首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
After interaction with its receptor, GM-CSF induces phosphorylation of the beta-chain in two distinct domains in macrophages. One induces activation of mitogen-activated protein kinases and the PI3K/Akt pathway, and the other induces JAK2-STAT5. In this study we describe how trichostatin A (TSA), which inhibits deacetylase activity, blocks JAK2-STAT5-dependent gene expression but not the expression of genes that depend on the signal transduction induced by the other domain of the receptor. TSA treatment inhibited the GM-CSF-dependent proliferation of macrophages by interfering with c-myc and cyclin D1 expression. However, M-CSF-dependent proliferation, which requires ERK1/2, was unaffected. Protection from apoptosis, which involves Akt phosphorylation and p21(waf-1) expression, was not modified by TSA. GM-CSF-dependent expression of MHC class II molecules was inhibited because CIITA was not induced. The generation of dendritic cells was also impaired by TSA treatment because of the inhibition of IRF4, IRF2, and RelB expression. TSA mediates its effects by preventing the recruitment of RNA polymerase II to the promoter of STAT5 target genes and by inhibiting their expression. However, this drug did not affect STAT5A or STAT5B phosphorylation or DNA binding. These results in GM-CSF-treated macrophages reveal a relationship between histone deacetylase complexes and STAT5 in the regulation of gene expression.  相似文献   

3.
Modulation of histone acetylation is currently being explored as a therapeutic strategy in treatment of cancer. Specifically, inhibition of histone deacetylase by trichostatin A (TSA) has been shown to prevent tumorigenesis and metastasis. In the present paper we demonstrate that increased histone acetylation by TSA-treated 3T3 cells decreases mRNA as well as zymographic activity of gelatinase A, a matrix metalloproteinase, which is itself, implicated in tumorigenesis and metastasis. Furthermore, TSA inhibits cytochalasin D-induced activation of gelatinase A, but TSA does not affect other members of the gelatinase A activation complex, MT1-MMP and TIMP-2. Thus, TSA is a selective and potent inhibitor of expression and activation of gelatinase A. This finding not only strengthens the rationale for continuing to investigate the therapeutic utility of TSA in cancer, but also, provides evidence that TSA inhibition of gelatinase A expression and activation can be used as a biological marker to monitor and determine end-points of clinical trials involving TSA.  相似文献   

4.
After in vitro maturation, the unfertilized pig oocytes underwent the process called ageing. This process involves typical events such as fragmentation, spontaneous parthenogenetic activation or lysis. Inhibition of histone deacetylase, using its specific inhibitor trichostatin A (TSA), significantly delayed the maturation of pig oocytes cultured in vitro. The ageing of oocytes matured under the effect of TSA is the same as the ageing in oocytes matured without TSA. The inhibition of histone deacetylase during oocyte ageing significantly reduced the percentage of fragmented oocytes (from 30% in untreated oocytes to 9% in oocytes aged under the effect of 100 nM of TSA). Oocytes matured in vitro and subsequently aged for 1 day under the effects of TSA retained their developmental capacity. After parthenogenetic activation, a significantly higher portion (27% vs. 15%) of oocytes developed to the blastocyst stage after 24 h ageing under 100 nM TSA when compared with oocytes activated after 24 h ageing in a TSA-free medium. The parthenogenetic development in oocytes aged under TSA treatment is similar to the development of fresh oocytes (29% of blastocyst) artificially activated immediately after in vitro maturation.  相似文献   

5.
曲古抑菌素A对结肠癌细胞株SW480细胞周期影响的机制研究   总被引:4,自引:0,他引:4  
为了研究组蛋白去乙酰化酶(HDACs)抑制剂曲古抑菌素A(TSA)对结肠癌细胞周期和凋亡的影响,初步探讨TSA作用细胞周期的可能机制,将人结肠癌细胞系SW480经TSA处理后,运用流式细胞术检测细胞周期、凋亡以及细胞周期素的变化,最后采用western-blot对细胞周期相关的基因进行检测.结果表明,TSA处理细胞后,TSA能够延缓细胞周期G1-S进程,阻滞细胞于G1期,并且影响细胞周期素cyclinE、cyclinA聚集,而对凋亡无明显的影响.Western-blot显示,TSA能够上调p21Waf1/Cip1、p27Kip1的表达,下调CDK2、cyclinE以及cycli-nA的表达.以上结果说明在结肠癌细胞中,TSA能够通过上调p21Waf1/Cip1、p27Kip1的表达以及下调CDK2、cy-clinE、cyclinA的表达,从而阻滞细胞周期于G1期,最终影响肿瘤细胞的生长,以上研究为HDAC抑制剂应用于结肠癌治疗提供了理论依据.  相似文献   

