首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen peroxide reacts with 2-thio-FAD-reconstituted p-hydroxybenzoate hydroxylase to yield a long wavelength intermediate (lambda max = 360, 620 nm) which can be isolated in stable form on removal of excess H2O2. The blue flavin derivative slowly decays in a second peroxide-dependent reaction to yield a new flavin product lacking long wavelength absorbance (lambda max = 408, 472 nm). This final peroxide-modified enzyme binds p-hydroxybenzoate with a 10-fold lower affinity than does the native enzyme; furthermore, substrate binding leads to the inhibition of enzyme reduction by NADPH. Trichloroacetic acid treatment of the final peroxide-modified enzyme results in the quantitative conversion of the bound flavin to free FAD. However, gel filtration of the modified enzyme in guanidine hydrochloride at neutral pH leads to the co-elution of protein and modified flavin. The nondenatured peroxide product reacts rapidly with hydroxylamine to yield 2-NHOH-substituted FAD. These observations indicate that the secondary reaction of peroxide with the blue intermediate from 2-thio-FAD p-hydroxybenzoate hydroxylase results in the formation of an acid-labile covalent flavin-protein linkage within the enzyme active site, involving the flavin C-2 position.  相似文献   

2.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was replaced by a stereochemical analog, which is spontaneously formed from natural FAD in alcohol oxidases from methylotrophic yeasts. Reconstitution of p-hydroxybenzoate hydroxylase from apoprotein and modified FAD is a rapid process complete within seconds. Crystals of the enzyme-substrate complex of modified FAD-containing p-hydroxybenzoate hydroxylase diffract to 2.1 A resolution. The crystal structure provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The isoalloxazine ring of the arabinoflavin adenine dinucleotide (a-FAD) is located in a cleft outside the active site as recently observed in several other p-hydroxybenzoate hydroxylase complexes. Like the native enzyme, a-FAD-containing p-hydroxybenzoate hydroxylase preferentially binds the phenolate form of the substrate (pKo = 7.2). The substrate acts as an effector highly stimulating the rate of enzyme reduction by NADPH (kred > 500 s-1). The oxidative part of the catalytic cycle of a-FAD-containing p-hydroxybenzoate hydroxylase differs from native enzyme. Partial uncoupling of hydroxylation results in the formation of about 0.3 mol of 3,4-dihydroxybenzoate and 0.7 mol of hydrogen peroxide per mol NADPH oxidized. It is proposed that flavin motion in p-hydroxybenzoate hydroxylase is important for efficient reduction and that the flavin "out" conformation is associated with the oxidase activity.  相似文献   

