首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaf miner Cameraria ohridella causes premature defoliation of Aesculus hippocastanum trees. Repeated defoliation has been reported to cause decrease in radial growth of trees and a progressive decline due to reduced production and allocation of photosynthates. Our study represents an attempt to estimate the impact of C. ohridella on annual wood increments and the hydraulic properties of the wood as well as on the dry mass of seeds. Twenty-two adult horse chestnut trees were selected, four of which had been chemically treated to prevent attack (controls). All other trees were heavily infested. The ground cover (GC) of each tree, measured from monthly hemispherical photographs, revealed that infested trees were completely defoliated in September and the slope of the GC-to-measurement dates relationship (named GC decrease index) was positively related to the number of mines per leaf. Anatomical observations showed that infested trees produced more wood per year than controls through more false rings with wider xylem conduits and, hence, with higher conductive area and theoretical flow. In fact, the theoretical flow was positively related to the defoliation intensity. In contrast, the allocation of photosynthates to seeds was strongly reduced in infested trees with respect to controls (up to 50% less). The hypothesis was advanced that horse chestnut trees reacted to C. ohridella attacks by increasing the hydraulic efficiency of the wood, thus ameliorating the water and nutrient supply to leaves between the spring and mid-summer and, therefore, compensating, at least partly, the reduced leaf lifespan.  相似文献   

2.
The leaf miner Cameraria ohridella causes premature defoliation of Aesculus hippocastanum trees. In order to assess the whole-plant loss of productivity caused by the parasite, we monitored seasonal changes of leaf gas exchange and leaf area losses in horse chestnut trees freely infested or chemically treated to prevent moth infestation (controls). Data were integrated in a model and the annual loss of net primary productivity (NPP) was calculated for infested trees with respect to controls. Measurements showed marked vertical stratification of C. ohridella attacks, with lower crown strata being more infested than higher ones. Leaf gas exchange was maximum between May and early June, but it strongly decreased starting from mid-June even in controls. Model calculations showed that NPP loss of infested trees was about 30% on an annual basis (when the first moth attack is recorded at the end of April). Model simulations showed that postponing the start day of attack would have important positive effects on plants NPP. For example, if the start day of attack was postponed to 20 May, the annual loss of NPP would be about 15%. Our study suggests that A. hippocastanum trees attacked by C. ohridella are not facing serious risks of decline, especially if methods are adopted to postpone the start day of attack (e.g. removal of fallen leaves in autumn). Our data do not support the view that plants need to be totally protected from the parasite by application of insecticides.  相似文献   

3.
To evaluate the responses of Quercus crispula and Quercus dentata to herbivory, their leaves were subjected to simulated herbivory in early spring and examined for the subsequent changes in leaf traits and attacks by chewing herbivores in mid summer. In Quercus crispula, nitrogen content per area was higher in artificially damaged leaves than in control leaves. This species is assumed to increase the photosynthetic rate per area by increasing nitrogen content per area to compensate leaf area loss. In Quercus dentata, nitrogen content per area did not differ between artificially damaged and control leaves, while nitrogen content per mass was slightly lower in artificially damaged leaves. The difference in their responses can be attributable to the difference in the architecture of their leaves and/or the severeness of herbivory. The development of leaf area from early spring to mid summer was larger in artificially damaged leaves than in control leaves in both species, suggesting the compensatory response to leaf area loss. Leaf dry mass per unit area was also larger in artificially damaged leaves in both species, but the adaptive significance of this change is not clear. In spite of such changes in leaf traits, no difference was detected in the degree of damage by chewing herbivores between artificially damaged and controlled leaves in both species.  相似文献   

