首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are reported of studies to measure the extent of recovery of potentially lethal damage (PLD) in rat rhabdomyosarcoma tumor cells after irradiation both in vivo and in vitro with either high-LET or low-LET radiation. Stationary-phase cultures were found to exhibit repair of PLD following irradiation in vitro either with low-LET X rays or with high-LET neon ions in the extended-peak ionization region. Following a 9-Gy dose of 225-kVp X rays or a 3.5-Gy dose of peak neon ions, both of which reduced the initial cell survival to 6-8%, the maximum PLD recovery factors were 3.4 and 1.6, respectively. In contrast, the standard tumor excision assay procedure failed to reveal any recovery from PLD in tumors irradiated in situ with either X rays or peak neon ions. PLD repair by the in vivo tumor cells could be observed, however, when the excision assay procedure was altered by the addition of a known PLD repair inhibitor beta-arabinofuranosyladenine (beta-ara-A). When a noncytotoxic 50 microM concentration of beta-ara-A was added to the excised tumor cells immediately following a 14.5-Gy in situ dose of X rays, cell survival in the inhibitor-treated cells was lower than in the untreated cells (0.018 compared to 0.056), resulting in a PLD repair inhibition factor of 3.1. Delaying the addition of beta-ara-A for 1, 2, or 3 h following tumor excision reduced the PLD repair inhibition factor to 1.6, 1.5, and 0.9, respectively. Following tumor irradiation in situ with neon ions in the extended-peak ionization region (median LET = 145 keV/micron), less PLD repair was observed than after X irradiation. For 5.8 Gy of peak neon ions, the PLD repair inhibition factors were 2.1, 1.5, 1.3, and 1.1 at 0, 1, 2, and 3 h, respectively. We interpret the absence of measurable PLD repair using the standard tumor excision assay procedure as resulting from undetectable repair occurring during the long interval (about 2 h) required for the cell dissociation and plating procedures. We conclude that at least for our tumor system, PLD repair does occur after irradiation of tumors in situ, even though it is not detectable using the standard tumor excision assay procedure. Thus a failure to measure such repair by this assay in a given tumor system does not necessarily mean the cells are incapable of PLD repair.  相似文献   

2.
The radioprotective and restorative (therapeutic) effects of human recombinant interleukin-1 beta (IL-1 beta) on the population of bone marrow CFU-S of mice, subjected to either sublethal doses of ionising irradiation itself or the same irradiation in combination with thermal burn, are investigated. Both the effects of the agent are registered under both in vitro and in vivo irradiation in semi-, syn- and allogeneic animals. If the irradiation was combined with thermal burn, the "therapeutic" effect of the agent was demonstrated at irradiation dose equal to 3.06 Gy rather than to 6.12 Gy. If the bone marrow cells were irradiated in vitro in dose 3.06 Gy with the following heat shock at 42 degrees C for 10-20 min, the "therapeutic" effect of IL-1 beta was seen only if it was added to cells before rather than after irradiation. The radioprotective effect of IL-1 beta is maintained under in vitro, as well as in vivo conditions in the allogeneic system of transplantation of the CBA donor bone marrow to the C57BL mice.  相似文献   

3.
Tonicity shock or caffeine postirradiation treatment makes evident fast-type potentially lethal damage (PLD). Caffeine expresses fast-type PLD more efficiently than tonicity shock in X-irradiated B-16 mouse melanoma cells, compared with V79 Chinese hamster cells. The survival curves of thermal neutrons for either V79 or B-16 cells exhibit no shoulder. Neither V79 nor B-16 cells show the sublethal damage (SLD) repair of thermal neutrons. Caffeine-sensitive fast-type PLD repairs exist in X-irradiated B-16 cells, as well as V79 cells. The fast-type PLD repair of B-16 cells exposed to thermal neutrons alone is rather less than that of X-irradiated cells. Furthermore, an extremely low level of fast-type PLD repair of B-16 cells with 10B1-paraboronophenylalanine (BPA) preincubation (20 hours) followed by thermal neutron irradiation indicated that 10B(n,alpha)7Li reaction effectively eradicates actively growing melanoma cells. The plateau-phase B-16 cells are well able to repair the slow-type PLD of X-rays. However, cells can not repair the slow-type PLD induced by thermal neutron irradiation with or without 10B1-BPA preincubation. These results suggest that thermal neutron capture therapy can effectively kill radioresistant melanoma cells in both proliferating and quiescent phases.  相似文献   

