首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Intercompartmental transport of secreted proteins in yeast was analysed using invertase mutants. Deletions and insertions at the BamHI (position +787) or the Asp718 (position +1159) sites of the SUC2 gene led to mutant proteins with different behaviour regarding secretion, localization and enzyme activity. The deletion mutants showed accumulation of core glycosylated material in the endoplasmic reticulum (ER) a decrease of secreted protein by 5%–30% and loss of enzyme activity. The secreted material was localized in the culture medium and not — as is normal for invertase-in the cell wall. No delay in transport from the Golgi to the cell surface was observed, indicating that the rate-limiting step for secretion is at the ER-Golgi stage. Two insertion mutants, pIPA and pIPB, retained enzyme activity. Mutant pIPB showed 10% secretion, while 60%–70% secretion was observed for pIPA. While the non-secreted material accumulated in the ER, the secreted material was present in the cell wall. The results suggest that the presence of structures incompatible with secretion leads to ER accumulation of mutated invertase.  相似文献   

2.
Flagellin is the bulk protein secreted by Bradyrhizobium japonicum. For easier identification of minor protein fractions, the flagellin genes bll6865 and bll6866 were deleted. Extracellular proteins of the corresponding mutant were purified and separated by 2D gel electrophoresis. Several of the protein spots were detectable only after addition of genistein to the growth medium-genistein is an isoflavone secreted by soybean that activates the expression of genes encoding a type III secretion system. These secreted proteins were not present in supernatants of mutants in which conserved genes of the type III secretion system or the regulatory gene ttsI, which is essential for activation of the type III secretion system, are deleted. Out of 22 genistein-inducible protein spots 8 different proteins could be identified by mass spectrometry. One of the proteins, Blr1752, has similarity to NopP of Rhizobium sp. strain NGR234 that is known to be secreted. Another protein is Blr1656 (GunA2) that was shown previously to have endoglucanase activity. Three proteins have similarity to subunits of the flagellar apparatus. Some proteins appeared in several separate spots indicating posttranslational modification. A conserved tts box motif was found in the putative promoter region of six genes encoding secreted proteins.  相似文献   

3.
Summary The two-step protein secretion pathway in Pseudomonas aeruginosa is dependent on the xcp genes. We investigated whether a similar secretion mechanism is present in non-pathogenic Pseudomonas spp. and in other gram-negative bacteria. The plant growth stimulating Pseudomonas strains P. putida WCS358, P. fuorescens WCS374 and Pseudomonas 1310 appeared to secrete proteins into the extracellular medium. Southern hybridization experiments showed the presence of xcp genes in these strains and also in other gram-negative bacteria, including Xanthomonas campestris. Complementation experiments showed that the xcp gene cluster of P. aeruginosa restored protein secretion in an X. campestris secretion mutant. The secretion gene cluster of X. campestris however, restored secretion capacity in P. aeruginosa mutants only to a low degree. Two heterologous proteins were not secreted by P. fuorescens and P. aeruginosa. The results suggest the presence of a similar two-step protein secretion mechanism in different gram-negative bacteria, which however, is not always functional for heterologous proteins.  相似文献   

4.
A biotechnological production of proteins through protein secretion systems might be superior to the conventional cytoplasmic production, because of the absence of large amounts of proteases present in the extracellular space and the ease of purification or downstream processing. However, secretion of proteins is still a trial-and-error approach and many proteins fail to be secreted. Recently, a study of a Type 1 secretion system revealed that the folding rate of the passenger protein dictates secretion efficiency. Here, the well-known MalE failed to be secreted when fused to a C-terminal fragment of the natural substrate haemolysin A. In contrast, slow-folding mutants of MalE were secreted in high yields. However, MalE is a bacterial protein that is targeted to the periplasmic space of E. coli and possesses the intrinsic capability to cross a membrane. Therefore, we applied the same approach for another eukaryotic protein that resides in the cytoplasm. As an example, we chose the intestinal fatty acid binding protein (IFABP) and highlight the universal potential of this Type 1 secretion system to secrete proteins with slow-folding kinetics (here the G121V mutant). Finally, a one-step purification protocol was established yielding 1mg of pure IFABP G121V per liter culture supernatant. Moreover, secreted IFABP G121V was shown to reach a folded state, which is biologically active.  相似文献   