3.
The oxygen transfer to p-hydroxybenzoate catalyzed by p-hydroxybenzoate hydroxylase (PHBH) has been shown to occur via a C4a-hydroperoxide of the flavin. Two factors are likely to be important in facilitating the transfer of oxygen from the C4a-hydroperoxide to the substrate. (a) The positive electrostatic potential of the active site partially stabilizes the negative charge centered on the oxygen of the flavin-C4a-alkoxide leaving group during the transition state [Ortiz-Maldonado, M., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 8124-8137]. (b) The hydrogen-bonding network ionizes the substrate to promote its nucleophilic attack on the electrophilic C4a-hydroperoxide intermediate [Entsch, B., Palfey, B. A., Ballou, D. P., and Massey, V. (1991) J. Biol. Chem. 266, 17341-17349]. This ionization is also aided by the positive electrostatic potential of the active site [Moran, G. R., Entsch, B., Palfey, B. A., and Ballou, D. P. (1997) Biochemistry 36, 7548-7556]. Substituents on the flavin can specifically affect the stability of the alkoxide leaving-group, whereas changes to specific enzyme residues can affect the charge in the active site and the hydrogen-bonding network. We have used wild-type (WT) PHBH and several mutant forms, all with normal FAD and with 8-Cl-FAD substituted for FAD, to assess the relative contributions of the two effects. Lys297Met and Asn300Asp have decreased positive charge in the active site, and these variants engender approximately 35-fold slower hydroxylation rates than the WT enzyme. Substitution of 8-Cl-FAD in these mutant forms gives approximately 1.8-fold increases in hydroxylation rates, compared with a > or =4.8-fold increase for WT with this flavin. The hydroxylation catalyzed by Tyr385Phe, a mutant enzyme form with a disrupted hydrogen-bonding network that compromises the ionization of the substrate without changing the positive charge of the active site, is stimulated 1.5-fold by substituting the enzyme with 8-Cl-FAD. The substrate, tetrafluoro-p-hydroxybenzoate, is fully ionized in WT PHBH, but this phenolate is a poor nucleophile because of the electron-withdrawing effects of the fluorine substituents. With tetrafluoro-p-hydroxybenzoate as the substrate, substitution of FAD with 8-Cl-FAD in the WT enzyme stabilizes the leaving alkoxide and leads to a 2.3-fold increase in the hydroxylation rate compared to that with FAD. Either the use of substrates that do not communicate with the proton network or the mutation of amino acid residues that perturb this interaction may prevent a necessary conformational change that allows proper orientation between reactants during the hydroxylation reaction or permits the essential protonation of the initially formed nascent flavin-C4a-peroxide anion. Thus, both activation of substrate by the proton network and stabilization of the leaving alkoxide appear to be important for oxygen transfer catalyzed by PHBH. The full effect of the substituents on the flavin (4.8-fold) can only be realized when the optimal transition state can be achieved, and this optimal state is not fully realized with the mutant forms.  相似文献   

4.
p-Hydroxybenzoate hydroxylase catalyzes the hydroxylation of an aromatic substrate and uses flavin as a cofactor. The reaction probably occurs via a flavin 4a-hydroperoxide intermediate. In this study the crystal structure of 4a,5-epoxyethano-3-methyl-4a,5-dihydrolumiflavin, an analogue of the flavin 4a-hydroperoxide intermediate, was fitted to the active site in the crystal structure of the p-hydroxybenzoate hydroxylase-3,4-dihydroxybenzoate complex. This model of an important catalytic intermediate fitted very well in the active site of p-hydroxybenzoate hydroxylase. The most striking result was that whereas with the normal flavin, the 0-4 of the flavin ring makes only poor hydrogen bonds with the protein, with the flavin 4a-hydroperoxide analogue, the same 0-4 makes strong hydrogen bonds with the NH groups of Gly-46 and Val-47. These two NH groups form a carbonyl oxygen binding pocket which has a geometry almost identical to the oxyanion hole found in several proteases. The possible consequences of this model for the reaction mechanism of p-hydroxybenzoate hydroxylase are discussed.  相似文献   

5.
Oxygen reactivity of p-hydroxybenzoate hydroxylase containing 1-deaza-FAD   总被引:2,自引:0,他引:2  
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) was replaced by 1-deaza-FAD (carbon substituted for nitrogen at position 1). An improved method for production of apoenzyme by precipitation with acidic ammonium sulfate was developed. The modified enzyme, in the presence of p-hydroxybenzoate, catalyzed the oxidation of NADPH by oxygen, yielding NADP+ and H2O2, but the ability to hydroxylate p-hydroxybenzoate and other substrates was lost. An analysis of the mechanism of NADPH-oxidase catalysis showed a close analogy between the reaction pathways for native and modified enzymes. In the presence of p-hydroxybenzoate, the rate of NADPH consumption catalyzed by the 1-deaza-FAD form was about 11% that of the native enzyme. Both formed a stabilized flavin-C (4a)-OOH intermediate upon reaction of reduced enzyme with oxygen, but the 1-deaza-FAD enzyme could not utilize this peroxide to hydroxylate substrates, and the peroxide decomposed to oxidized enzyme and H2O2.  相似文献   