4.
Pinus sylvestris and Salix dasyclados, which differ in leaf longevity, were compared with respect to four aspects of photosynthetic light use and response: high light acclimation, photoinhibition resistance and recovery, lightfleck exposure and use and chloroplast acclimation across leaves. The first two aspects were examined using seedlings under controlled conditions and the other two were tested using trees in the field. When exposed to high light, shade leaves of Pinus acclimated completely, achieving the same photosynthetic capacities as sun leaves, whereas shade leaves of Salix did not reach sun leaf capacities although the absolute magnitude of their acclimation was larger. Shade leaves of Pinus were also more resistant to photoinhibition than those of Salix. Much of the direct light supplied within the canopy was in the form of rapid fluctuations, lightflecks, for Pinus and Salix alike. They exploited short lightflecks with similar efficiency. The greater proportion of diffuse light in the canopy for Pinus than Salix seems to lead to a lesser degree of differential intra-leaf acclimation of chloroplasts, in turn leading to lower efficiency of photosynthesis under unilateral light as reflected by a lower convexity, rate of bending, of the light–response curve. The differences in light use and responses are discussed in relation to possible differences in characteristics of the long and short-lived leaf.  相似文献   

5.
In plants, green non-foliar organs are able to perform photosynthesis just as leaves do, and the seed-enclosing pod acts as an essential photosynthetic organ in legume and Brassica species. To date, the contribution of pod photosynthesis to seed yield and related components still remains largely unexplored, and in Arabidopsis thaliana, the photosynthetic activity of the silique (pod) is unknown. In this study, an Arabidopsis glk1/glk2 mutant defective in both leaf and silique photosynthesis was used to create tissue-specific functional complementation lines. These lines were used to analyze the contribution of silique wall photosynthesis to seed yield and related traits, and to permit the comparison of this contribution with that of leaf photosynthesis. Our results showed that, together with leaves, the photosynthetic assimilation of the silique wall greatly contributed to total seed yield per plant. As for individual components of yield traits, leaf photosynthesis alone contributed to the seed number per silique and silique length, while silique wall photosynthesis alone contributed to thousand-seed weight. In addition, enhancing the photosynthetic capacity of the silique wall by overexpressing the photosynthesis-related RCA gene in this tissue resulted in significantly increased seed weight and oil content in the wild-type (WT) background. These results reveal that silique wall photosynthesis plays an important role in seed-related traits, and that enhancing silique photosynthesis in WT plants can further improve seed yield-related traits and oil production. This finding may have significant implications for improving the seed yield and oil production of oilseed crops and other species with pod-like organs.  相似文献   

6.
We examined the effects of simulated folivory by caterpillars on photosynthetic parameters and nitrogen (N) resorption efficiency in Quercus pyrenaica saplings. We analyzed the differences between intact leaves in control plants, punched leaves in damaged plants, and intact leaves in damaged plants. We then established two levels of simulated folivory: low (≈13% of the leaf area of one main branch removed per plant) and high (≈26% of the leaf area of one main branch removed per plant) treatments. No differences were found in net assimilation rate and conductance between either leaf type or treatment during the most favourable period for photosynthesis. However, the N content was lower in punched than in intact leaves, and as a result PNUE was higher in damaged leaves from treated trees. In leaf-litter samples, N mass was significantly higher in punched than in intact leaves in treated plants, and LMA was significantly higher in damaged than in intact leaves of both the treated and control plants. Consequently, N resorption efficiency was around 15% lower in damaged leaves as compared with intact leaves from treated and control plants. Mechanical injury to leaves not only triggered no compensatory photosynthetic response to compensate a lower carbon uptake due to leaf area loss, but also affected the resorption process that characterizes leaf senescence.  相似文献   

7.
Leaf senescence can be induced by numerous factors. In order to explore the relationship between root respiration and leaf senescence, we utilized different types of phloem girdling to control the root respiration of Alhagi sparsifolia and its physiological response. Our results showed that both girdling and inhibition of root respiration led to a decline of stomatal conductance, photosynthesis, transpiration rate, chlorophyll (Chl) a, Chl b, carotenoid (Car) content, Chl a/b, Chl/Car, water potential, and Chl a fluorescence, as well as to an increase of abscisic acid (ABA), proline, and malondialdehyde content in leaves and to upregulation of senescence-associated gene expression. Our present work implied that both inhibition of root respiration and girdling can induce leaf senescence. In comparison with phloem girdling, the leaf senescence caused by inhibition of root respiration was less significant. The reason for girdling-induced senescence was ABA and carbohydrate accumulation. Senescence induced by inhibition of root respiration occurred due to leaf water stress resulting from inhibition of water absorption.  相似文献   

