首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence of 1895 base pairs of Acinetobacter anitratum genomic DNA, containing the structural gene for the allosteric citrate synthase of that Gram-negative bacterium, is presented. The sequence contains an open reading frame of 424 codons, the 5' end of which is the same as the N-terminal sequence of A. anitratum citrate synthase, less the initiator methionine. The inferred amino acid sequence of the enzyme is about 70% identical with that of citrate synthase from Escherichia coli, which like the A. anitratum enzyme is sensitive to allosteric inhibition by NADH. There is also a more distant homology with the nonallosteric citrate synthases of pig heart and yeast. The gene contains sequences that strongly resemble those found in E. coli promoters, an E. coli type of ribosomal binding site, and a hyphenated dyad sequence at the 3' end of the gene which resembles the rho-independent terminators found in some E. coli genes. The plasmid clone containing the A. anitratum citrate synthase gene pLJD1, originally isolated because it hybridized with the cloned E. coli citrate synthase gene under conditions of reduced stringency, produces large amounts of A. anitratum citrate synthase in an E. coli host which lacks citrate synthase. This work completes proof of the hypothesis that the three major kinds of citrate synthases are formed of similar subunits, although their functional properties are different.  相似文献   

2.
The structural gene for the allosteric citrate synthase of Pseudomonas aeruginosa has been cloned from a genomic library by using the Escherichia coli citrate synthase gene as a hybridization probe under conditions of reduced stringency. Subcloning of portions of the original 10-kilobase-pair (kbp) clone led to isolation of the structural gene, with its promoter, within a 2,083-bp length of DNA flanked by sites for KpnI and BamHI. The nucleotide sequence of this fragment is presented; the inferred amino acid sequence was 70 and 76% identical, respectively, with the citrate synthase sequences from E. coli and Acinetobacter anitratum, two other gram-negative bacteria. DEAE-cellulose chromatography of P. aeruginosa citrate synthase from an E. coli host harboring the cloned P. aeruginosa gene gave three peaks of activity. All three enzyme peaks had subunit molecular weights of 48,000; the proteins were identical by immunological criteria and very similar in kinetics of substrate saturation and NADH inhibition. Because the cloned gene contained only one open reading frame large enough to encode a polypeptide of such a size, the three peaks must represent different forms of the same protein. A portion of the cloned P. aeruginosa gene was used as a hybridization probe under stringent conditions to identify highly homologous sequences in genomic DNA of a second strain classified as P. aeruginosa and isolates of P. putida, P. stutzeri, and P. alcaligenes. When crude extracts of each of these four isolates were mixed with antiserum raised against purified P. aeruginosa citrate synthase, however, only the P. alcaligenes extract cross-reacted.  相似文献   

3.
Citrate synthase has been purified to homogeneity from a strain of the Gram-negative aerobic bacterium Acinetobacter anitratum in a form which retains its sensitivity to the allosteric inhibitor NADH. In subunit size, amino acid composition, and antigenic reactivity the enzyme shows a marked structural resemblance to the citrate synthase of the Gram-negative facultative anaerobe Escherichia coli. Whereas the E. coli enzyme is subject to a strong, hyperbolic inhibition by NADH (Hill's number n = 1.0, Ki = 2 microM), the A. anitratum enzyme shows a weak, sigmoid response (n = 1.6, I0.5 = 140 microM) to this nucleotide. With E. coli, NADH inhibition is competitive with acetyl-CoA, and noncompetitive with oxaloacetate; with A. anitratum, NADH is noncompetitive with both substrates. Acinetobacter anitratum citrate synthase shows hyperbolic saturation with acetyl-CoA (n = 1.8). The finding of Weitzman and Jones (Nature (London) 219, 270 (1968) that NADH inhibition of the enzyme from Acinetobacter spp. is reversible by AMP, while that from E. coli is not, is explained by the much greater affinity of the E. coli enzyme for NADH. Unlike E. coli citrate synthase, the A. anitratum enzyme does not react with the sulfhydryl reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the absence of denaturation. With a second sulfhydryl reagent, 4,4'-dithiodipyridine (4,4'-PDS), the A. anitratum enzyme reacts with 1 equiv. of subunit; this modification induces a partial activity loss (attributable to a arise in the Km for acetyl-CoA) and an increase in the sensitivity to NADH. With the E. coli enzyme, 4,4'-PDS causes complete inactivation. Acinetobacter anitratum citrate synthase is much more resistant to urea denaturation than the E. coli enzyme is; the resistance of both enzymes to urea is greatly improved in the presence of 1 M KCl. It is suggested that the amino acid sequences of the subunits of the citrate synthases of these two bacteria are about 90% homologous, and that the 10% differences are in key residues, perhaps largely in the subunit contact regions, which account for the differences in allosteric properties.  相似文献   