6.
para-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyses a reaction in two parts: reduction of the flavin adenine dinucleotide (FAD) in the enzyme by reduced nicotinamide adenine dinucleotide phosphate (NADPH) in response to binding p-hydroxybenzoate to the enzyme and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. These different reactions are coordinated through conformational rearrangements of the protein and isoalloxazine ring during catalysis. Earlier research showed that reduction of FAD occurs when the isoalloxazine of the FAD moves to the surface of the protein to allow hydride transfer from NADPH. This move is coordinated with protein rearrangements that are triggered by deprotonation of buried p-hydroxybenzoate through a H-bond network that leads to the surface of the protein. In this paper, we examine the involvement of this same H-bond network in the oxygen reactions-the initial formation of a flavin-C4a-hydroperoxide from the reaction between oxygen and reduced flavin, the electrophilic attack of the hydroperoxide upon the substrate to form product, and the elimination of water from the flavin-C4a-hydroxide to form oxidized enzyme in association with product release. These reactions were measured through absorbance and fluorescence changes in the FAD during the reactions. Results were collected over a range of pH for the reactions of wild-type enzyme and a series of mutant enzymes with the natural substrate and substrate analogues. We discovered that the rate of formation of the flavin hydroperoxide is not influenced by pH change, which indicates that the proton required for this reaction does not come from the H-bond network. The rate of the hydroxylation reaction increases with pH in a manner consistent with a pK(a) of 7.1. We conclude that the H-bond network abstracts the phenolic proton from p-hydroxybenzoate in the transition state of oxygen transfer. The rate of formation of oxidized enzyme increases with pH in a manner consistent with a pK(a) of 7.1, indicating the involvement of the H-bond network. We conclude that product deprotonation enhances the rate of a specific conformational change required for both product release and the elimination of water from C4a-OH-FAD.  相似文献   

7.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens, was replaced by 6-hydroxy-FAD (an extra hydroxyl group on the carbon at position 6 of the isoalloxazine ring of FAD). The catalytic cycle of this modified enzyme was analyzed and compared to the function of native (FAD) enzyme. Transient state kinetic analyses of the multiple changes in the chemical state of the flavin were the principal methods used to probe the mechanism. Four known substrates of the native enzyme were used to probe the reaction. With the natural substrate, p-hydroxybenzoate, the 6-hydroxy-FAD enzyme activity was 12-15% of native enzyme, due to a slower release of product from the enzyme, and less than one product molecule was formed per NADPH oxidized, due to an increased rate of nonproductive decomposition of the transient peroxyflavin essential to the catalytic pathway. More extensive changes in mechanism were observed with the substrates, 2,4-dihydroxybenzoate and p-aminobenzoate. The results suggest that, during catalysis, when the reduced state of FAD is ready for oxygen reaction, the substrate is located below and close to the C-4a/N-5 edge of the isoalloxazine ring. The nature of the high extinction, transient state of flavin, formed upon transfer of oxygen to substrate is discussed. It is not a flavin cation, and is unlikely to be an oxygen-substituted analogue of N-3/C-4 dihydroflavin.  相似文献   

8.
In the crystal structure of native p-hydroxybenzoate hydroxylase, Ser212 is within hydrogen bonding distance (2.7 A) of one of the carboxylic oxygens of p-hydroxybenzoate. In this study, we have mutated residue 212 to alanine to study the importance of the serine hydrogen bond to enzyme function. Comparisons between mutant and wild type (WT) enzymes with the natural substrate p-hydroxybenzoate showed that this residue contributes to substrate binding. The dissociation constant for this substrate is 1 order of magnitude higher than that of WT, but the catalytic process is otherwise unchanged. When the alternate substrate, 2,4-dihydroxybenzoate, is used, two products are formed (2,3,4-trihydroxybenzoate and 2,4, 5-trihydroxybenzoate), which demonstrates that this substrate can be bound in two orientations. Kinetic studies provide evidence that the intermediate with a high extinction coefficient previously observed in the oxidative half-reaction of the WT enzyme with this substrate is composed of contributions from both the dienone form of the product and the C4a-hydroxyflavin. During the reduction of the enzyme-2,4-dihydroxybenzoate complex by NADPH with 2, 4-dihydroxybenzoate, a rapid transient increase in flavin absorbance is observed prior to hydride transfer from NADPH to FAD. This is direct evidence for movement of the flavin before reduction occurs.  相似文献   