8.
The effects of salinity (400 mM NaCl) on growth, biomass partitioning, photosynthesis, and leaf ultrastructure were studied in hydroponically grown plants of Aeluropus littoralis (Willd) Parl. NaCl produced a significant inhibition of the main growth parameters and a reduction in leaf gas exchange (e.g. decreased rates of photosynthesis and stomatal conductance). However, NaCl salinity affected neither the composition of photosynthesis pigments nor leaf water content. The reduction in leaf gas exchange seemed to correlate with a decrease in mesophyll thickness as well as a severe disorganisation of chloroplast structure, with misshapen chloroplasts and dilated thylakoid membranes. Conspicuously, mesophyll chloroplasts were more sensitive to salt treatment than those of bundle sheath cells. The effects of NaCl toxicity on leaf structure and ultrastructure and the associated physiological implications are discussed in relation to the degree of salt resistance of A. littoralis.  相似文献   

9.
The availability of sufficient irrigation water and the development of drought-tolerant species are challenging factors in the design and maintenance of green roofs in modern cities. Green roof plants of Petunia hybrid Headliner® Red Star, Ageratum hybrid Artist® blue, and Mentha spicata L. grown in a simulated green roof pot system under controlled greenhouse conditions. The plants were watered every 2 or 6 days (2DWI/6DWI) for 8 weeks accompanied by either a 6-day treatment of seaweed extracts of Ascophyllum nodosum as a soil drench or foliar spray, or two concentrations of trinexapac-ethyl (TE) biweekly sprays. Following treatments, leaf number, leaf area, dry weights, plant height, stomatal conductanse, photosynthetic and transpiration rates and leaf water potential and relative water content were determined in two seasons during 2016 and 2017. The prolonged irrigation intervals reduced plant growth as revealed by morphological and physiological parameters. The application of SWE as drench treatment improved Petunia and Ageratum plant vegetative growth, stomatal conductance, photosynthetic and transpiration rates and leaf water potential and relative water content during prolonged irrigation intervals. TE increased the vegetative growth as well as the physiological performance of Ageratum plants. However, neither SWE nor TE treatments improved the performance of Mentha plants under prolonged irrigation intervals. It was suggested that improved photosynthetic rates were stimulated by enhanced stomatal conductance leading to improved leaf water potential as well as increased relative water content during prolonged irrigation conditions.  相似文献   

10.
Liriomyza huidobrensis (Blanchard) is a key pest of potatoes worldwide and an emerging pest of potatoes in Korea. To understand the nature of the damage caused by this pest and the potential for yield loss, potato (Solanum tuberosum), cv. Superior was exposed to different pest infestation levels (0, 2, 5, 10, 20, and 50 individuals/cage) for 27 days and the relationship between pest density and crop damage assessment was determined using both laboratory cage studies and field cages. Leaf stippling, number of mines per leaf, % leaf area mined, and yield loss varied significantly with infestation density level in both the laboratory and field. The greatest leaf area mined and yield loss were associated with the 20- and 50-individual infestation rates in both the laboratory and field. There was a significant relationship between female choice (as shown by stippling, caused by adult feeding and oviposition) and larval performance (as reflected by the number of mines, damaged leaf area, and yield loss). It is important to understand the nature of the damage caused by L. huidobrensis and to determine its economic threshold for potato in order to optimize the management of this leafminer and minimize management costs.  相似文献   

11.
Leaf anatomy was studied in the mosaic Ficus benjamina cv. Starlight and non-chimeric Ficus benjamina cv. Daniel. The number of chloroplasts in a white, chlorophyll-deficient tissue declines as compared to the green tissue. However, their functional activity is retained. The leaf of the mosaic F. benjamina contains two or, sometimes, three subepidermal layers. Mesophyll forms one layer in the green and white parts of leaf palisade and one white and one green layer in the transitional zone (edge). In the transitional zone, green spongy mesophyll is located between two white spongy layers and the proportion of photosynthesizing cells varies. In cv. Daniel, there are two subepidermal layers and one layer of columnar mesophyll cells. According to the morphometry data, the proportion of white zone in the leaf correlates with the leaf position in the whole shoot: the higher the branch order, the larger the proportion of white zone. The total leaf area depends also on its position in the shoot. No such correlation was found in non-chimeric F. benjamina cv. Daniel. In the mosaic chimera, the source-sink status appears to depend on the leaf position in the shoot. Experiments with individual shoots of the same order and elimination of all lateral shoots have shown that the proportion of white zone in new leaves on the shoot increases with the total area of green zone. Thus, the area of assimilating shoot surface affects the formation of leaves in the meristem. A hypothesis was put forward that the source-sink state affects the ratio of green and white parts in the leaf primordium. Products of photosynthesis (carbohydrates) are a possible metabolic signal affecting the meristem. It cannot be excluded as well that the hormonal state undergoes changes in the chimeric plant.  相似文献   