4.
The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (Mr, 84,500) with a subunit with an Mr of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes.  相似文献   

5.
The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (Mr, 84,500) with a subunit with an Mr of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes.  相似文献   

6.
Asp-362, a potential key catalytic residue of Escherichia coli citrate synthase (citrate oxaloacetate-lyase [pro-3S)-CH2COO- ----acetyl-CoA), EC 4.1.3.7) has been converted to Gly-362 by oligonucleotide-directed mutagenesis. The mutant gene was completely sequenced, using a series of synthetic oligodeoxynucleotides spanning the structural gene to confirm that no additional mutations had occurred during genetic manipulation. The mutant gene was expressed in M13 bacteriophage and produced a protein which migrated in an identical manner to wild-type E. coli citrate synthase on SDS-polyacrylamide gels and which cross-reacted with E. coli citrate synthase antiserum. The mutant gene was subsequently recloned into pBR322 for large scale purification of the protein, and the resulting plasmid, pCS31, used to transform the citrate synthase deletion strain, W620. The mutant enzyme purified in an analogous manner to wild-type E. coli citrate synthase and expressed less than 2% of wild-type enzyme activity. The activity of the partial reactions catalysed by citrate synthase was similarly affected suggesting that this residual activity may be due to contaminating wild-type enzyme activity. The mutant citrate synthase retains a high-affinity NADH-binding site consistent with the protein preserving its overall structural integrity. Oxaloacetate binding to the protein is unaffected by the Asp-362 to Gly-362 mutation. Binding of the acetyl-CoA analogue, carboxymethyl-CoA, could not be detected in the mutant protein indicating that the lack of catalytic competence is due primarily to the inability of the protein to bind the second substrate, acetyl-CoA.  相似文献   

7.
The citrate synthases of the gram-negative bacteria, Escherichia coli and Acinetobacter anitratum, are allosterically inhibited by NADH. The kinetic properties, however, suggest that the equilibrium between active (R) and inactive (T) conformational states is shifted toward the T state in the E. coli enzyme. We have now manipulated the cloned genes for the two bacterial enzymes to produce two chimeric proteins, in which one folding domain of each subunit is derived from each enzyme. One chimera (the large domain from A. anitratum and the small domain from the E. coli enzyme) is designated CS ACI::eco; the other is called CS ECO::aci. Both chimeras are roughly as active as the wild type parents, but their Km values for both substrates are lower than those for the E. coli enzyme, and NADH inhibition is markedly sigmoid, while that for E. coli citrate synthases is hyperbolic. Curve-fitting to the allosteric equation suggests that these differences are the result of the destabilization of the T state in the chimeras. The ACI::eco chimera exists almost entirely as a hexamer, like the A. anitratum enzyme, while the ECO::aci chimera, like the E. coli synthase, forms three major bands on nondenaturing polyacrylamide gels, two of them hexamers of different net charge, and one a dimer. These findings indicate that subunit interactions leading to hexamer formation in allosteric citrate synthases of gram-negative bacteria involve mainly the large domains. The chimeras are also used to show that the NADH binding site of E. coli citrate synthase is located entirely in the large domain. Sensitivity of the chimeras to denaturation by urea, to which the A. anitratum enzyme is much more resistant than the E. coli enzyme, is determined by the large domains. Sensitivity to inactivation by subtilisin is intermediate between those shown by the E. coli (very sensitive) and A. anitratum (quite resistant) synthases. This result suggests that digestibility by subtilisin is determined by conformational factors as well as the amino acid sequences of the target regions.  相似文献   

