首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
小鲵科线粒体16S rRNA基因序列分析及其系统发育   总被引:9,自引:0,他引:9  
李悦  吴敏  王秀玲 《动物学报》2004,50(3):464-469
To study the phylogeny of Hynobiidae, we amplified DNA fragments of 470 bp 16S ribosomal RNA (16S rRNA) gene on mitochondrial DNA from Ranodon sibiricus and Ranodon tsinpaensis. PCR products were cloned into PMD18 T vector after purification. These sequences were determined and deposited in the GenBank (accession numbers: AY373459 for Ranodon sibiricus, AY372534 for Ranodon tsinpaensis). By comparing the nucleotide differences of 16S ribosomal RNA sequences among Liua shihi, Pseudohynobius flavomaculatus and Batrachuperus genus from GenBank database, we analyzed the divergences and base substitution among these sequences with the MEGA software. The molecular results support that B. tibetanus, B. pinchonii and B. karlschmidti are classified into three valid species. Liua shihi has closer phylogenetic relationships to Ranodon tsinpaensis than to other species. More our results reveal that Pseudohynobius flavomaculatus is not a synonym of Ranodon tsinpaensis. [Acta Zoologica Sinica 50 (3) : 464 - 469,2004].  相似文献   

2.
The use of probiotics such as Lactobacillus in animal feeds has gained popularity in recent years. In this study the 16S rRNA gene sequence of L. acidophilus in two commercial agents which have been used in animal feeds, LAB‐MOS and Ghenisson 22, was determined. Phylogenetic tree analysis revealed that the two agents, strain MNFLM01 in LAB‐MOS and strain GAL‐2 in Ghenisson 22, belonged to L. rhamnosus (a member of the L. casei group) and L. johnsonii (a member of the L. acidophilus group), respectively. Biochemical tests assigned the two as L. rhamnosus and ambiguously as L. acidophilus. The data suggest that 16S rRNA gene sequence analysis provides more accurate identification of Lactobacillus species than biochemical tests and would allow quality assurance of relevant commercial products. The 16S rRNA gene sequences of strains MNFLM01 and GAL‐2 determined in this study have been submitted to the DDBJ/EMBL/GenBank accession numbers under accession numbers AB288235 and AB295648, respectively.  相似文献   

3.
16S rRNA序列分析法在医学微生物鉴定中的应用   总被引:26,自引:0,他引:26  
周煜 《生物技术通讯》1999,10(4):297-305
16S rRNA序列分析作为微生物系统分类的主要依据已得到了广泛认同,随着微生物核糖体数据库的日益完善,该技术成为细菌分类和鉴定的一个有力工具。本文概述了 165 rRNA序列分析法的技术步骤以及该技术在医学微生物研究中的应用,总结了目前文献报导的各种致病微生物种属特异性 165 rRNA引物和探针序列,同时分析了该技术在应用中存在的一些问题。  相似文献   

4.
Chan ER  Hester J  Kalady M  Xiao H  Li X  Serre D 《Genomics》2011,98(4):253-259
Deep sequencing of the 16S rRNA gene provides a comprehensive view of bacterial communities in a particular environment and has expanded our ability to study the impact of the microflora on human health and disease. Current analysis methods rely on comparisons of the sequences generated with an expanding but limited set of annotated 16S rRNA sequences or phylogenic clustering of sequences based on arbitrary similarity cutoffs. We describe a novel approach to characterize bacterial composition using deep sequencing of 16S rRNA gene. Our method defines operational taxonomic units based on phylogenetic tree reconstruction and dynamic clustering of sequences using solely sequencing data. These OTUs can be used to identify differences in bacteria abundance between environments. This approach can perform better than previous phylogenetic methods and will significantly improve our understanding of the microfloral role on human diseases by providing a comprehensive analysis of the microbial composition from various bacterial communities.  相似文献   

5.
为探讨柳蚕Actias selene Hübner与鳞翅目昆虫的系统发育关系,本研究利用PCR扩增获得了柳蚕核糖体18S rRNA和线粒体16S rRNA基因的部分序列,长度分别为391bp和428bp。并采用邻近距离法(NJ)、最大简约法(MP)、类平均聚类法(UPGMA)构建系统进化树。结果表明,柳蚕线粒体16SrRNA基因序列与大蚕蛾科昆虫的16SrRNA基因序列均表现出偏好于碱基AT的倾向。柳蚕与所研究的其它蚕类的遗传距离介于0.016至0.140之间,其中与温带柞蚕Antheraea roylii的遗传距离最小,与野桑蚕Bombyx mandarina的遗传距离最大。而基于鳞翅目昆虫18S rRNA基因部分序列的进化分析显示,柳蚕与柞蚕Antheraea pernyi之间的遗传距离最小(0.010),与蓖麻蚕Samia ricini的遗传距离最大(0.017)。  相似文献   