4.
We have studied the influence of postirradiation conditions resulting in repair or fixation of X-ray-induced potentially lethal damage (PLD) on the induction of 6-thioguanine-resistant mutants in plateau phase Ehrlich ascites tumour cells. For repair of PLD cells were incubated under plateau-phase conditions for 6–8 hours after irradiation. For fixation of PLD we used either a 4-h treatment with 120 μM β-araA or a 50-min treatment in hypertonic medium (2.5 times the normal tonicity). These treatment are known to effectively reduce or eliminate the shoulder of the X-ray survival care. The mutants were allowed to form colonies in agar medium containing 1.5 μg/ml 6-thioguanine, after expression times of 6–12 days.We observed a decrease in the number of mutants induced (per 105 cells) when the cells were allowed to repair PLD, as compared with that of cells processed immediately after irradiation, and an increase in their number after treatment either with β-araA or in hypertonic medium. The curves obtained for the induction of mutants as a function of the radiation dose were usually upward bending.After irradiation at low dose rate we obtained an exponential survival curve and a linear induction of mutants as a function of the dose.Based on these results we suggest that potentially lethal lesions resulting in the formation of the shoulder of the survival curve are not identical with those lesions responsible for the induction of mutants.  相似文献   

5.
Changes in the kinetic state of pluripotent haemopoietic spleen colony forming cells (CFU-S) and of the CFU-S proliferation stimulator have been studied following whole-body X-irradiation. Rapid recruitment of CFU-S into cell cycle by 30 min after irradiation was observed following low doses (0.5 Gy) but a delay of 6 h occurred after higher doses (1.5 and 4.5 Gy). These changes in proliferative state correlated with the presence of the CFU-S proliferation stimulator. CFU-S irradiated in vitro in bone marrow plugs were also recruited into cycle illustrating directly the local nature of the feedback mechanism. CFU-S removed from 1.5 Gy irradiated recipients at a time when they were not in cycle were not responsive to the CFU-S proliferation stimulator. The CFU-S proliferation stimulator was produced by Ia positive cells in the irradiated bone marrow. The regulation changes occurring shortly after irradiation cannot simply be controlled by the size of the CFU-S compartment.  相似文献   

6.
Plateau-phase Chinese V79 hamster cells were sequentially treated after exposure to gamma rays in medium made hypertonic by the addition of sodium chloride (370 mM) and with various concentrations of 9-beta-D-arabinofuranosyladenine (araA) to study their combined effect on fixation of potentially lethal damage (PLD). A 10-min treatment in hypertonic medium fixed an extensive amount of PLD and caused a decrease in D0 from 1.8 to 1.2 Gy without significantly affecting Dq. Subsequent treatment with araA caused further fixation of PLD but resulted in a specific, concentration-dependent reduction in Dq from 4.9 to 1.6 Gy after a 4-h exposure to 150 microM araA. A 30-min treatment in hypertonic medium reduced not only Do (from 1.8 to 1.0 Gy) but also Dq (from 4.9 to 2.7 Gy). Subsequent treatment with araA in this case affected only the residual shoulder, reducing it to 1.6 Gy after a 4-h treatment with 100 microM araA, a value similar to that obtained after treatment with araA of cells exposed to salt for only 10 min. When the repair of PLD fixed by a 10-min treatment with salt was measured by delaying its postirradiation application in the presence of various amounts of araA, a small decrease in the repair rate was observed but no significant effect on the relative increase in survival. Qualitatively similar results were obtained for repair of PLD sensitive to araA after a 10-min treatment in hypertonic medium. These results suggest the radiation induction of forms of PLD with different sensitivity to fixation by postirradiation treatments. araA is proposed to fix a form of PLD termed alpha-PLD, the repair of which takes place within 4-6 h and which causes the formation of the shoulder in the survival curve of cells plated immediately after irradiation. Short treatments in hypertonic medium (less than 10 min) are proposed to fix a form of PLD termed beta-PLD, the repair of which takes place within 1 h and leads to restoration of the slope to values equal to those obtained in the survival curve of cells plated immediately after irradiation. However, longer treatments in hypertonic medium also affect Dq and thus also alpha-PLD. Repair of beta-PLD was not significantly affected by araA and repair of alpha-PLD was not significantly affected by short hypertonic treatment, thus indicating the independence of the two forms of PLD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Repair of potentially lethal damage (PLD) was studied in the RIF-1 tumor system in several different growth states in vivo and in vitro. Exponentially growing, fed plateau, and unfed plateau cells in cell culture as well as small and large subcutaneous or intramuscular tumors were investigated. Large single doses of radiation followed by variable repair times as well as graded doses of radiation to generate survival curves immediately after irradiation or after full repair were investigated. All repair-promoting conditions studied in vitro (delayed subculture, exposure of cells to depleted growth medium after irradiation) increased surviving fraction after a single dose. The D0 of the cell survival curve was also increased by these procedures. No PLD repair was observed for any tumors irradiated in vivo and maintained in the animal for varying times prior to assay in vitro. The nearly 100% cell yield obtained when this tumor is prepared as a single-cell suspension for colony formation, the representative cell sample obtained, and the constant cell yield per gram as a function of time postirradiation suggest that this discrepancy is not an artifact of the assay system. The most logical explanation of these data and information on radiocurability of this neoplasm is that PLD repair, which is so frequently demonstrated in vitro, may not be a major factor in the radioresponse of this tumor when left in situ.  相似文献   