8.
9.
In vitro mutagenesis techniques have been used to investigate two structure-function questions relating to the allosteric citrate synthase of Escherichia coli. The first question concerns the binding site of alpha-keto-glutarate, which is a structural analogue of the substrate oxaloacetate and yet has been suggested to be an allosteric inhibitor of the enzyme. Using oligonucleotide-directed mutagenesis of the cloned E. coli citrate synthase gene, we prepared missense mutants, designated CS226H----Q and CS229H----Q, in which histidine residues at positions 226 and 229, respectively, were replaced by glutamine. In the homologous pig heart citrate synthase it is known (Wiegand, G., and Remington, S. J. (1986) Annu. Rev. Biophys. Biophys. Chem. 15, 97-117) that the equivalent of His-229 helps to bind oxaloacetate, while the equivalent of His-226 is nearby. Kinetic and ligand binding measurements showed that CS226H----Q had a reduced affinity for oxaloacetate and alpha-ketoglutarate, while CS229H----Q bound oxaloacetate even less effectively, and was not inhibited by alpha-ketoglutarate at all under our conditions. This parallel loss of binding affinities for oxaloacetate and alpha-ketoglutarate, in two mutants altered in residues at the active site of E. coli citrate synthase, strongly suggests that inhibition of this enzyme by alpha-ketoglutarate is not allosteric but occurs by competitive inhibition at the active site. The second question investigated was whether the known inhibition by acetyl-CoA of binding of NADH, an allosteric inhibitor of E. coli citrate synthase, occurs heterotropically, as an indirect result of acetyl-CoA binding at the active site, or directly, by competition at the allosteric NADH binding site. Using existing restriction sites in the cloned E. coli citrate synthase gene, we prepared a deletion mutant which lacked 24 amino acids near what is predicted to the acetyl-CoA-binding portion of the active site. The mutant protein was inactive, and acetyl-CoA did not bind to the active site but still inhibited NADH binding. Thus acetyl-CoA can interact with both the allosteric and the active sites of this enzyme.  相似文献   

10.
Nucleotide sequence of the Acinetobacter calcoaceticus trpGDC gene cluster   总被引:9,自引:0,他引:9  
A plasmid library of Acinetobacter calcoaceticus HindIII fragments was constructed, and clones that complemented an Escherichia coli pabA mutant were selected. Plasmids containing a 3.9-kb fragment of A. calcoaceticus DNA that also complemented E. coli trpD and trpC-(trpF+) mutants were obtained. We infer that complementation of E. coli pabA mutants was the result of the expression of the amphibolic anthranilate- synthase/p-aminobenzoate-synthase glutamine-amidotransferase gene and that the plasmid insert carried the entire trpGDC gene cluster. In E. coli minicells, the plasmid insert directed the synthesis of polypeptides of 44,000, 33,000, and 20,000 daltons, molecular masses that are consistent with the reported molecular masses of phosphoribosylanthranilate transferase, indoleglycerol-phosphate synthase, and anthranilate-synthase component II, respectively. A 3,105- bp nucleotide sequence was determined. Comparison of the A. calcoaceticus trpGDC sequences with other known trp gene sequences has allowed insight into (1) the evolution of the amphibolic trpG gene, (2) varied strategies for coordinate expression of trp genes, and (3) mechanisms of gene fusions in the trp operon.   相似文献   

11.
Recombinant DNA techniques were used to isolate the Rickettsia prowazekii citrate synthase gene on the plasmid vector pBR322 by functional complementation of a gltA mutation of Escherichia coli K-12. Analysis of citrate synthase activity in crude extracts revealed that the enzyme expressed in E. coli retains the regulatory control mechanisms characteristic of the rickettsial enzyme.  相似文献   