6.
The position and conformation of the N-terminal helix of free ribosomal protein S15 was earlier found to be modified under various conditions. This variability was supposed to provide the recognition by the protein of its specific site on 16S rRNA. To test this hypothesis, we substituted some amino acid residues in this helix and assessed effects of these substitutions on the affinity of the protein for 16S rRNA. The crystal structure of the complex of one of these mutants (Thr3Cys S15) with the 16S rRNA fragment was determined, and a computer model of the complex containing another mutant (Gln8Met S15) was designed. The available and new information was analyzed in detail, and the N-terminal helix was concluded to play no significant role in the specific binding of the S15 protein to its target on 16S rRNA.  相似文献   

7.
The ribosomal protein (r-protein) S20 is a primary binding protein. As such, it interacts directly and independently with the 5′ domain as well as the 3′ minor domain of 16S ribosomal RNA (rRNA) in minimal particles and the fully assembled 30S subunit. The interactions observed between r-protein S20 and the 5′ domain of 16S rRNA are quite extensive, while those between r-protein S20 and the 3′ minor domain are significantly more limited. In this study, directed hydroxyl radical probing mediated by Fe(II)-derivatized S20 proteins was used to monitor the folding of 16S rRNA during r-protein association and 30S subunit assembly. An analysis of the cleavage patterns in the minimal complexes [16S rRNA and Fe(II)-S20] and the fully assembled 30S subunit containing the same Fe(II)-derivatized proteins shows intriguing similarities and differences. These results suggest that the two domains, 5′ and 3′ minor, are organized relative to S20 at different stages of assembly. The 5′ domain acquires, in a less complex ribonucleoprotein particle than the 3′ minor domain, the same architecture as observed in mature subunits. These results are similar to what would be predicted of subunit assembly by the 5′-to-3′ direction assembly model.  相似文献   

8.
9.
Mosquitoes are vectors for the transmission of many human pathogens that include viruses, nematodes and protozoa. For the understanding of their vectorial capacity, identification of disease carrying and refractory strains is essential. Recently, molecular taxonomic techniques have been utilized for this purpose. Sequence analysis of the mitochondrial 16S rRNA gene has been used for molecular taxonomy in many insects. In this paper, we have analysed a 450 bp hypervariable region of the mitochondrial 16S rRNA gene in three major genera of mosquitoes,Aedes, Anopheles andCulex. The sequence was found to be unusually A + T rich and in substitutions the rate of transversions was higher than the transition rate. A phylogenetic tree was constructed with these sequences. An interesting feature of the sequences was a stretch of Ts that distinguished betweenAedes andCulex on the one hand, andAnopheles on the other. This is the first report of mitochondrial rRNA sequences from these medically important genera of mosquitoes.  相似文献   

10.
We describe a young woman who presented with a progressive myopathy since the age of 9. Spectrophotometric analysis of the respiratory chain in muscle tissue revealed combined and profound complex I, III, II+III, and IV deficiency ranging from 60% to 95% associated with morphological and histochemical abnormalities of the muscle. An exhaustive screening of mitochondrial transfer and ribosomal RNAs showed a novel G>A substitution at nucleotide position 3090 which was detected only in urine sediment and muscle of the patient and was not found in her mother's blood cells and urine sample. We suggest that this novel de novo mutation in the 16S ribosomal RNA, a nucleotide which is highly conserved in different species, would impair mitochondrial protein synthesis and would cause a severe myopathy.  相似文献   

11.
AIMS: In a bioterrorism event a rapid tool is needed to identify relevant dangerous bacteria. The aim of the study was to assess the usefulness of partial 16S rRNA gene sequence analysis and the suitability of diverse databases for identifying dangerous bacterial pathogens. METHODS AND RESULTS: For rapid identification purposes a 500-bp fragment of the 16S rRNA gene of 28 isolates comprising Bacillus anthracis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Yersinia pestis, and eight genus-related and unrelated control strains was amplified and sequenced. The obtained sequence data were submitted to three public and two commercial sequence databases for species identification. The most frequent reason for incorrect identification was the lack of the respective 16S rRNA gene sequences in the database. CONCLUSIONS: Sequence analysis of a 500-bp 16S rDNA fragment allows the rapid identification of dangerous bacterial species. However, for discrimination of closely related species sequencing of the entire 16S rRNA gene, additional sequencing of the 23S rRNA gene or sequencing of the 16S-23S rRNA intergenic spacer is essential. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides comprehensive information on the suitability of partial 16S rDNA analysis and diverse databases for rapid and accurate identification of dangerous bacterial pathogens.  相似文献   