5.
Although a large number of potentially secreted proteins can be predicted on the basis of genomic distribution of signal sequence-bearing proteins, protein secretion in Archaea has barely been studied. A proteomic inventory and comparison of the growth medium proteins in three hyperthermoacidophiles, i.e., Sulfolobus solfataricus, S. acidocaldarius and S. tokodaii, indicates that only few proteins are freely secreted into the growth medium and that the majority originates from cell envelope bound forms. In S. acidocaldarius both cell-associated and secreted α-amylase activities are detected. Inactivation of the amyA gene resulted in a complete loss of activity, suggesting that the same protein is responsible for the a-amylase activity at both locations. It is concluded that protein secretion in Sulfolobus is a limited process, and it is suggested that the S-layer may act as a barrier for the free diffusion of folded proteins into the medium.  相似文献   

6.
Enteropathogenic Escherichia coli (EPEC) causes diarrhoea in young children. EPEC induces the formation of actin pedestal in infected epithelial cells. A type III protein secretion system and several proteins that are secreted by this system, including EspB, are involved in inducing the formation of the actin pedestals. We have demonstrated that contact of EPEC with HeLa cells is associated with the induction of production and secretion of EspB. Shortly after infection, EPEC initiates translocation of EspB, and EspB fused to the CyaA reporter protein (EspB–CyaA), into the host cell. The translocated EspB was distributed between the membrane and the cytoplasm of the host cell. Translocation was strongly promoted by attachment of EPEC to the host cell, and both attachment factors of EPEC, intimin and the bundle-forming pili, were needed for full translocation efficiency. Translocation and secretion of EspB and EspB–CyaA were abolished in mutants deficient in components of the type III protein secretion system, including sepA and sepB mutants. EspB–CyaA was secreted but not translocated by an espB mutant. These results indicate that EspB is both translocated and required for protein translocation by EPEC.  相似文献   

7.
The flagellar-specific anti-sigma factor, FlgM, inhibits the expression of late flagellar genes until the hook–basal body structure is assembled and competent for export of the flagellins and hook-associated proteins (flagellar late proteins). FlgM monitors this assembly checkpoint by being a substrate for export via the hook–basal body structure, which includes a type III protein secretion complex. Amino acid sequence alignment of late-secreted flagellar proteins identified a region of homology present in the amino-terminus of FlgM and the other late flagellar proteins, but not in flagellar proteins secreted earlier during flagellar biosynthesis. Single amino acid substitutions at specific positions within this motif decreased the export of FlgM. Deletion of this region (S3-P11) resulted in lower intracellular FlgM levels, but did not prevent recognition and export by the flagellar-specific secretion system. Mutations were isolated in a second region of FlgM spanning residues K27 to A65 that exhibited increased anti-σ28 activity. These FlgM 'hyperinhibitor' mutants were secreted less than wild-type FlgM. Mutations that interfere with the secretion of FlgM without abolishing anti-σ28 activity have a negative effect upon the secretion of a His-tagged FlgM mutant that lacks anti-σ28 activity. Models are proposed to explain the dominant negative phenotype of the FlgM secretion mutants reported in this study.  相似文献   

8.
Extracellular proteins secreted/released by protozoan parasites are key mediators of the host–parasite interaction. To characterise the profile of proteins secreted/released by Leishmania (Viannia) braziliensis promastigotes, a proteomic approach combining two-dimensional electrophoresis (2DE), tandem matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF/TOF) mass spectrometry, and data mining was carried out. The 2DE map revealed a set of 270 secreted protein spots from which 42 were confidently identified and classified into 11 categories according to Gene Ontology (GeneDB database) and KEEG Ontology annotation of biological processes. Parasite promastigotes were able to secrete/release proteins involved in immunomodulation, signal transduction, and intracellular survival, such as HSP70, acid phosphatase, activated protein kinase C receptor (LACK), elongation factor 1β, and tryparedoxin peroxidase. Data mining showed that ~ 5% of identified proteins present a classical secretion signal whereas ~ 57% were secreted following non-classical secretion mechanisms, indicating that protein export in this primitive eukaryote might proceed mainly by unconventional pathways. This study reports a suitable approach to identify secreted proteins in the culture supernatant of L. braziliensis and provides new perspectives for the study of molecules potentially involved in the early stages of infection.  相似文献   