12.
Citrate synthase is a key enzyme of the Krebs tricarboxylic acid cycle and catalyzes the stereospecific synthesis of citrate from acetyl coenzyme A and oxalacetate. The amino acid sequence and three-dimensional structure of pig citrate synthase dimers are known, and regions of the enzyme involved in substrate binding and catalysis have been identified. A cloned complementary DNA sequence encoding pig citrate synthase has been isolated from a pig kidney lambda gt11 cDNA library after screening with a synthetic oligonucleotide probe. The complete nucleotide sequence of the 1.5-kilobase cDNA was determined. The coding region consists of 1395 base pairs and confirms the amino acid sequence of purified pig citrate synthase. The derived amino acid sequence of pig citrate synthase predicts the presence of a 27 amino acid N-terminal leader peptide whose sequence is consistent with the sequences of other mitochondrial signal peptides. A conserved amino acid sequence in the mitochondrial leader peptides of pig citrate synthase and yeast mitochondrial citrate synthase was identified. To express the pig citrate synthase cDNA in Escherichia coli, we employed the inducible T7 RNA polymerase/promoter double plasmid expression vectors pGP1-2 and pT7-7 [Tabor, S., & Richardson, C. C. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1074-1078]. The pig citrate synthase cDNA was modified to delete the N-terminal leader sequence; then by use of a synthetic oligonucleotide linker, the modified cDNA was cloned into pT7-7 immediately following the initiator Met. A glutamate-requiring (citrate synthase deficient), recA- E. coli mutant, DEK15, was transformed with pGP1-2 and then pT7-7PCS. pT7-7PCS complemented the E. coli gltA mutation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The Bacillus subtilis pss gene encoding phosphatidylserine synthase was cloned by its complementation of the temperature sensitivity of an Escherichia coli pssA1 mutant. Nucleotide sequencing of the clone indicated that the pss gene encodes a polypeptide of 177 amino acid residues (deduced molecular weight of 19,613). This value agreed with the molecular weight of approximately 18,000 observed for the maxicell product. The B. subtilis phosphatidylserine synthase showed 35% amino acid sequence homology to the yeast Saccharomyces cerevisiae phosphatidylserine synthase and had a region with a high degree of local homology to the conserved segments in some phospholipid synthases and amino alcohol phosphotransferases of E. coli and S. cerevisiae, whereas no homology was found with that of the E. coli counterpart. A hydropathy analysis revealed that the B. subtilis synthase is very hydrophobic, in contrast to the hydrophilic E. coli counterpart, consisting of several strongly hydrophobic segments that would span the membrane. A manganese-dependent phosphatidylserine synthase activity, a characteristic of the B. subtilis enzyme, was found exclusively in the membrane fraction of E. coli (pssA1) cells harboring a B. subtilis pss plasmid. Overproduction of the B. subtilis synthase in E. coli cells by a lac promoter system resulted in an unusual increase of phosphatidylethanolamine (up to 93% of the total phospholipids), in contrast to gratuitous overproduction of the E. coli counterpart. This finding suggested that the unusual cytoplasmic localization of the E. coli phosphatidylserine synthase plays a role in the regulation of the phospholipid polar headgroup composition in this organism.  相似文献   

14.
The gene coding for O-acetylserine sulfhydrylase (OASS) from E. coli K12 was cloned into the vector pBR322 plasmid and expressed in a cysk mutant strain of E. coli that is deficient in O-acetylserine sulfhydrylase (OASS-). The clone containing the OASS gene was selected by using tetracycline-ammonium bismuth citrate medium. Retransformation of the hybrid plasmid into competent cysk mutant cells resulted in the recovery of a clone containing normal levels of O-acetylserine sulfhydrylase. Negative selection of retransformed cysk cells on 1,2,4-triazole plates resulted in the complete inhibition of growth indicating the presence of a functional OASS gene. The ability of the new clone to convert azide to its mutagenic metabolite was tested. Cultures of the clone cells containing significant levels of OASS activity were able to produce a mutagenic product from azide and O-acetylserine as tested on Salmonella typhimurium TA1530. This cloning method could be applied also to clone the same gene from eukaryotic sources.  相似文献   