12.
The interaction between streptomycin and ribosomal RNA   总被引:6,自引:0,他引:6  
The present study shows that a mutation in the 530 loop of 16S rRNA impairs the binding of streptomycin to the bacterial ribosome, thereby restricting the misreading effect of the drug. Previous reports demonstrated that proteins S4, S5 and S12 as well as the 915 region of 16S rRNA are involved in the binding of streptomycin, and indicated that the drug not only interacts with the 30S subunit but also with the 50S subunit. The relationship between the target of streptomycin and its known interference with the proofreading control of translational accuracy is examined in light of these results.  相似文献   

13.
To rapidly identify natural isolates of marine bioluminescent bacteria, we developed amplified ribosomal DNA restriction analysis (ARDRA) methods. ARDRA, which is based on the restriction patterns of 16S rRNA gene digested with five enzymes (EcoRI, DdeI, HhaI, HinfI, RsaI), clearly distinguished the 14 species of marine bioluminescent bacteria currently known, which belong to the genera Vibrio, Photobacterium, and Shewanella. When we applied ARDRA to 129 natural isolates from two cruises in Sagami Bay, Japan, 127 were grouped into six ARDRA types with distinctive restriction patterns; these isolates represented the bioluminescent species, P. angustum, P. leiognathi, P. phosphoreum, S. woodyi, V. fischeri, and V. harveyi. The other two isolates showing unexpected ARDRA patterns turned out to have 16S rRNA gene sequences similar to P. leiognathi and P. phosphoreum. Nevertheless, ARDRA provides a simple and fairly robust means for rapid identification of the natural isolates of marine bioluminescent bacteria, and is therefore useful in studying their diversity.  相似文献   

14.
15.
Bacterial 16S ribosomal RNA genes (rDNA) were detected in blood samples from two healthy individuals by PCR under conditions involving 30 cycles that did not produce any visible products from negative control saline. Even from control samples, PCR involving 35-40 cycles yielded visible bands. Major clones detected in the blood samples, but not in control, were the Aquabacterium subgroup, Stenotrophomonas subgroup, Budvicia subgroup, Serratia subgroup, Bacillus subgroup and Flavobacteria subgroup. No clone was located within the bacteroides-clostridium-lactobacillus cluster, which is indigenous to gastrointestinal flora.  相似文献   

16.
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.  相似文献   

17.
18.
19.
Microbial community profiling using 16S rRNA gene sequences requires accurate taxonomy assignments. ‘Universal'' primers target conserved sequences and amplify sequences from many taxa, but they provide variable coverage of different environments, and regions of the rRNA gene differ in taxonomic informativeness—especially when high-throughput short-read sequencing technologies (for example, 454 and Illumina) are used. We introduce a new evaluation procedure that provides an improved measure of expected taxonomic precision when classifying environmental sequence reads from a given primer. Applying this measure to thousands of combinations of primers and read lengths, simulating single-ended and paired-end sequencing, reveals that these choices greatly affect taxonomic informativeness. The most informative sequence region may differ by environment, partly due to variable coverage of different environments in reference databases. Using our Rtax method of classifying paired-end reads, we found that paired-end sequencing provides substantial benefit in some environments including human gut, but not in others. Optimal primer choice for short reads totaling 96 nt provides 82–100% of the confident genus classifications available from longer reads.  相似文献   

20.
Relationships among families and suborders of scleractinian corals are poorly understood because of difficulties 1) in making inferences about the evolution of the morphological characters used in coral taxonomy and 2) in interpreting their 240-million-year fossil record. Here we describe patterns of molecular evolution in a segment of the mitochondrial (mt) 16S ribosomal gene from taxa of 14 families of corals and the use of this gene segment in a phylogenetic analysis of relationships within the order. We show that sequences obtained from scleractinians are homologous to other metazoan 16S ribosomal sequences and fall into two distinct clades defined by size of the amplified gene product. Comparisons of sequences from the two clades demonstrate that both sets of sequences are evolving under similar evolutionary constraints: they do not differ in nucleotide composition, numbers of transition and transversion substitutions, spatial patterns of substitutions, or in rates of divergence. The characteristics and patterns observed in these sequences as well as the secondary structures, are similar to those observed in mt 16S ribosomal DNA sequences from other taxa. Phylogenetic analysis of these sequences shows that they are useful for evaluating relationships within the order. The hypothesis generated from this analysis differs from traditional hypotheses for evolutionary relationships among the Scleractinia and suggests that a reevaluation of evolutionary affinities in the order is needed. Received: 4 September 1996 / Accepted: 7 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号