6.
(R)-Trichostatin A (TSA) is a Streptomyces product which causes the induction of Friend cell differentiation and specific inhibition of the cell cycle of normal rat fibroblasts in the G1 and G2 phases at the very low concentrations. We found that TSA caused an accumulation of acetylated histone species in a variety of mammalian cell lines. Pulse-labeling experiments indicated that TSA markedly prolonged the in vivo half-life of the labile acetyl groups on histones in mouse mammary gland tumor cells, FM3A. The partially purified histone deacetylase from wild-type FM3A cells was effectively inhibited by TSA in a noncompetitive manner with Ki = 3.4 nM. A newly isolated mutant cell line of FM3A resistant to TSA did not show the accumulation of the acetylated histones in the presence of a higher concentration of TSA. The histone deacetylase preparation from the mutant showed decreased sensitivity to TSA (Ki = 31 nM, noncompetitive). These results clearly indicate that TSA is a potent and specific inhibitor of the histone deacetylase and that the in vivo effect of TSA on cell proliferation and differentiation can be attributed to the inhibition of the enzyme.  相似文献   

7.
8.
9.
Cells positive for the cell surface marker CD34 from bone marrow or umbilical cord blood form a subset of quiescent, hematopoetic precursors that can establish human hematopoesis in immunodeficient mice and can progress down various differentiation pathways in vitro. They provide a valuable model system in which progression from quiescent to cycling to differentiated states can be linked to changes in chromatin and histone modification. We have used the deacetylase inhibitor sodium butyrate to show that turnover of histone H4 acetates is rapid and comparable in quiescent and cycling CD34+ cells from human umbilical cord blood (CD34+ UBC). Surprisingly, the widely used inhibitor trichostatin A (TSA) had little (cycling cells) or no (quiescent cells) effect on H4 acetylation in CD34+ UBC. Among five cell types examined, CD34+ UBC were unique in expressing all (putative) deacetylases tested (HDAC1, -2, -3, -4, -6, -7, and -8 and SIRT1-4), but no single deacetylase correlated with their TSA resistance. Also, HDAC1, -2, -3, and -6 complexes isolated from CD34+ UBC by immunoprecipitation were all inhibited by TSA in vitro. Thus, TSA resistance of CD34+ UBC is not due to acquired or intrinsic TSA resistance of their deacetylases and may reflect an enhanced ability to process the drug.  相似文献   

10.
11.
In the socially monogamous prairie voles (Microtus ochrogaster), the development of a social bonding is indicated by the formation of partner preference, which involves a variety of environmental and neurochemical factors and brain structures. In a most recent study in female prairie voles, we found that treatment with the histone deacetylase inhibitor trichostatin A (TSA) facilitates the formation of partner preference through up-regulation of oxytocin receptor (OTR) and vasopressin V1a receptor (V1aR) genes expression in the nucleus accumbens (NAcc). In the present study, we tested the hypothesis that TSA treatment also facilitates partner preference formation and alters OTR and V1aR genes expression in the NAcc in male prairie voles. We thus observed that central injection of TSA dose-dependently promoted the formation of partner preference in the absence of mating in male prairie voles. Interestingly, TSA treatment up-regulated OTR, but not V1aR, gene expression in the NAcc similarly as they were affected by mating — an essential process for naturally occurring partner preference. These data, together with others, not only indicate the involvement of epigenetic events but also the potential role of NAcc oxytocin in the regulation of partner preference in both male and female prairie voles.  相似文献   

12.
13.
14.
目的:探讨不同浓度组蛋白去乙酰化酶抑制剂TSA对结肠癌HT29细胞的增殖、凋亡和自噬影响及其机制研究。方法:取对数生长期人结肠癌HT29细胞,采用MTT法检测不同浓度TSA处理对其细胞活力影响,并根据IC50值确定适宜给药浓度;采用流式细胞术检测不同浓度TSA处理后结肠癌HT29细胞的凋亡情况;Western blot验证空白对照组与TSA给药处理组中凋亡标志蛋白Ku70、acetrl-Ku70、Caspase3、Bax、Bcl-2和自噬标志蛋白LC3和Beclin1的表达。结果:MTT法实验结果表明TSA对结肠癌HT29细胞具有时间和浓度依赖性抑制作用,根据IC50=1.12μM,本研究中TSA的给药浓度为0.5μM和1μM;流式细胞凋亡检测结果表明TSA能够显著促进结肠癌HT29细胞凋亡,且其促凋亡作用存在浓度依赖性;此外,Western blot检测结果证实,与空白对照组相比,TSA给药处理可显著上调上述细胞中acetrl-Ku70以及促凋亡蛋白Caspase3、Bax和自噬标志蛋白LC3和Beclin1的表达,下调抗凋亡蛋白Bcl-2的表达(P<0.05)。结论:组蛋白去乙酰化酶抑制剂(TSA)的体外抗结肠癌细胞的增殖、促进细胞凋亡和自噬作用与其上调Ku70蛋白乙酰化密切相关,有望成为临床潜在抗癌靶点。  相似文献   