15.
A cDNA that encodes pig citrate synthase (PCS) was inserted into a plasmid T7 vector and was expressed in an E. coli gltA mutant. Up to 10 mg of purified PCS was obtained from 2 liters of E. coli. The mammalian protein produced in E. coli comigrated with the enzyme purified from pig heart on a SDS-polyacrylamide gel (SDS-PAGE) with an Mr of 50,000, and reacted with a polyclonal antibody directed against pig heart citrate synthase. The Vmax and Km of the expressed PCS were indistinguishable from those of the pig heart enzyme. The PCS produced in E. coli did not contain the trimethylation modification of Lys 368, characteristic of the pig heart enzyme. These data suggest that the PCS protein produced in E. coli is catalytically similar to the enzyme purified from pig heart and methylation of Lys 368 is not essential for catalysis.  相似文献   

16.
Amino acid sequence of Escherichia coli citrate synthase   总被引:6,自引:0,他引:6  
V Bhayana  H W Duckworth 《Biochemistry》1984,23(13):2900-2905
Detailed evidence for the amino acid sequence of allosteric citrate synthase from Escherichia coli is presented. The evidence confirms all but 11 of the residues inferred from the sequence of the gene as reported previously [Ner, S. S., Bhayana, V., Bell, A. W., Giles, I. G., Duckworth, H. W., & Bloxham, D. P. (1983) Biochemistry 22, 5243]; no information has been obtained about 10 of these (residues 101-108 and 217-218), and we find aspartic acid rather than asparagine at position 10. Substantial regions of sequence homology are noted between the E. coli enzyme and citrate synthase from pig heart, especially near residues thought to be involved in the active site. Deletions or insertions must be assumed in a number of places in order to maximize homology. Either of two lysines, at positions 355 and 356, could be formally homologous to the trimethyllysine of pig heart enzyme, but neither of these is methylated. It appears that E. coli and pig heart citrate synthases are formed of basically similar subunits but that considerable differences exist, which must explain why the E. coli enzyme is hexameric and allosterically inhibited by NADH, while the pig heart enzyme is dimeric and insensitive to that nucleotide.  相似文献   

17.
In work previously reported (J. A. Gutierrez, P. J. Crowley, D. P. Brown, J. D. Hillman, P. Youngman, and A. S. Bleiweis, J. Bacteriol. 178:4166-4175, 1996), a Tn917 transposon-generated mutant of Streptococcus mutans JH1005 unable to synthesize glutamate anaerobically was isolated and the insertion point of the transposon was determined to be in the icd gene encoding isocitrate dehydrogenase (ICDH). The intact icd gene of S. mutans has now been isolated from an S. mutans genomic plasmid library by complementation of an icd mutation in Escherichia coli host strain EB106. Genetic analysis of the complementing plasmid pJG400 revealed an open reading frame (ORF) of 1,182 nucleotides which encoded an enzyme of 393 amino acids with a predicted molecular mass of 43 kDa. The nucleotide sequence contained regions of high (60 to 72%) homology with icd genes from three other bacterial species. Immediately 5' of the icd gene, we discovered an ORF of 1,119 nucleotides in length, designated citZ, encoding a homolog of known citrate synthase genes from other bacteria. This ORF encoded a predicted protein of 372 amino acids with a molecular mass of 43 kDa. Furthermore, plasmid pJG400 was also able to complement a citrate synthase (gltA) mutation of E. coli W620. The enzyme activities of both ICDH, found to be NAD+ dependent, and citrate synthase were measured in cell extracts of wild-type S. mutans and E. coli mutants harboring plasmid pJG400. The region 5' from the citZ gene also revealed a partial ORF encoding 264 carboxy-terminal amino acids of a putative aconitase gene. The genetic and biochemical evidence indicates that S. mutans possesses the enzymes required to convert acetyl coenzyme A and oxalacetate to alpha-ketoglutarate, which is necessary for the synthesis of glutamic acid. Indeed, S. mutans JH1005 was shown to assimilate ammonia as a sole source of nitrogen in minimal medium devoid of organic nitrogen sources.  相似文献   