9.
The FAD of p-hydroxybenzoate hydroxylase (PHBH) is known to exist in two conformations. The FAD must be in the in-position for hydroxylation of p-hydroxybenzoate (pOHB), whereas the out-position is essential for reduction of the flavin by NADPH. In these investigations, we have used 8-mercapto-FAD and 8-hydroxy-FAD to probe the movement of the flavin in catalysis. Under the conditions employed, 8-mercapto-FAD (pK(a) = 3.8) and 8-hydroxy-FAD (pK(a) = 4.8) are mainly anionic. The spectral characteristics of the anionic forms of these flavins are very sensitive to their environment, making them sensitive probes for detecting movement of the flavin during catalysis. With these flavin analogues, the enzyme hydroxylates pOHB efficiently, but at a rate much slower than that of enzyme with FAD. Reaction of oxygen with reduced forms of these modified enzymes in the absence of substrate appears to proceed through the formation of the flavin-C4a-hydroperoxide intermediate, as with normal enzyme, but the decay of this intermediate is so fast compared to its formation that very little accumulates during the reaction. However, after elimination of H2O2 from the flavin-C4a-hydroperoxide, a perturbed oxidized enzyme spectrum is observed (Eox*), and this converts slowly to the spectrum of the resting oxidized form of the enzyme (Eox). In the presence of pOHB, PHBH reconstituted with 8-mercapto-FAD also shows the additional oxidized intermediate (Eox*) after the usual oxygenated C4a-intermediates have formed and decayed in the course of the hydroxylation reaction. This Eox* to Eox step is postulated to be due to flavin movement. Furthermore, binding of pOHB to resting (Eox) follows a three-step equilibrium mechanism that is also consistent with flavin movement being the rate-limiting step. The rate for the slowest step during pOHB binding is similar to that observed for the conversion of Eox* to Eox during the oxygen reaction in the absence or presence of substrate. Steady-state kinetic analysis of PHBH substituted with 8-mercapto-FAD demonstrated that the apparent k(cat) is also similar to the rate of Eox* conversion to Eox. Presumably, the protein environment surrounding the flavin in Eox* differs slightly from that of the final resting form of the enzyme (Eox).  相似文献   

10.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   

11.
Para-hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor, FAD, by NADPH in response to binding p-hydroxybenzoate to the enzyme, and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. These different reactions are coordinated through conformational rearrangements of the isoalloxazine ring within the protein structure. In this paper, we examine the effect of increased positive electrostatic potential in the active site upon the catalytic process with the enzyme mutation, Glu49Gln. This mutation removes a negative charge from a conserved buried charge pair. The properties of the Glu49Gln mutant enzyme are consistent with increased positive potential in the active site, but the mutant enzyme is difficult to study because it is unstable. There are two important changes in the catalytic function of the mutant enzyme as compared to the wild-type. First, the rate of hydroxylation of p-hydroxybenzoate by the transiently formed flavin hydroperoxide is an order of magnitude faster than in the wild-type. This result is consistent with one function proposed for the positive potential in the active site-to stabilize the negative C-4a-flavin alkoxide leaving group upon heterolytic fission of the peroxide bond. However, the mutant enzyme is a poorer catalyst than the wild-type enzyme because (unlike wild-type) the binding of p-hydroxybenzoate is a rate-limiting process. Our analysis shows that the mutant enzyme is slow to interconvert between conformations required to bind and release substrate. We conclude that the new open structure found in crystals of the Arg220Gln mutant enzyme [Wang, J., Ortiz-Maldonado, M., Entsch, B., Massey, V., Ballou, D., and Gatti, D. L. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 608-613] is integral to the process of binding and release of substrate from oxidized enzyme during catalysis.  相似文献   