8.
Abstract Changes in the kinetic state of pluripotent haemopoietic spleen colony forming cells (CFU-S) and of the CFU-S proliferation stimulator have been studied following whole-body X-irradiation. Rapid recruitment of CFU-S into cell cycle by 30 min after irradiation was observed following low doses (0.5 Gy) but a delay of 6 h occurred after higher doses (1.5 and 4.5 Gy). These changes in proliferative state correlated with the presence of the CFU-S proliferation stimulator. CFU-S irradiated in vitro in bone marrow plugs were also recruited into cycle illustrating directly the local nature of the feedback mechanism. CFU-S removed from 1.5 Gy irradiated recipients at a time when they were not in cycle were not responsive to the CFU-S proliferation stimulator. The CFU-S proliferation stimulator was produced by Ia positive cells in the irradiated bone marrow. The regulation changes occurring shortly after irradiation cannot simply be controlled by the size of the CFU-S compartment.  相似文献   

9.
人骨髓细胞体外培养液中含有高活力的 CSF,在长期培养过程中,CSF 活力的变化,与 CFU-C 数量的变化有大致平行的趋势。这种 CSF 对狗和小鼠也同样有效。人骨體条件液中的 CSF 对培养中的 CFU-S 也有明显的激发作用。这一结论可以从几个方面获得证据:第一,小鼠骨髓细胞与人骨髓条件液保温六小时后,再测定其中 CFU-S 数,结果是增加了。第二,经亚致死剂量照射的小鼠,腹腔注射适量的人骨髓条件液,其内源性脾结节也明显增多。第三,采用阿糖胞苷自杀的方法,测定小鼠骨髓经与人骨髓条件液保温后,其中 CFU-S 的自杀率也有增高的趋势。上述几方面的实验,说明人骨髓长期培养中存在着某种活性物质,调节体外造血。至于这种物质的来源,以及在体外造血中所起的作用,还需要做很多工作,逐步予以澄清。  相似文献   

10.
The authors studied the ability of the CFU-S, forming colonies on the 8th and 11th days after bone marrow cells transplantation, to repair the sublethal radiation damages (SRD), according to Elkind's model. Special attention was given to the kinetics fo reparation for SRD for two subpopulations of CFU (8th- and 11th-days' CFU-S). the 1-6 hour intervals between two equivalent doses of irradiation were made. The ability to repair the SRD of the 11th-days' CFU-S was lower than that of the 8th-days' CFU-S at all time intervals. The maximum reparation of the 8th-days' CFU-S was observed at 5-hour period; and that was twice as high as the maximum reparation of the 11th-days' CFU-S, which was determined at 3-hour interval between the two irradiation doses.  相似文献   

11.
A role for T-cells in the regulation of CFU-S proliferation was investigated by determining the presence and activity of CFU-S proliferation stimulator (CFU-S stimulator) in adult mouse bone marrow after irradiation or cyclophosphamide (Cy) treatment. CBA mice previously deprived of T-cells by thymectomy, irradiation and bone marrow reconstitution (TIR) were thereafter treated with 4.5 Gy irradiation or 200 mg/kg Cy. Regenerating bone marrow cells of TIR and corresponding control mice after irradiation or Cy treatment produced CFU-S stimulator. The dose dependent increase in cytosine arabinoside cell death of normal bone marrow day 8 CFU-S was found when both CFU-S stimulators obtained after irradiation of TIR or corresponding control animals were tested. CFU-S stimulator activity in the bone marrow of TIR-Cy treated mice was also detected, but the effect was not dose-dependent. This was not related to the presence of an inhibitor of CFU-S proliferation. It appears that the CFU-S stimulator activity is not related to IL-6, IL-1 or IL-2, or to an inhibitor of IL-6 or IL-1 activity. The results demonstrate the existence of CFU-S proliferation stimulator unrelated to the two major monokines in the bone marrow of immunosuppressed mice.  相似文献   