18.
Three Escherichia coli clones (DH1/Cit1, DH1/Cit2 and DH1/Cit3) capable of utilizing citrate as a sole carbon source were isolated from a cosmid bank of Klebsiella pneumoniae wild-type DNA. Two of these clones (DH1/Cit1 and DH1/Cit2) only grew aerobically on citrate minimal medium, the third clone (DH1/Cit3) could also be cultured under fermentative conditions. The aerobic as well as the anaerobic generation times of the three clones were from 4.5 to 7 h. Whereas clone DH1/Cit3 showed a pronounced lag phase on citrate when the cells were pre-grown in medium without citrate, clone DH1/Cit1 immediately started growth, while with clone DH1/Cit2 a short lag phase could be observed upon transfer to citrate minimal medium. Restriction analyses of the three plasmids showed that no common fragments had been cloned. The length of the inserts were 13 and 6 kb for the aerobic Cit+ clones and 27 kb (10 kb) for the anaerobic one. Cultures of the anaerobic Cit+ clone were analyzed by immunoblotting techniques and shown to contain oxaloacetate decarboxylase, which confers citrate utilization under anaerobic conditions to K. pneumoniae. Enzyme assays demonstrated the active state of this biotin-containing membrane protein. The specific activity in vesicle preparations from the E. coli clone was 30% of the wild-type K. pneumoniae vesicles. Citrate acts as an inducer of enzyme protein synthesis in the E. coli clone as it does in K. pneumoniae.  相似文献   

19.
Previous studies have shown that high levels of complex nutrients (Luria broth or 5% corn steep liquor) were necessary for rapid ethanol production by the ethanologenic strain Escherichia coli KO11. Although this strain is prototrophic, cell density and ethanol production remained low in mineral salts media (10% xylose) unless complex nutrients were added. The basis for this nutrient requirement was identified as a regulatory problem created by metabolic engineering of an ethanol pathway. Cells must partition pyruvate between competing needs for biosynthesis and regeneration of NAD(+). Expression of low-K(m) Zymomonas mobilis pdc (pyruvate decarboxylase) in KO11 reduced the flow of pyruvate carbon into native fermentation pathways as desired, but it also restricted the flow of carbon skeletons into the 2-ketoglutarate arm of the tricarboxylic acid pathway (biosynthesis). In mineral salts medium containing 1% corn steep liquor and 10% xylose, the detrimental effect of metabolic engineering was substantially reduced by addition of pyruvate. A similar benefit was also observed when acetaldehyde, 2-ketoglutarate, or glutamate was added. In E. coli, citrate synthase links the cellular abundance of NADH to the supply of 2-ketoglutarate for glutamate biosynthesis. This enzyme is allosterically regulated and inhibited by high NADH concentrations. In addition, citrate synthase catalyzes the first committed step in 2-ketoglutarate synthesis. Oxidation of NADH by added acetaldehyde (or pyruvate) would be expected to increase the activity of E. coli citrate synthase and direct more carbon into 2-ketoglutarate, and this may explain the stimulation of growth. This hypothesis was tested, in part, by cloning the Bacillus subtilis citZ gene encoding an NADH-insensitive citrate synthase. Expression of recombinant citZ in KO11 was accompanied by increases in cell growth and ethanol production, which substantially reduced the need for complex nutrients.  相似文献   

20.
The alignment of Escherichia coli citrate synthase to pig heart citrate synthase and the multiple alignment of the known sequences of the citrate synthase family of enzymes have been performed using six different amino acid similarity scoring matrices and a large range of gap penalty ratios for insertions and deletions of amino acids. The alignment studies have been performed as the first step in a project aimed at homology modelling E. coli citrate synthase (a hexamer) from pig heart citrate synthase (a dimer) in a molecular modelling approach to the study of multi-subunit enzymes. The effects of several important variables in producing realistic alignments have been investigated. The difference between multiple alignment of the family of enzymes versus simple pairwise alignment of the pig heart and E. coli proteins was explored. The effects of initial separate multiple alignments of the most highly related or most homologous species of the family of enzymes upon a subsequent pairwise alignment between species was evaluated. The value of 'fingerprinting' certain residues to bias the alignment in favour of matching those residues, as well as the worth of the computerized approach compared to an intuitive alignment technique, were assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号