12.
Proline 293 of p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa is in a highly conserved region of the flavoprotein aromatic hydroxylases. It is thought to impart rigidity to the backbone, as it partially cradles the FAD in these hydroxylases. Thus, this residue has been substituted with serine by site-directed mutagenesis to investigate the importance of flexibility of the peptide segment in catalysis. Differential scanning calorimetry demonstrated that the mutation has decreased the stability of the folded mutant protein compared to the wild-type PHBH. The increased flexibility in the protein backbone enhanced the accessibility of the flavin hydroperoxide intermediate to the solvent, causing an increase in the elimination of H(2)O(2) from this labile intermediate and, consequently, a decrease in the efficiency of substrate hydroxylation. Additionally, the increased accessibility of this mutant form of the enzyme makes it more susceptible than the wild-type enzyme to being trapped in the hydroxyflavin intermediate form in the presence of high levels of p-hydroxybenzoate. The mutation also lowers the pK(a) of the phenolic oxygen of bound p-hydroxybenzoate, and eliminates the pH dependence of the rate constant for flavin reduction by NADPH. These experimental observations lead to a model that explains how the wild-type protein can sense the charge of the 4-substituent of the aromatic ligand and link this charge to a flavin conformational change that is required for reaction with NADPH: (i) The peptide oxygen of Pro 293 is repelled by the negative charge of the phenolic oxygen of p-hydroxybenzoate. (ii) This repulsion is transmitted through the peptide backbone, causing the movement of Asn 300. (iii) The change in the position of Asn 300 triggers the movement of the flavin from the largely buried "in" conformation to the exposed, reactive "out" conformation.  相似文献   

13.
Sheng D  Ballou DP  Massey V 《Biochemistry》2001,40(37):11156-11167
Cyclohexanone monooxygenase (CHMO), a bacterial flavoenzyme, carries out an oxygen insertion reaction on cyclohexanone to form a seven-membered cyclic product, epsilon-caprolactone. The reaction catalyzed involves the four-electron reduction of O2 at the expense of a two-electron oxidation of NADPH and a two-electron oxidation of cyclohexanone to form epsilon-caprolactone. Previous studies suggested the participation of either a flavin C4a-hydroperoxide or a flavin C4a-peroxide intermediate during the enzymatic catalysis [Ryerson, C. C., Ballou, D. P., and Walsh, C. (1982) Biochemistry 21, 2644-2655]. However, there was no kinetic or spectral evidence to distinguish between these two possibilities. In the present work we used double-mixing stopped-flow techniques to show that the C4a-flavin-oxygen adduct, which is formed rapidly from the reaction of oxygen with reduced enzyme in the presence of NADP, can exist in two states. When the reaction is carried out at pH 7.2, the first intermediate is a flavin C4a-peroxide with maximum absorbance at 366 nm; this intermediate becomes protonated at about 3 s(-1) to form what is believed to be the flavin C4a-hydroperoxide with maximum absorbance at 383 nm. These two intermediates can be interconverted by altering the pH, with a pK(a) of 8.4. Thus, at pH 9.0 the flavin C4a-peroxide persists mainly in the deprotonated form. Further kinetic studies also demonstrated that only the flavin C4a-peroxide intermediate could oxygenate the substrate, cyclohexanone. The requirement in catalysis of the deprotonated flavin C4a-peroxide, a nucleophile, is consistent with a Baeyer-Villiger rearrangement mechanism for the enzymatic oxygenation of cyclohexanone. In the course of these studies, the Kd for cyclohexanone to the C4a-peroxyflavin form of CHMO was determined to be approximately 1 microM. The rate-determining step in catalysis was shown to be the release of NADP from the oxidized enzyme.  相似文献   