12.
Cell survival and recovery after gamma irradiation were investigated in a Chinese hamster ovary cell line (AA8) and in two radiosensitive clones (EM9 and NM2) derived from it. When analyzed by the multitarget and linear-quadratic equations, the dose-response curves for survival of both EM9 and NM2 cells, compared with AA8 cells, were characterized by a decreased magnitude of the shoulder or single-hit region (as reflected by Dq or alpha, respectively) but no difference in the terminal slope or double-hit region (as reflected by DO or beta, respectively). Recovery from sublethal damage (SLD) and potentially lethal damage (PLD) was measured in the three cell lines to examine the relationship between the shoulder width of the survival curve and the magnitude of cellular recovery. NM2 cells exhibited a reduced shoulder on their survival curve and a reduced capacity for SLD recovery, compared with AA8 cells, after equitoxic doses of radiation. EM9 cells, which also had a reduced shoulder on their survival curve, displayed the same rate and extent of recovery as AA8 cells for both SLD and PLD. PLD recovery, as assayed in fed plateau-phase NM2 cells by delayed plating, occurred with slower initial kinetics but to the same final extent as that in AA8 cells, resulting in modification of both the shoulder and the slope of the survival curve. However, PLD recovery, as assayed in log-phase NM2 cells by postirradiation treatment with hypertonic salt, was normal and affected predominantly the slope of the survival curve. These data demonstrate that although both SLD and PLD recovery play a role in determining cell survival, cell-survival curve parameters may not always be useful in predicting cellular recovery capacity.  相似文献   

13.
Time-lapse microscopy revealed that the proportion of non-dividing cells after irradiation was the same under both conditions of PLD repair and non-PLD repair, suggesting that PLD is repaired in an error-free and -prone manner, respectively, or that PLD repair operates only on that mode of cell death which involves post-irradiation mitosis.  相似文献   

14.
Cells that have been grown as multicell tumor spheroids exhibit radioresistance compared to the same cells grown in monolayers. Comparison of potentially lethal damage (PLD) repair and its kinetics was made between 9L cells grown as spheroids and confluent monolayers. Survival curves of cells plated immediately after irradiation showed the typical radioresistance associated with spheroid culture compared to plateau-phase monolayers. The dose-modification factor for spheroid cell survival is 1.44. Postirradiation incubations in normal phosphate-buffered saline (PBS), conditioned media, or 0.5 M NaCl in PBS reduced the differences in radiosensitivity between the two culture conditions. Postirradiation treatment in PBS or conditioned medium promoted repair of potentially lethal damage, and 0.5 M NaCl prevented the removal of PLD and allowed the fixation of damage resulting in lower survival. Survival of spheroid and monolayer cells after hypertonic NaCl treatment was identical. NaCl treatment reduced Do more than it did the shoulder (Dq) of the survival curve. PLD repair kinetics measured after postirradiation incubation in PBS followed by hypertonic NaCl treatment was the same for spheroids and for plateau-phase monolayers. The kinetics of PLD repair indicates a biphasic phenomenon. There is an initial fast component with a repair half-time of 7.9 min and a slow component with a repair half-time of 56.6 min. Most of the damage (59%) is repaired slowly. Since the repair capacity and kinetics are the same for spheroids and monolayers, the radioresistance of spheroids cannot be explained on this basis. Evidence indicates that the time to return from a Go (noncycling G1 cells) state to a proliferative state (recruitment) for cells from confluent monolayers and from spheroids after dissociation by protease treatment may be the most important determinant of the degree of PLD repair that occurs. Growth curves and flow cytometry cell cycle analysis indicate that spheroid cells have a lag period for reentry into a proliferative state. Since plating efficiency remains high and unchanging during this period, one cannot account for the delay on the basis of the existence of a large fraction of Go cells which are not potentially clonogenic. The cell cycle progression begins in 6-8 h for monolayer cells and in 14-15 h for spheroids. It is hypothesized that the slower reentry of spheroid cells into a cycling phase allows more time for repair than for the rapidly proliferating monolayer cells.  相似文献   

15.
X-ray induced potentially lethal damage and its inhibition by the aromatic amide 3-aminobenzamide have been investigated in Chinese hamster V79 cells. 3-Aminobenzamide (3-AB) is a known inhibitor of polyadenosine diphosphoribose synthetase. With increasing concentrations of 3-AB an increasing inhibition of PLD repair was observed. Little inhibition of PLD repair was seen when 3-AB was added 3 h following irradiation. Utilizing the 6-thioguanine mutation assay, the effect of poly(ADP-R) synthetase inhibition under conditions of PLD repair upon mutation frequency were also studied. A large increase in mutation frequency following 24 h post-irradiation recovery in the presence of 3-AB was seen. These results favour a possible role of 3-AB in preventing repair by facilitating early damage fixation before repair can occur, simultaneously reducing G2-arrest.  相似文献   