9.
Otoliths in bony fishes and otoconia in mammals are composite crystals consisting of calcium carbonate and proteins. These biominerals are part of the gravity and linear acceleration detection system of the inner ear. Mutations in otopetrin 1 have been shown to result in lack of otoconia in tilted and mergulhador mutant mice. The molecular function of Otopetrin 1, a novel protein that contains ten predicted transmembrane domains, however, has remained elusive. Here we show that a mutation in the orthologous gene in zebrafish is responsible for the complete absence of otoliths in backstroke mutants. We examined the localization of Starmaker, a secreted protein that is highly abundant in otoliths in backstroke mutants. Starmaker protein accumulated within cells of the otic epithelium, indicating a possible defect in secretion. Our data suggest that Otopetrin 1 in zebrafish may be involved in the protein trafficking of components required for formation of biominerals in the ear.  相似文献   

10.
In prsA (protein secretion) mutants of Bacillus subtilis, decreased levels of exoproteins, including α-amylase and subtilisins, are found extracellularly. The effect of prsA on subtilisin secretion is elaborated here. Extracytoplasmic folding and secretion of active subtilisin is assisted by the N-terminal pro-sequence of its precursor. In this paper we present evidence that the product of the prsA gene is additionally required for these processes in vivo. We examined inducible expression of different subtilisin-alkaline phosphatase fusion genes in the prsA3 mutant. We found massive degradation of the fusion proteins, and a lack of enzymatic activity in the protein secreted. We suggest that PrsA is a novel chaperone with a predicted extracytoplasmic location, and is important in vivo for the proper conformation of various exoproteins, including those with pro-sequence (like subtilisin) and those without (like α-amylase).  相似文献   

11.
Secretion of proteins is a central strategy of bacteria to influence and respond to their environment. Until now, there has been very few discoveries regarding the cyanobacterial secrotome or the secretion machineries involved. For a mutant of the outer membrane channel TolC‐homologue HgdD of Anabaena sp. PCC 7120, a filamentous and heterocyst‐forming cyanobacterium, an altered secretome profile was reported. To define the role of HgdD in protein secretion, we have developed a method to isolate extracellular proteins of Anabaena sp. PCC 7120 wild type and an hgdD loss‐of‐function mutant. We identified 51 proteins of which the majority is predicted to have an extracellular secretion signal, while few seem to be localized in the periplasmic space. Eight proteins were exclusively identified in the secretome of wild‐type cells, which coincides with the distribution of type I secretion signal. We selected three candidates and generated hemagglutinin‐tagged fusion proteins which could be exclusively detected in the extracellular protein fraction. However, these proteins are not secreted in the hgdD‐mutant background, where they are rapidly degraded. This confirms a direct function of HgdD in protein secretion and points to the existence of a quality control mechanism at least for proteins secreted in an HgdD‐dependent pathway.  相似文献   

12.
The small envelope protein of hepatitis B virus is the major component of the viral coat and is also secreted from cells as a 20-nm subviral particle, even in the absence of other viral proteins. Such empty envelope particles are composed of approximately 100 copies of this polypeptide and host-derived lipids and are stabilized by extensive intermolecular disulfide cross-linking. To study the contribution of disulfide bonds to assembly and secretion of the viral envelope, single and multiple mutants involving all 14 cysteines in HepG2 and COS-7 cells were analyzed. Of the six cysteines located outside the region carrying the surface antigen, Cys-48, Cys-65, and Cys-69 were each found to be essential for secretion of 20-nm particles, whereas Cys-76, Cys-90, and Cys-221 were dispensable. By introduction of an additional cysteine substituting serine 58, the yield of secreted particles was increased. Of four mutants involving the eight cysteines located in the antigenic region, only the double mutant lacking Cys-121 and Cys-124 was secreted with wild-type efficiency. Secretion-competent envelope proteins were intracellularly retained by secretion-deficient cysteine mutants. According to alkylation studies, both intracellular and secreted envelope proteins contained free sulfhydryl groups. Disulfide-linked oligomers were studied by gel electrophoresis under nonreducing conditions.  相似文献   