14.
p-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor FAD by NADPH in response to binding p-hydroxybenzoate to the enzyme and reaction of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. Three different reactions, each with specific requirements, are achieved by moving the position of the isoalloxazine ring in the protein structure. In this paper, we examine the operation of protein conformational changes and the significance of charge-transfer absorption bands associated with the reduction of FAD by NADPH when the substrate analogue, 5-hydroxypicolinate, is bound to the enzyme. It was discovered that the enzyme with picolinate bound was reduced at a rate similar to that with p-hydroxybenzoate bound at high pH. However, there was a large effect of pH upon the rate of reduction in the presence of picolinate with a pK(a) of 7.4, identical to the pK(a) of picolinate bound to the enzyme. The intensity of charge-transfer bands observed between FAD and NADPH during the reduction process correlated with the rate of flavin reduction. We conclude that high rates of reduction of the enzyme require (a) the isoalloxazine of the flavin be held by the protein in a solvent-exposed position and (b) the movement of a loop of protein so that the pyridine ring of NADPH can move into position to form a complex with the isoalloxazine that is competent for hydride transfer and that is indicated by a strong charge-transfer interaction.  相似文献   

15.
2-Thio-FAD (oxygen substituent at position 2 is replaced by sulfur) was used to reconstitute the apoenzyme of p-hydroxybenzoate hydroxylase. The 2-thio-FAD enzyme differs from native enzyme in several respects. While the native enzyme catalyzes the fully coupled hydroxylation of p-hydroxybenzoate, the 2-thio-FAD enzyme shows no hydroxylation of this substrate, instead reducing molecular oxygen to hydrogen peroxide. The rate of reduction of 2-thio-FAD p-hydroxybenzoate hydroxylase by NADPH in the presence of substrate was 7-fold faster than with the native enzyme. However, the oxygen reactivity of the reduced 2-thio-FAD enzyme was less than 1% that of native enzyme. This slow oxygen reaction results in the very high KmO2 observed in steady state kinetic studies of the modified enzyme. Stopped flow studies of the oxygen reaction of the reduced 2-thio-FAD enzyme in the presence of substrate confirmed the formation of a transient intermediate. The spectrum of this intermediate is very similar to those of the flavin-C(4a) adducts obtained with 2-thio-FMN lactate oxidase. This evidence suggests that reduced 2-thio-FAD p-hydroxybenzoate hydroxylase forms a flavin-C(4a)-hydroperoxide on reaction with oxygen in a reaction analogous to that with native enzyme, but that the resulting peroxyflavin is incompetent as an oxygenating species, breaking down instead to oxidized 2-thio-FAD enzyme and hydrogen peroxide.  相似文献   

16.
The role of protein residues in activating the substrate in the reaction catalyzed by the flavoprotein p-hydroxybenzoate hydroxylase was studied. X-ray crystallography (Schreuder, H. A., Prick, P.A.J., Wieringa, R.K., Vriend, G., Wilson, K.S., Hol, W.G. J., and Drenth, J. (1989) J. Mol. Biol. 208, 679-696) indicates that Tyr-201 and Tyr-385 form a hydrogen bond network with the 4-OH of p-hydroxybenzoate. Therefore, site directed mutants were constructed, converting each of these tyrosines into phenylalanines. Spectral (visible and fluorescence) properties, reduction potentials, and binding constants are very similar to those of wild type, indicating that there are no major structural changes in the mutants. In the absence of substrate, the mutants and wild type exhibit similar pH-dependent changes in the FAD spectrum. However, the enzyme-substrate complex of Tyr-201----Phe lacks an ionization observed in both wild type and Tyr-385----Phe, which preferentially bind the phenolate form of substrates. Tyr-201----Phe shows no preference, indicating that Tyr-201 is required to ionize the substrate. The mutants have less than 6% the activity of the wild type enzyme. The effects on catalysis were studied by stopped flow techniques. Reduction of FAD by NADPH is slower by 10-fold in Tyr-201----Phe and 100-fold in Tyr-385----Phe. When the reduced Tyr-201----Phe-p-hydroxybenzoate complex reacts with oxygen, a long-lived flavin-C(4a)-hydroperoxide is observed, which slowly eliminates H2O2 with very little hydroxylation. Thus, the role of Tyr-201 is to activate the substrate by stabilizing the phenolate. Tyr-385----Phe reacts with oxygen to form 25% oxidized enzyme, and 75% flavin hydroperoxide, which successfully hydroxylates the substrate. This mutant also hydroxylates the product (3, 4-dihydroxybenzoate) to form gallic acid.  相似文献   