16.
Plateau-phase V79 cells were exposed sequentially to fast neutrons and gamma rays. A dose-dependent reduction in the shoulder width of the gamma-ray survival curve was observed after preexposure of cells to neutrons. A similar effect was demonstrated on the neutron survival curve when cells were preirradiated with gamma rays. Treatment of cells with 150 microM beta-araA after either gamma or neutron irradiation reduced primarily the shoulder of the survival curve. When beta-araA was given to the cells after exposure to mixed radiation modalities, survival curves similar to those observed after exposure to a single radiation modality and treatment with beta-araA were obtained. The kinetics of loss of the interaction observed after exposure of cells to gamma rays following neutron irradiation was similar to the kinetics of loss of sensitivity to beta-araA (T1/2 = 1 h) measured by delaying drug administration after exposure to gamma rays. The results suggest that the PLD expressed by beta-araA is at least partly involved in the interactive effect observed after combined exposure of plateau-phase V79 cells to neutrons and gamma rays.  相似文献   

17.
The effects of multiple-dose gamma irradiation on the shape of survival curves were studied with mouse C3H 10T1/2 cells maintained in contact-inhibited plateau phase. The dose-fractionation intervals included 3, 6, and 24 h. Following three fractionated doses (5 Gy per dose) of exposures, cells responded to further irradiation by displaying a survival curve with a much reduced shoulder width (Dq) compared to that of the survival curve measured in cells irradiated with single-graded doses alone. The effect on the mean lethal dose (D0) was small and appeared to be significant. The effect on reduction of Dq could not be completely overcome by lengthening the fractionation intervals from 3 to 6 h or 24 h, times in which repair of sublethal damage (SLD) measured by simple split-dose scheme and potentially lethal damage (PLD) measured by postirradiation incubation was completed. Other experiments showed that pretreatments of cells with fractionated irradiation appeared to slow down the cellular repair processes of SLD and PLD. Therefore, the observed change in the shape of survival curves after fractionation treatments may be attributed to a reduction of the cells' capacity for damage accumulation by an enhancement of the lethal expression of SLD and PLD. Although the molecular mechanism(s) is not known, the results of this study indicate that the acute graded dose-survival curve cannot be used a priori to extrapolate and reliably predict results of hyperfractionation. It is probable that for a nondividing or slowly dividing cell population, such an extrapolation may lead to an underestimation of cell killing. Furthermore, the findings of this investigation appear to support an interpretation, alternative to the high-linear energy transfer (LET) track-end postulate, for the effects on cell survival seen at low doses or low dose rates.  相似文献   

18.
骨髓基质细胞的辐射效应及其临床意义   总被引:7,自引:0,他引:7  
小鼠骨髓基质细胞团在γ线照射后的Do值为2.40Gy,但其成灶能力损伤后持续时间较久。正常骨髓基质细胞能促进骨髓GM-CFU-C的生长;照射10-80Gy后的骨髓基质细胞失去这种促进作用。文中讨论了骨髓基质细胞的辐射效应及其临床意义,提出了谨慎选择放射治疗剂量的必要性。  相似文献   

19.
Summary Eudorina elegans does not respond to liquid-holding or to postirradiation medium effects by changes in recovery.A decrease in survival ability is observed if a culture is starved prior to irradiation, or is incubated at 22°C rather than 32°C following UV irradiation. Eudorina loses the ability to photoreactivate UV damage within 10 to 48 h following irradiation, depending upon the pre-and post-UV culture conditions.The results are interpreted as indicating a failure of Eudorina elegans to carry out specific dark repair of UV damage. Some reactivation may occur during cellular DNA synthesis.Abbreviations used PR photoreactivation - LHR liquid holding recovery - LHP liquid holding protection - ERR excision-resynthesis-repair - BC complete medium - BM minimal medium - cfa colony forming ability - cfu colony forming units Supported by grants from the National Research Council of Canada # A4431.  相似文献   

20.
Thrombocytopenia (rise of the thrombopoietin level) was induced by an antithrombocyte serum in mice. After 6 hours of existence of thrombocytopenia, the CFU-S and megakaryocyte-commmitted stem cell content of the bone marrow and spleen was determined by transplantation into mice pretreated with 800 cGy-rtg irradiation. Thrombocytopenia did not influence the CFU-S content. Thrombocytopoiesis of the recipient mice was better restored by bone marrow and spleen cells of thrombocytopenic animals than by cells transplanted from animals with a normal thrombocyte count.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号