12.

Key message

Stomatal regulation involves beneficial effects of pruning mulch and irrigation on leaf photosynthesis in Prunus yedoensis and Ginkgo biloba under moderate drought. G. biloba showed conservative water use under drought.

Abstract

Leaf photosynthesis is highly sensitive to soil water stress via stomatal and/or biochemical responses, which markedly suppress the growth of landscape trees. Effective irrigation management to maintain leaf photosynthesis and information on species-specific photosynthetic responses to soil water stress are essential for the sustainable management of landscape trees in Japan, in which summer drought often occurs. In order to investigate effective irrigation management, we used plants with moderate soil water stress as controls, and examined the effects of daily irrigation and pruning mulch on leaf photosynthesis in container-grown Ginkgo biloba and Prunus yedoensis, which are the first and second main tall roadside trees in Japan. Stomatal conductance was significantly increased by pruning mulch and daily irrigation, with similar increases in leaf photosynthesis being observed in P. yedoensis and G. biloba. In order to obtain information on species-specific photosynthetic responses to soil water stress, we compared the responses of leaf photosynthesis and leaf water status to reductions in soil water content (SWC) between the two species. G. biloba maintained a constant leaf water potential, leaf water content, maximum carboxylation rate, and electron transport rate with reductions in SWC, whereas reductions were observed in P. yedoensis. We concluded that pruning mulch and irrigation effectively offset the negative impact of moderate water stress on leaf photosynthesis in summer in P. yedoensis and G. biloba via stomatal regulation, and also that G. biloba maintained its photosynthetic biochemistry and leaf water status better than P. yedoensis under severe water stress.
  相似文献   

13.
With the discovery of targeted gene replacement, moss biology has been rapidly advancing over the last 10 years. This study demonstrates the usefulness of moss as a model organism for plant photosynthesis research. The two mosses examined in this study, Physcomitrella patens and Ceratodon purpureus, are easily cultured through vegetative propagation. Growth tests were conducted to determine carbon sources suitable for maintaining heterotrophic growth while photosynthesis was blocked. Photosynthetic parameters examined in these plants indicated that the photosynthetic activity of Ceratodon and Physcomitrella is more similar to vascular plants than cyanobacteria or green algae. Ceratodon plants grown heterotrophically appeared etiolated in that the plants were taller and plastids did not differentiate thylakoid membranes. After returning to the light, the plants developed green, photosynthetically active chloroplasts. Furthermore, UV-induced mutagenesis was used to show that photosynthesis-deficient mutant Ceratodon plants could be obtained. After screening approximately 1000 plants, we obtained a number of mutants, which could be arranged into the following categories: high fluorescence, low fluorescence, fast and slow fluorescence quenching, and fast and slow greening. Our results indicate that in vivo biophysical analysis of photosynthetic activity in the mosses can be carried out which makes both mosses useful for photosynthesis studies, and Ceratodon best sustains perturbations in photosynthetic activity.  相似文献   