17.
The crystal structure of the reduced form of the enzyme p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens, complexed with its substrate p-hydroxybenzoate, has been obtained by protein X-ray crystallography. Crystals of the reduced form were prepared by soaking crystals of the oxidized enzyme-substrate complex in deaerated mother liquor containing 300-400 mM NADPH. A rapid bleaching of the crystals indicated the reduction of the enzyme-bound FAD by NADPH. This was confirmed by single crystal spectroscopy. X-ray data to 2.3 A were collected on oscillation films using a rotating anode generator as an X-ray source. After data processing and reduction, restrained least squares refinement using the 1.9 A structure of the oxidized enzyme-substrate complex as a starting model, yielded a crystallographic R-factor of 14.8% for 11,394 reflections. The final model of the reduced complex contains 3,098 protein atoms, the FAD molecule, the substrate p-hydroxybenzoate and 322 solvent molecules. The structures of the oxidized and reduced forms of the enzyme-substrate complex were found to be very similar. The root-mean-square discrepancy for all atoms between both structures was 0.38 A. The flavin ring is almost completely planar in the final model, although it was allowed to bend or twist during refinement. The observed angle between the benzene and the pyrimidine ring is 2 degrees. This value should be compared with observed values of 10 degrees for the oxidized enzyme-substrate complex and 19 degrees for the enzyme-product complex. The position of the substrate is virtually unaltered with respect to its position in the oxidized enzyme. No trace of a bound NADP+ or NADPH molecule was found.  相似文献   

18.
Yeh E  Cole LJ  Barr EW  Bollinger JM  Ballou DP  Walsh CT 《Biochemistry》2006,45(25):7904-7912
The flavin-dependent halogenase RebH catalyzes chlorination at the C7 position of tryptophan as the initial step in the biosynthesis of the chemotherapeutic agent rebeccamycin. The reaction requires reduced FADH(2) (provided by a partner flavin reductase), chloride ion, and oxygen as cosubstrates. Given the similarity of its sequence to those of flavoprotein monooxygenases and their common cosubstrate requirements, the reaction of FADH(2) and O(2) in the halogenase active site was presumed to form the typical FAD(C4a)-OOH intermediate observed in monooxygenase reactions. By using stopped-flow spectroscopy, formation of a FAD(C4a)-OOH intermediate was detected during the RebH reaction. This intermediate decayed to yield a FAD(C4a)-OH intermediate. The order of addition of FADH(2) and O(2) was critical for accumulation of the FAD(C4a)-OOH intermediate and for subsequent product formation, indicating that conformational dynamics may be important for protection of labile intermediates formed during the reaction. Formation of flavin intermediates did not require tryptophan, nor were their rates of formation affected by the presence of tryptophan, suggesting that tryptophan likely does not react directly with any flavin intermediates. Furthermore, although final oxidation to FAD occurred with a rate constant of 0.12 s(-)(1), quenched-flow kinetic data showed that the rate constant for 7-chlorotryptophan formation was 0.05 s(-)(1) at 25 degrees C. The kinetic analysis establishes that substrate chlorination occurs after completion of flavin redox reactions. These findings are consistent with a mechanism whereby hypochlorite is generated in the RebH active site from the reaction of FADH(2), chloride ion, and O(2).  相似文献   

