of enzymes, often contain several fixed charges. Those fixed charges demand counter ions nearby, and the density of those counter ions is very high, greater than 5 molar, because of the tiny volumes of the channel's pore. Physical chemists can now calculate the free energy per mole of salt solutions (e.g. the activity coefficient) from infinite dilution to saturation, even in ionic melts. Such calculations of a model of the L-type calcium channel show that the large energies needed to crowd charges into the channel can account for the substantial selectivity and complex properties found experimentally. The properties of such crowded charge are likely to be an important determinant of the properties of proteins in general because channels are nearly enzymes.  相似文献   

5.
6.
7.
Various types of ion channels are involved in the control of neuronal activity. Among them, SK channels represent an interesting therapeutic target. Indeed, they underlie medium duration after hyperpolarizations in many types of neurons, thus inhibiting cell excitability. A thorough knowledge of the physiology of these channels and the discovery of non-peptidic selective modulators able to cross the blood-brain barrier are essential in view of developing future drugs for brain diseases such as those related to a dysfunction of dopaminergic and serotonergic systems.  相似文献   

8.
Xue L  Zhang Z  McNeil BD  Luo F  Wu XS  Sheng J  Shin W  Wu LG 《Cell reports》2012,1(6):632-638
Although calcium influx triggers endocytosis at many synapses and non-neuronal secretory cells, the identity of the calcium channel is unclear. The plasma membrane voltage-dependent calcium channel (VDCC) is a candidate, and it was recently proposed that exocytosis transiently inserts vesicular calcium channels at the plasma membrane, thus triggering endocytosis and coupling it to exocytosis, a mechanism suggested to be conserved from sea urchin to human. Here, we report that the vesicular membrane, when inserted into the plasma membrane upon exocytosis, does not generate a calcium current or calcium increase at a mammalian nerve terminal. Instead, VDCCs at the plasma membrane, including the P/Q-type, provide the calcium influx to trigger rapid and slow endocytosis and, thus, couple endocytosis to exocytosis. These findings call for reconsideration of the vesicular calcium channel hypothesis. They are likely to apply to many synapses and non-neuronal cells in which VDCCs control exocytosis, and exocytosis is coupled to endocytosis.  相似文献   

9.
The explicit contribution to the free energy barrier and proton conductance from the delocalized nature of the excess proton is examined in aquaporin channels using an accurate all-atom molecular dynamics computer simulation model. In particular, the channel permeation free energy profiles are calculated and compared for both a delocalized (fully Grotthuss shuttling) proton and a classical (nonshuttling) hydronium ion along two aquaporin channels, Aqp1 and GlpF. To elucidate the effects of the bipolar field thought to arise from two alpha-helical macrodipoles on proton blockage, free energy profiles were also calculated for computational mutants of the two channels where the bipolar field was eliminated by artificially discharging the backbone atoms. Comparison of the free energy profiles between the proton and hydronium cases indicates that the magnitude of the free energy barrier and position of the barrier peak for the fully delocalized and shuttling proton are somewhat different from the case of the (localized) classical hydronium. The proton conductance through the two aquaporin channels is also estimated using Poisson-Nernst-Planck theory for both the Grotthuss shuttling excess proton and the classical hydronium cation.  相似文献   

10.
Transient receptor potential, TRP channels are a new superfamily of functionally versatile non-selective cation channels present from yeast to mammals. On the basis of their structural homology, TRP channels are subdivided in 7 groups : TRPC 1-7 Canonical, TRPV 1-6 Vanilloid, TRPM 1-8 Melastatin, TRPP 1-3 Polycystin, TRPML Mucolipin, TRPA Ankyrin and TRPN (NO mechanotransducer potential C), the latter not expressed in mammals. Their cloning and heterologous expression allowed to demonstrating that these channels are generally weakly voltage-dependent. They are activated by various ligands involving a signal transduction cascade as well as directly by multiple compounds, heat and pH. TRP channels are found in a broad range of cell types. TRP channels are essential in allowing animals to sense the outside world and cells to sense their local environment. Following mutations or anomalous behaviour, these channels have a major role in several human diseases.  相似文献   

11.
Calcium, calcium channels, and calcium channel antagonists   总被引:3,自引:0,他引:3  
Voltage-dependent Ca2+ channels are an important pathway for Ca2+ influx in excitable cells. They also represent an important site of action for a therapeutic group of agents, the Ca2+ channel antagonists. These drugs enjoy considerable use in the cardiovascular area including angina, some arrhythmias, hypertension, and peripheral vascular disorders. The voltage-dependent Ca2+ channels exist in a number of subclasses characterized by electrophysiologic, permeation, and pharmacologic criteria. The Ca2+ channel antagonists, including verapamil, nifedipine, and diltiazem, serve to characterize the L channel class. This channel class has been characterized as a pharmacologic receptor, since it possesses specific drug-binding sites for both antagonists and activators and it is regulated by homologous and heterologous influences. The Ca2+ channels of both voltage- and ligand-regulated classes are likely to continue to be major research targets for new drug design and action.  相似文献   