14.
Paphiopedilum and Cypripedium are closely related in phylogeny, but have contrasting leaf traits and habitats. To understand the divergence in leaf traits of Paphiopedilum and Cypripedium and their adaptive significance, we analyzed the leaf anatomical structures, leaf dry mass per area (LMA), leaf lifespan (LL), leaf nitrogen concentration (N mass), leaf phosphorus concentration (P mass), mass-based light-saturated photosynthetic rate (A mass), water use efficiency (WUE), photosynthetic nitrogen use efficiency (PNUE) and leaf construction cost (CC) for six species. Compared with Cypripedium, Paphiopedilum was characterized by drought tolerance derived from its leaf anatomical structures, including fleshy leaves, thick surface cuticles, huge adaxial epidermis cells, lower total stoma area, and sunken stomata. The special leaf structures of Paphiopedilum were accompanied by longer LL; higher LMA, WUE, and CC; and lower N mass, P mass, A mass, and PNUE compared with Cypripedium. Leaf traits in Paphiopedilum helped it adapt to arid and nutrient-poor karst habitats. However, the leaf traits of Cypripedium reflect adaptations to an environment characterized by rich soil, abundant soil water, and significant seasonal fluctuations in temperature and precipitation. The present results contribute to our understanding of the divergent adaptation of leaf traits in slipper orchids, which is beneficial for the conservation of endangered orchids.  相似文献   

15.
This paper reports effects of ultraviolet B (UVB) radiation on leaf anatomy and contents of chlorophyll and carotenoids, as well as photosynthetic parameters, in young sporophytes of Acrostichum danaeifolium Langsd. & Fisch. (Polypodiopsida, Pteridaceae) exposed to UV radiation treatments for 1 h daily for six weeks. The leaves showed large aerenchyma and present chloroplasts in both epidermises. After cultivation under PAR + UVA + UVB, leaves showed curling and malformed stomata on the abaxial face. After the UV treatment, chloroplasts in leaves were arranged against the inner wall of the epidermal cells. Transmission electron microscopy analysis showed some dilated thylakoids and plastoglobuli in chloroplasts and vesicles containing phenolic compounds in the cytoplasm. Differences were not observed between control and UV-treated plants in their contents of chlorophylls, carotenoids, and photosynthetic parameters. A. danaeifolium grown in sunny mangrove environment seems to have mechanisms preventing photosystem damage.  相似文献   

16.
Insect herbivory has variable effects on plant physiology; so greater understanding is needed about how injury alters photosynthesis on individual injured and uninjured leaves. Gas exchange and light-adapted leaf chlorophyll fluorescence measurements were collected from uninjured and mechanical partial leaf defoliation in two experiments with Nerium oleander (Apocynaceae) leaves, and one experiment with Danaus plexippus herbivory on Asclepias curassavica (Asclepiadaceae) leaves. Gas exchange impairment (lower photosynthetic rate (P n ), stomatal conductance (g s)) indicates water stress in a leaf, suggests stomatal limitations causing injury P n impairment. The same pattern of gas exchange impairment also occurred on uninjured leaves opposite from injured leaves in both N. oleander experiments. This is an interesting result because photosynthetic impairment is rarely reported on injured leaves near injured leaves. No photosynthetic changes occurred in uninjured A. curassavica leaves opposite from D. plexippus-fed leaves. Partially defoliated leaves that had P n and g s reductions lacked any significant changes in intercellular leaf [CO2], C i. These results neither support, nor are sufficient to reject, stomatal limitations to photosynthesis. Manually imposed midrib vein severance in N. oleander experiment #1 significantly increased leaf C i, indicating mesophyll limitations to photosynthesis. Maximal light-adapted leaf photochemical efficiency () and also non-photochemical quenching (q N) were reduced by mechanical or insect herbivory to both study species, suggesting leaf trouble handling excess light energy not used for photochemistry. Midrib injury on N. oleander leaves and D. plexippus herbivory on A. curassavica leaves also reduced effective quantum yield (ΦPSII) and photochemical quenching (q P); so reduced plastoquinone pools could lead to additional PSII reaction center closure.  相似文献   

17.
The horse chestnut leaf miner (HCLM) Cameraria ohridella Deschka and Dimic (Lepidoptera, Gracillariidae) is a novel but significant pest in Europe. Current control measures are either inefficient or environmentally harmful. Tits (Parus spp.) open the mines and prey on HCLM, but the biocontrol efficiency of this behaviour has not yet been quantified. We installed bird nesting-boxes in a biennial field study on four sites close to Brunswick (Germany). On the same sites, we counted HCLM pupae, larvae, opened and closed mines, and parasitised larvae and pupae in leaves collected from horse chestnut (Aesculus hippocastanum L., Hippocastanaceae) trees with and without bird exclusion. In both years, the HCLM number and the proportion of closed mines were higher in bird exclusion trees, particularly on sites with high abundance of tits. Hence, we suggest including the facilitation of birds, particularly tits, in future HCLM biocontrol strategies.  相似文献   