19.
p-Hydroxybenzoate hydroxylase is extensively studied as a model for single-component flavoprotein monooxygenases. It catalyzes a reaction in two parts: (1) reduction of the FAD in the enzyme by NADPH in response to binding of p-hydroxybenzoate to the enzyme and (2) oxidation of reduced FAD with oxygen in an environment free from solvent to form a hydroperoxide, which then reacts with p-hydroxybenzoate to form an oxygenated product. These different reactions are coordinated through conformational rearrangements of the protein and the isoalloxazine ring during catalysis. Until recently, it has not been clear how p-hydroxybenzoate gains access to the buried active site. In 2002, a structure of a mutant form of the enzyme without substrate was published that showed an open conformation with solvent access to the active site [Wang, J., Ortiz-Maldonado, M., Entsch, B., Massey, V., Ballou, D., and Gatti, D. L. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 608-613]. The wild-type enzyme does not form high-resolution crystals without substrate. We hypothesized that the wild-type enzyme without substrate also forms an open conformation for binding p-hydroxybenzoate, but only transiently. To test this idea, we have studied the properties of two different mutant forms of the enzyme that are stabilized in the open conformation. These mutant enzymes bind p-hydroxybenzoate very fast, but with very low affinity, as expected from the open structure. The mutant enzymes are extremely inactive, but are capable of slowly forming small amounts of product by the normal catalytic pathway. The lack of activity results from the failure of the mutants to readily form the out conformation required for flavin reduction by NADPH. The mutants form a large fraction of an abnormal conformation of the reduced enzyme with p-hydroxybenzoate bound. This conformation of the enzyme is unreactive with oxygen. We conclude that transient formation of this open conformation is the mechanism for sequestering p-hydroxybenzoate to initiate catalysis. This overall study emphasizes the role that protein dynamics can play in enzymatic catalysis.  相似文献   

20.
Frederick KK  Ballou DP  Palfey BA 《Biochemistry》2001,40(13):3891-3899
p-Hydroxybenzoate hydroxylase (PHBH) hydroxylates activated benzoates using NADPH as a reductant and O(2) as an oxygenating substrate. Because the flavin, when reduced, will quickly react with oxygen in either the presence or absence of a phenolic substrate, it is important to regulate flavin reduction to prevent the uncontrolled reaction of NADPH and oxygen to form H(2)O(2). Reduction is controlled by the protonation state of the aromatic substrate p-hydroxybenzoate (pOHB), which when ionized to the phenolate facilitates the movement of flavin between two conformations, termed "in" and "out". When the hydrogen bond network that provides communication between the substrate and solvent is disrupted by changing its terminal residue, His72, to Asn, protons from solution no longer equilibrate rapidly with pOHB bound to the active site [Palfey, B. A., Moran, G. R., Entsch, B., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 1153-1158]. Thus, one population of the His72Asn enzyme reduces rapidly and has the phenolate form of pOHB bound at the active site and the flavin in the out conformation. The remaining population of the His72Asn enzyme reduces slowly and has the phenolic form of pOHB bound and the flavin in the in conformation. We have investigated the mechanisms of proton transfer between solvent and pOHB bound to the His72Asn form of the enzyme by double-mixing and single-mixing stopped-flow experiments. We find that, depending on the initial ionization state of bound pOHB and the new pH of the solution, the ionization/protonation of pOHB proceeds through the direct reaction of hydronium or hydroxide with the enzyme-ligand complex and leads to the conversion of one flavin conformation to the other. Our kinetic data indicate that the enzyme with the flavin in the in conformation reacts in two steps. Inspection of crystal structures suggests that the hydroxide ion would react at the re-face of the flavin, and its reaction with pOHB is limited by the movement of Pro293, a conserved residue in similar flavoprotein hydroxylases. We hypothesize that this type of breathing mode by the protein may have been used to compensate for the lack of an efficient proton-transfer network in ancestral hydroxylases, permitting useful catalysis prior to the emergence of specialized proton-transfer mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号