12.
We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism—dewetting by capillary evaporation—but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases—and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)—can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water.  相似文献   

13.
A critical role for arachidonic acid in the regulation of calcium entry during agonist activation of calcium signals has become increasingly apparent in numerous studies over the past 10 years or so. In particular, low concentrations of this fatty acid, generated as a result of physiologically relevant activation of appropriate receptors, induces the activation of a unique, highly calcium-selective conductance now known as the ARC channel. Activation of this channel is specifically dependent on arachidonic acid acting at the intracellular surface of the membrane, and is entirely independent of any depletion of internal calcium stores. Importantly, a specific role of this channel in modulating the frequency of oscillatory calcium signals in various cell types has been described. Recent studies, subsequent to the discovery of STIM1 and the Orai proteins and their role in the store-operated CRAC channels, have revealed that these same proteins are also integral components of the ARC channels and their activation. However, unlike the CRAC channels, activation of the ARC channels depends on the pool of STIM1 that is constitutively resident in the plasma membrane, and the pore of these channels is comprised of both Orai1 and Orai3 subunits. The clear implication is that CRAC channels and ARC channels are closely related, but have evolved to play unique roles in the modulation of calcium signals—largely as a result of their entirely distinct modes of activation. Given this, although the precise details of how arachidonic acid acts to activate the channels remain unclear, it seems likely that the specific molecular features of these channels that distinguish them from the CRAC channels – namely Orai3 and/or plasma membrane STIM1 – will be involved.  相似文献   

14.
The long term use of many insecticides is continually threatened by the ability of insects to evolve resistance mechanisms that render the chemicals ineffective. Such resistance poses a serious threat to insect pest control both in the UK and worldwide. Resistance may result from either an increase in the ability of the insect to detoxify the insecticide or by changes in the target protein with which the insecticide interacts. DDT, the pyrethrins and the synthetic pyrethroids (the latter currently accounting for around 17% of the world insecticide market), act on the voltage-gated sodium channel proteins found in insect nerve cell membranes. The correct functioning of these channels is essential for normal transmission of nerve impulses and this process is disrupted by binding of the insecticides, leading to paralysis and eventual death. Some insect pest populations have evolved modifications of the sodium channel protein which prevent the binding of the insecticide and result in the insect developing resistance. Here we review some of the work (done at Rothamsted Research and elsewhere) that has led to the identification of specific residues on the sodium channel that may constitute the DDT and pyrethroid binding sites.  相似文献   

15.
During apoptosis, cytochrome c is released from mitochondria into the cytosol, where it participates in caspase activation. Various and often conflicting mechanisms have been proposed to account for the increased permeability of the mitochondrial outer membrane that is responsible for this process. The voltage-dependent anion channel (VDAC) is the major permeability pathway for metabolites in the mitochondrial outer membrane and therefore is a very attractive candidate for cytochrome c translocation. Here, we report that properties of VDAC channels reconstituted into planar phospholipid membranes are unaffected by addition of the pro-apoptotic protein Bax under a variety of conditions. Contrary to other reports (Shimizu, S., Narita, M., and Tsujimoto, Y. (1999) Nature 399, 483-487; Shimizu, S., Ide, T., Yanagida, T., and Tsujimoto, Y. (2000) J. Biol. Chem. 275, 12321-12325; Shimizu, S., Konishi, A., Kodama, T., and Tsujimoto, Y. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 3100-3105), we found no electrophysiologically detectable interaction between VDAC channels isolated from mammalian mitochondria and either monomeric or oligomeric forms of Bax. We conclude that Bax does not induce cytochrome c release by acting on VDAC. In contrast to Bax, another pro-apoptotic protein (Bid) proteolytically cleaved with caspase-8 affected the voltage gating of VDAC by inducing channel closure. We speculate that by decreasing the probability of VDAC opening, Bid reduces metabolite exchange between mitochondria and the cytosol, leading to mitochondrial dysfunction.  相似文献   

16.
17.
Huguenard JR 《Neuron》2002,33(4):492-494
Persistent sodium channel activity modulates neuronal gain in a neurotransmitter-dependent fashion. Previous studies have suggested that persistent and spike-related sodium channel activities are mediated by separate species. In this issue of Neuron, Taddese and Bean (2002) show that a single channel population is sufficient to explain both gating behaviors. A simple allosteric model is provided that can explain the results.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号