15.
16.
Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor with potential in cancer therapeutics. In a recent communication, we demonstrated that TSA is a selective, potent inhibitor of gelatinase A in 3T3 fibroblasts. In the present study, we extend these observations and examine the effects of TSA in 3T3 fibroblasts compared to HT-1080 fibrosarcoma cells with respect to gelatinase A expression, cell viability, and apoptosis. We find that while expression of gelatinase A in 3T3 fibroblasts is exquisitely sensitive to inhibition by TSA, expression of this enzyme in HT-1080 cells is minimally affected by this compound. Moreover, we show that TSA is pro-apoptotic in HT-1080 cells, but is anti-apoptotic in 3T3 cells. We propose a two-pronged model for the therapeutic action of TSA. On the one hand TSA selectively decreases cancer cell viability, while enhancing the viability of stromal cells. On the other hand, by selectively decreasing gelatinase A expression in stromal but not cancer cells, TSA acts to control metastatic potential by reducing the ability of metastatic cells to recruit stromal cells to secrete gelatinase A.  相似文献   

17.
18.
19.
Valproic acid (VPA) is a multi-target drug and an inhibitor of histone deacetylase (HDAC). We have previously demonstrated that prenatal exposure to VPA at embryonic day 12.5 (E12.5), but not at E14.5, causes autism-like behavioral abnormalities in male mouse offspring. We have also found that prenatal VPA exposure causes transient histone hyperacetylation in the embryonic brain, followed by decreased neuronal cell numbers in the prefrontal and somatosensory cortices after birth. In the present study, we examined whether prenatal HDAC inhibition affects neuronal maturation in primary mouse cortical neurons. Pregnant mice were injected intraperitoneally with VPA (500 mg/kg) and the more selective HDAC inhibitor trichostatin A (TSA; 500 µg/kg) at E12.5 or E14.5, and primary neuronal cultures were prepared from the cerebral cortices of their embryos. Prenatal exposure to VPA at E12.5, but not at E14.5, decreased total number, total length, and complexity of neuronal dendrites at 14 days in vitro (DIV). The effects of VPA weakened at 21 DIV. Exposure to TSA at E12.5, but not at E14.5, also delayed maturation of cortical neurons. In addition, real-time quantitative PCR revealed that the prenatal exposure to TSA decreased neuroligin-1 (Nlgn1), Shank2, and Shank3 mRNA levels and increased contactin-associated protein-like 2 mRNA level. The delay in neuronal maturation was also observed in Nlgn1-knockdown cells, which were transfected with Nlgn1 siRNA. These findings suggest that prenatal HDAC inhibition causes changes in gene expression of autism-related molecules linked to a delay of neuronal maturation.  相似文献   

20.
To elucidate the role of focal adhesion kinase (pp125FAK) in transformation, its phosphorylation in transformed fibroblasts was compared with that of detransformed fibroblasts induced by a histone deacetylase inhibitor, trichostatin A (TSA). Inhibition of histone deacetylase activity in two different ras-transformed fibroblast lines by TSA induced a morphological change into a flattened and more spread morphology, implying detransformation. These morphological changes included increased spreading ability of transformed NIH 3T3 cells on fibronectin. Of the six tyrosine phosphorylation sites in pp125FAK, phosphorylation at position 861 (Tyr-861) was clearly decreased during detransformation by TSA. It resulted from decreased activity of Src family tyrosine kinase and/or decreased amount of Src kinase interacting with pp125FAK. Furthermore, phosphorylation of Tyr-861 was reduced substantially by the Src family kinase inhibitor, PP1, while overexpression of Src kinase increased its phosphorylation, implying that Src kinase regulates phosphorylation of pp125FAK at Tyr-861. All of these findings suggest that increased phosphorylation of pp125FAK at Tyr-861 correlates with Ras-induced transformation of fibroblasts, and TSA is able to detransform them through regulation of pp125FAK phosphorylation at Tyr-861 by an Src family kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号