13.
14.
EspB of enterohemorrhagic Escherichia coli O157:H7 is one of the type III proteins, categorized as translocators, that are secreted in abundance. To define the secretion determinants, different fragments of EspB were fused in recombinant proteins and the proteins secreted into media analyzed by Western blot. The results indicated that the C-terminal 30 residues of EspB were dispensable for secretion whereas the N-terminal first 117 residues played a major role. However, this N-terminal segment alone was not sufficient to confer the secretion. To acquire basic activity, the EspB fusion protein had to contain the N-terminal segment and another segment consisting of either residues 118–190 or residues 191–282. It is possible that the N-terminal region may act as the primary component of the secretion signal while other determinants help to maintain a conformation of EspB favorable for secretion. However, alternative mechanisms cannot be completely excluded. Not withstanding this, the signal for the type III secretion of EspB is apparently distinct from those previously described for the secretion of effector proteins such as Yops in Yersinia.  相似文献   

15.
A remarkable feature of the flagellar‐specific type III secretion system (T3SS) is the selective recognition of a few substrate proteins among the many thousand cytoplasmic proteins. Secretion substrates are divided into two specificity classes: early substrates secreted for hook‐basal body (HBB) construction and late substrates secreted after HBB completion. Secretion was reported to require a disordered N‐terminal secretion signal, mRNA secretion signals within the 5′‐untranslated region (5′‐UTR) and for late substrates, piloting proteins known as the T3S chaperones. Here, we utilized translational β‐lactamase fusions to probe the secretion efficacy of the N‐terminal secretion signal of fourteen secreted flagellar substrates in Salmonella enterica. We observed a surprising variety in secretion capability between flagellar proteins of the same secretory class. The peptide secretion signals of the early‐type substrates FlgD, FlgF, FlgE and the late‐type substrate FlgL were analysed in detail. Analysing the role of the 5′‐UTR in secretion of flgB and flgE revealed that the native 5′‐UTR substantially enhanced protein translation and secretion. Based on our data, we propose a multicomponent signal that drives secretion via the flagellar T3SS. Both mRNA and peptide signals are recognized by the export apparatus and together with substrate‐specific chaperones allowing for targeted secretion of flagellar substrates.  相似文献   

16.
The haemolysin of Serratia marcescens (ShlA) is translocated through the cytoplasmic membrane by the signal peptide-dependent export apparatus. Translocation across the outer membrane (secretion) is mediated by the ShIB protein. Only the secreted form of ShlA is haemolytic. ShIB also converts in vitro inactive ShlA (ShlA*), synthesized in the absence of ShIB, into the haemolytic form (a process termed activation). To define regions in ShlA involved in both processes, ShlA derivatives were isolated and tested for secretion and activation. Analysis of C-terminally truncated proteins (ShlA) assigned the secretion signal to the amino-terminal 238 residues of ShlA. Trypsin cleavage of a secreted ShlA' derivative yielded a 15kDa N-terminal fragment, by which a haemolytically inactive ShlA* protein could be activated in vitro. It is suggested that the haemolysin activation site is located in this N-terminal fragment. Replacement of asparagine-69 and asparagine-109 by isoleucine yielded inactive haemolysin derivatives. Both asparagine residues are part of two short sequence motifs, reading Ala-Asn-Pro-Asn, which are critical to both activation and secretion. These point mutants as well as N-terminal deletion derivatives which were not activated by ShIB were activated by adding a non-haemolytic N-terminal fragment synthesized in an ShIB+ strain (complementation). Apparently the activated N-terminal fragment substituted for the missing activation of the ShlA derivatives and directed them into the erythrocyte membrane, where they formed pores. It is concluded that activation is only required for initiation of pore formation, and that in vivo activation and secretion are tightly coupled processes. Complementation may also indicate that haemolysin oligomers form the pores.  相似文献   