18.
In large parts of Europe horse chestnut trees ( Aesculus hippocastanum) suffer from severe defoliation by an alien invasive species, the specialist leaf mining moth Cameraria ohridella (Lepidoptera; Gracillariidae). Heavily infested trees have a drastically shortened period for photosynthesis. We quantified the effect of moth infestation on reproduction of horse chestnut trees in two different cities in central Europe, Bern and Munich. C. ohridella negatively affected seed and fruit weight of A. hippocastanum at both locations. In Munich, seed weight of heavily damaged trees was reduced by almost half. However, the number of seeds per fruit, the number of fruits per inflorescence, and the number of inflorescences per tree did not change due to herbivory. We conclude that C. ohridella mining affects seed quality but not seed quantity. The reduced seed weight may severely impair growth and survival of horse chestnut seedlings and thus may endanger the long-term persistence of A. hippocastanum in its endemic forests in south-east Europe.  相似文献   

19.
The thermal response of gas exchange varies among plant species and with growth conditions. Plants from hot dry climates generally reach maximal photosynthetic rates at higher temperatures than species from temperate climates. Likewise, species in these environments are predicted to have small leaves with more-dissected shapes. We compared eight species of Pelargonium (Geraniaceae) selected as phylogenetically independent contrasts on leaf shape to determine whether: (1) the species showed plasticity in thermal response of gas exchange when grown under different water and temperature regimes, (2) there were differences among more- and less-dissected leafed species in trait means or plasticity, and (3) whether climatic variables were correlated with the responses. We found that a higher growth temperature led to higher optimal photosynthetic temperatures, at a cost to photosynthetic capacity. Optimal temperatures for photosynthesis were greater than the highest growth temperature regime. Stomatal conductance responded to growth water regime but not growth temperature, whereas transpiration increased and water use efficiency (WUE) decreased at the higher growth temperature. Strikingly, species with more-dissected leaves had higher rates of carbon gain and water loss for a given growth condition than those with less-dissected leaves. Species from lower latitudes and lower rainfall tended to have higher photosynthetic maxima and conductance, but leaf dissection did not correlate with climatic variables. Our results suggest that the combination of dissected leaves, higher photosynthetic rates, and relatively low WUE may have evolved as a strategy to optimize water delivery and carbon gain during short-lived periods of high soil moisture. Higher thermal optima, in conjunction with leaf dissection, may reflect selection pressure to protect photosynthetic machinery against excessive leaf temperatures when stomata close in response to water stress.  相似文献   

20.
Four scion-rootstock combination [i.e., X/X and X/SP, ‘Xuegan’ (Citrus sinensis) grafted on ‘Xugan’ and ‘Sour pummelo’ (Citrus grandis), respectively, and SP/X and SP/SP, ‘Sour pummelo’ grafted on ‘Xuegan’ and ‘Sour pummelo’, respectively] plants were treated for 18 weeks with 0 (?Al) or 1.2 mM AlCl3·6H2O (+Al). Thereafter, leaf, stem and root concentrations of phosphorus and aluminum (Al), leaf and root levels of organic acids (OAs), Al-induced release of OA anions (i.e., malate and citrate), photosynthesis and chlorophyll a fluorescence (OJIP) transients were measured. Al-induced decrease of photosynthesis and damage of photosynthetic electron transport chain were less pronounced in X/X and X/SP leaves than in SP/SP and SP/X leaves, which might be related with the higher Al-induced root efflux of OA anions and leaf P concentration. C. sinensis rootstock alleviated the influences of Al-toxicity on leaf photosynthetic electron transport chain by enhancing Al-induced release of root OA anions, hence lessening Al-induced photosynthesis inhibition in SP/X plants, while the reverse was the case for C. grandis rootstock in X/SP plants. In conclusion, the tolerance of grafted Citrus plants to Al depends on the scion as well as rootstock genotype, and the scion-rootstock interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号