17.
Summary The effects of tunicamycin, an inhibi-tor of N-asparagine linked glycosylation, on the synthesis, secretion, and activities of the cellulases produced byTrichoderma reesei wild type QM6a and hypersecrefing mutant RL-P37 were studied. Neither the level of secreted cellutase nor the total amount of secreted protein was affected by the drug at a concentration (5 μg/ml) that slightly in-hibited growth. SDS-polyacrylamide gel electro-phoretic mobilities of proteins secreted during growth in tunicamycin were similar to those of proteins from control cultures that had their N-linked oligosaccharides removed by endoglycosi-dase H. Isoelectric focusing patterns of secreted proteins were also altered by growth in the pres-ence of tunicamycin. All of the bands stained with Schiff’s reagent, indicating that the secreted cellu-lases contained O-linked oligosaccharides in ad-dition to N-linked sugars. Endoglucanase activity in culture broths from tunicamycin grown mycelia was more thermolabile and protease-sensitive than the same activity from control cultures. Thus, N-asparagine linked oligosaccharides do not appear to be necessary forT. reesei cellulase secretion or activity, but do seem to contribute to the stability of the enzymes. The role of O-finked oligosaccharides is being investigated.  相似文献   

18.
Dissection of a type VI secretion system in Edwardsiella tarda   总被引:1,自引:0,他引:1  
Bacterial pathogens use different protein secretion systems to deliver virulence factors. Recently, a novel secretion system was discovered in several Gram-negative bacterial pathogens, and was designated as the type VI secretion system (T6SS). In Edwardsiella tarda, a partial E. tardavirulent protein (EVP) gene cluster was implicated in protein secretion. Here, we identified the entire EVP cluster as a T6SS and two additional secreted proteins (EvpI, a homologue of VgrG, and EvpP) were found. We systematically mutagenized all the 16 EVP genes and found that the secretion of EvpP was dependent on 13 EVP proteins including EvpC (a homologue of Hcp) and EvpI but not EvpD and EvpJ. All EVP mutants except DeltaevpD were attenuated in blue gourami fish. The 16 EVP proteins can be grouped according to their functions and cellular locations. The first group comprises 11 non-secreted and possibly intracellular apparatus proteins. Among them, EvpO, a putative ATPase which contained a Walker A motif, showed possible interactions with three EVP proteins (EvpA, EvpL and EvpN). The second group includes three secreted proteins (EvpC, EvpI and EvpP). The secretion of EvpC and EvpI is mutually dependent, and they are required for the secretion of EvpP. The interaction between EvpC and EvpP was demonstrated. Lastly, two proteins (EvpD and EvpJ) are not required for the T6SS-dependent secretion.  相似文献   

19.
20.
Lactococcus lactis, a food-grade nonpathogenic lactic acid bacterium, is a good candidate for the production of heterologous proteins of therapeutic interest. We examined host factors that affect secretion of heterologous proteins in L. lactis. Random insertional mutagenesis was performed with L. lactis strain MG1363 carrying a staphylococcal nuclease (Nuc) reporter cassette in its chromosome. This cassette encodes a fusion protein between the signal peptide of the Usp45 lactococcal protein and the mature moiety of a truncated form of Nuc (NucT). The Nuc secretion efficiency (secreted NucT versus total NucT) from this construct is low in L. lactis (approximately 40%). Twenty mutants affected in NucT production and/or in secretion capacity were selected and identified. In these mutants, several independent insertions mapped in the dltA gene (involved in D-alanine transfer in lipoteichoic acids) and resulted in a NucT secretion defect. Characterization of the dltA mutant phenotype with respect to NucT secretion revealed that it is involved in a late secretion stage by causing mature NucT entrapment at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号